Package | Description |
---|---|
org.apache.commons.math.analysis.solvers |
Root finding algorithms, for univariate real functions.
|
org.apache.commons.math.complex |
Complex number type and implementations of complex transcendental
functions.
|
org.apache.commons.math.transform |
Implementations of transform methods, including Fast Fourier transforms.
|
Modifier and Type | Method and Description |
---|---|
Complex |
LaguerreSolver.solve(Complex[] coefficients,
Complex initial)
Deprecated.
in 2.2.
|
Complex[] |
LaguerreSolver.solveAll(Complex[] coefficients,
Complex initial)
Deprecated.
in 2.2.
|
Complex[] |
LaguerreSolver.solveAll(double[] coefficients,
double initial)
Deprecated.
in 2.2.
|
Modifier and Type | Method and Description |
---|---|
protected boolean |
LaguerreSolver.isRootOK(double min,
double max,
Complex z)
Returns true iff the given complex root is actually a real zero
in the given interval, within the solver tolerance level.
|
Complex |
LaguerreSolver.solve(Complex[] coefficients,
Complex initial)
Deprecated.
in 2.2.
|
Complex |
LaguerreSolver.solve(Complex[] coefficients,
Complex initial)
Deprecated.
in 2.2.
|
Complex[] |
LaguerreSolver.solveAll(Complex[] coefficients,
Complex initial)
Deprecated.
in 2.2.
|
Complex[] |
LaguerreSolver.solveAll(Complex[] coefficients,
Complex initial)
Deprecated.
in 2.2.
|
Modifier and Type | Field and Description |
---|---|
static Complex |
Complex.I
The square root of -1.
|
static Complex |
Complex.INF
A complex number representing "+INF + INFi"
|
static Complex |
Complex.NaN
A complex number representing "NaN + NaNi"
|
static Complex |
Complex.ONE
A complex number representing "1.0 + 0.0i"
|
static Complex |
Complex.ZERO
A complex number representing "0.0 + 0.0i"
|
Modifier and Type | Method and Description |
---|---|
Complex |
Complex.acos()
Compute the
inverse cosine of this complex number.
|
Complex |
Complex.add(Complex rhs)
Return the sum of this complex number and the given complex number.
|
Complex |
Complex.asin()
Compute the
inverse sine of this complex number.
|
Complex |
Complex.atan()
Compute the
inverse tangent of this complex number.
|
Complex |
Complex.conjugate()
Return the conjugate of this complex number.
|
Complex |
Complex.cos()
Compute the
cosine
of this complex number.
|
Complex |
Complex.cosh()
Compute the
hyperbolic cosine of this complex number.
|
protected Complex |
Complex.createComplex(double realPart,
double imaginaryPart)
Create a complex number given the real and imaginary parts.
|
Complex |
Complex.divide(Complex rhs)
Return the quotient of this complex number and the given complex number.
|
Complex |
Complex.exp()
Compute the
exponential function of this complex number.
|
Complex |
ComplexField.getOne()
Get the multiplicative identity of the field.
|
Complex |
ComplexField.getZero()
Get the additive identity of the field.
|
Complex |
Complex.log()
Compute the
natural logarithm of this complex number.
|
Complex |
Complex.multiply(Complex rhs)
Return the product of this complex number and the given complex number.
|
Complex |
Complex.multiply(double rhs)
Return the product of this complex number and the given scalar number.
|
Complex |
Complex.negate()
Return the additive inverse of this complex number.
|
Complex |
ComplexFormat.parse(String source)
Parses a string to produce a
Complex object. |
Complex |
ComplexFormat.parse(String source,
ParsePosition pos)
Parses a string to produce a
Complex object. |
static Complex |
ComplexUtils.polar2Complex(double r,
double theta)
Creates a complex number from the given polar representation.
|
Complex |
Complex.pow(Complex x)
Returns of value of this complex number raised to the power of
x . |
Complex |
Complex.sin()
Compute the
sine
of this complex number.
|
Complex |
Complex.sinh()
Compute the
hyperbolic sine of this complex number.
|
Complex |
Complex.sqrt()
Compute the
square root of this complex number.
|
Complex |
Complex.sqrt1z()
Compute the
square root of 1 -
this 2 for this complex
number. |
Complex |
Complex.subtract(Complex rhs)
Return the difference between this complex number and the given complex
number.
|
Complex |
Complex.tan()
Compute the
tangent of this complex number.
|
Complex |
Complex.tanh()
Compute the
hyperbolic tangent of this complex number.
|
Modifier and Type | Method and Description |
---|---|
List<Complex> |
Complex.nthRoot(int n)
Computes the n-th roots of this complex number.
|
Modifier and Type | Method and Description |
---|---|
Complex |
Complex.add(Complex rhs)
Return the sum of this complex number and the given complex number.
|
Complex |
Complex.divide(Complex rhs)
Return the quotient of this complex number and the given complex number.
|
StringBuffer |
ComplexFormat.format(Complex complex,
StringBuffer toAppendTo,
FieldPosition pos)
Formats a
Complex object to produce a string. |
static String |
ComplexFormat.formatComplex(Complex c)
This static method calls
Format.format(Object) on a default instance of
ComplexFormat. |
Complex |
Complex.multiply(Complex rhs)
Return the product of this complex number and the given complex number.
|
Complex |
Complex.pow(Complex x)
Returns of value of this complex number raised to the power of
x . |
Complex |
Complex.subtract(Complex rhs)
Return the difference between this complex number and the given complex
number.
|
Modifier and Type | Method and Description |
---|---|
protected Complex[] |
FastFourierTransformer.fft(Complex[] data)
Perform the base-4 Cooley-Tukey FFT algorithm (including inverse).
|
protected Complex[] |
FastFourierTransformer.fft(double[] f,
boolean isInverse)
Perform the base-4 Cooley-Tukey FFT algorithm (including inverse).
|
Complex[] |
FastFourierTransformer.inversetransform(Complex[] f)
Inversely transform the given complex data set.
|
Complex[] |
FastFourierTransformer.inversetransform(double[] f)
Inversely transform the given real data set.
|
Complex[] |
FastFourierTransformer.inversetransform(UnivariateRealFunction f,
double min,
double max,
int n)
Inversely transform the given real function, sampled on the given interval.
|
Complex[] |
FastFourierTransformer.inversetransform2(Complex[] f)
Inversely transform the given complex data set.
|
Complex[] |
FastFourierTransformer.inversetransform2(double[] f)
Inversely transform the given real data set.
|
Complex[] |
FastFourierTransformer.inversetransform2(UnivariateRealFunction f,
double min,
double max,
int n)
Inversely transform the given real function, sampled on the given interval.
|
static Complex[] |
FastFourierTransformer.scaleArray(Complex[] f,
double d)
Multiply every component in the given complex array by the
given real number.
|
Complex[] |
FastFourierTransformer.transform(Complex[] f)
Transform the given complex data set.
|
Complex[] |
FastFourierTransformer.transform(double[] f)
Transform the given real data set.
|
Complex[] |
FastFourierTransformer.transform(UnivariateRealFunction f,
double min,
double max,
int n)
Transform the given real function, sampled on the given interval.
|
Complex[] |
FastFourierTransformer.transform2(Complex[] f)
Transform the given complex data set.
|
Complex[] |
FastFourierTransformer.transform2(double[] f)
Transform the given real data set.
|
Complex[] |
FastFourierTransformer.transform2(UnivariateRealFunction f,
double min,
double max,
int n)
Transform the given real function, sampled on the given interval.
|
Modifier and Type | Method and Description |
---|---|
protected Complex[] |
FastFourierTransformer.fft(Complex[] data)
Perform the base-4 Cooley-Tukey FFT algorithm (including inverse).
|
Complex[] |
FastFourierTransformer.inversetransform(Complex[] f)
Inversely transform the given complex data set.
|
Complex[] |
FastFourierTransformer.inversetransform2(Complex[] f)
Inversely transform the given complex data set.
|
static Complex[] |
FastFourierTransformer.scaleArray(Complex[] f,
double d)
Multiply every component in the given complex array by the
given real number.
|
Complex[] |
FastFourierTransformer.transform(Complex[] f)
Transform the given complex data set.
|
Complex[] |
FastFourierTransformer.transform2(Complex[] f)
Transform the given complex data set.
|
Copyright © 2003-2012 Apache Software Foundation. All Rights Reserved.