i1 : R=ZZ/37[x,y,t]; |
i2 : L={x^3, x^2*y, y^3, x*y^2}; |
i3 : T=intclToricRing(allComputations=>true,L) ZZ o3 = --[x, y] 37 o3 : monomial subalgebra of R |
i4 : T.cache#"cone" o4 = RationalCone{cgr => 0 } equ => | 0 0 1 | gen => | 1 0 0 | | 0 1 0 | inv => HashTable{height 1 elements => 2 } hilbert basis elements => 2 homogeneous => true homogeneous weights => (1, 1, 0) index => 3 multiplicity => 1 number extreme rays => 2 number support hyperplanes => 2 rank => 2 sup => | 1 0 0 | | 0 1 0 | typ => | 1 0 | | 0 1 | o4 : RationalCone |
The object allComputations is a symbol.