The set of torus-invariant Weil divisors form an abelian group under addition. The basic operations arising from this structure, including addition, substraction, negation, and scalar multplication by integers, are available.
i1 : X = normalToricVariety(id_(ZZ^3) | -id_(ZZ^3));
|
i2 : #rays X
o2 = 8
|
i3 : D = toricDivisor({2,-7,3,0,7,5,8,-8},X)
o3 = 2*D - 7*D + 3*D + 7*D + 5*D + 8*D - 8*D
0 1 2 4 5 6 7
o3 : ToricDivisor on X
|
i4 : K = toricDivisor X
o4 = - D - D - D - D - D - D - D - D
0 1 2 3 4 5 6 7
o4 : ToricDivisor on X
|
i5 : D+K
o5 = D - 8*D + 2*D - D + 6*D + 4*D + 7*D - 9*D
0 1 2 3 4 5 6 7
o5 : ToricDivisor on X
|
i6 : D+K === K+D
o6 = true
|
i7 : D-K
o7 = 3*D - 6*D + 4*D + D + 8*D + 6*D + 9*D - 7*D
0 1 2 3 4 5 6 7
o7 : ToricDivisor on X
|
i8 : D-K === -(K-D)
o8 = true
|
i9 : -K
o9 = D + D + D + D + D + D + D + D
0 1 2 3 4 5 6 7
o9 : ToricDivisor on X
|
i10 : -K === (-1)*K
o10 = true
|
i11 : 7*D
o11 = 14*D - 49*D + 21*D + 49*D + 35*D + 56*D - 56*D
0 1 2 4 5 6 7
o11 : ToricDivisor on X
|
i12 : 7*D === (3+4)*D
o12 = true
|
i13 : -3*D+7*K
o13 = - 13*D + 14*D - 16*D - 7*D - 28*D - 22*D - 31*D + 17*D
0 1 2 3 4 5 6 7
o13 : ToricDivisor on X
|
i14 : -3*D+7*K === (-2*D+8*K) + (-D-K)
o14 = true
|