i1 : R = ZZ/101[a,b,c,d]/ideal{a^4,b^4,c^4,d^4} o1 = R o1 : QuotientRing |
i2 : A = koszulComplexDGA(R) o2 = {Ring => R } Underlying algebra => R[T , T , T , T ] 1 2 3 4 Differential => {a, b, c, d} isHomogeneous => true o2 : DGAlgebra |
i3 : apply(maxDegree A + 1, i -> numgens prune homology(i,A)) o3 = {1, 4, 6, 4, 1} o3 : List |
i4 : HA = homologyAlgebra(A) Computing generators in degree 1 : -- used 0.0024186 seconds Computing generators in degree 2 : -- used 0.0107412 seconds Computing generators in degree 3 : -- used 0.011021 seconds Computing generators in degree 4 : -- used 0.00901309 seconds Finding easy relations : -- used 0.0198126 seconds Computing relations in degree 1 : -- used 0.00228547 seconds Computing relations in degree 2 : -- used 0.0021609 seconds Computing relations in degree 3 : -- used 0.00211636 seconds Computing relations in degree 4 : -- used 0.00207602 seconds Computing relations in degree 5 : -- used 0.00295762 seconds o4 = HA o4 : PolynomialRing |
i5 : R = ZZ/101[a,b,c,d]/ideal{a^4,b^4,c^4,d^4,a^3*b^3*c^3*d^3} o5 = R o5 : QuotientRing |
i6 : A = koszulComplexDGA(R) o6 = {Ring => R } Underlying algebra => R[T , T , T , T ] 1 2 3 4 Differential => {a, b, c, d} isHomogeneous => true o6 : DGAlgebra |
i7 : apply(maxDegree A + 1, i -> numgens prune homology(i,A)) o7 = {1, 5, 10, 10, 4} o7 : List |
i8 : HA = homologyAlgebra(A) Computing generators in degree 1 : -- used 0.00161116 seconds Computing generators in degree 2 : -- used 0.0798468 seconds Computing generators in degree 3 : -- used 0.0126203 seconds Computing generators in degree 4 : -- used 0.0130175 seconds Finding easy relations : -- used 0.121549 seconds Computing relations in degree 1 : -- used 0.0122484 seconds Computing relations in degree 2 : -- used 0.0127069 seconds Computing relations in degree 3 : -- used 0.0129921 seconds Computing relations in degree 4 : -- used 0.0120309 seconds Computing relations in degree 5 : -- used 0.0117793 seconds o8 = HA o8 : QuotientRing |
i9 : numgens HA o9 = 19 |
i10 : HA.cache.cycles 3 3 3 3 2 3 3 3 2 3 3 3 3 2 3 3 o10 = {a T , b T , c T , d T , a b c d T , a b c d T T , a b c d T T , 1 2 3 4 1 1 2 1 2 ----------------------------------------------------------------------- 2 3 3 3 2 3 3 3 2 3 3 3 3 2 3 3 a b c d T T , a b c d T T , a b c d T T T , a b c d T T T , 1 3 1 4 1 2 3 1 2 3 ----------------------------------------------------------------------- 3 3 2 3 2 3 3 3 3 2 3 3 2 3 3 3 a b c d T T T , a b c d T T T , a b c d T T T , a b c d T T T , 1 2 3 1 2 4 1 2 4 1 3 4 ----------------------------------------------------------------------- 2 3 3 3 3 2 3 3 3 3 2 3 3 3 3 2 a b c d T T T T , a b c d T T T T , a b c d T T T T , a b c d T T T T } 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 o10 : List |
i11 : Q = ZZ/101[x,y,z] o11 = Q o11 : PolynomialRing |
i12 : I = ideal{y^3,z*x^2,y*(z^2+y*x),z^3+2*x*y*z,x*(z^2+y*x),z*y^2,x^3,z*(z^2+2*x*y)} 3 2 2 2 3 2 2 2 3 o12 = ideal (y , x z, x*y + y*z , 2x*y*z + z , x y + x*z , y z, x , 2x*y*z + ----------------------------------------------------------------------- 3 z ) o12 : Ideal of Q |
i13 : R = Q/I o13 = R o13 : QuotientRing |
i14 : A = koszulComplexDGA(R) o14 = {Ring => R } Underlying algebra => R[T , T , T ] 1 2 3 Differential => {x, y, z} isHomogeneous => true o14 : DGAlgebra |
i15 : apply(maxDegree A + 1, i -> numgens prune homology(i,A)) o15 = {1, 7, 7, 1} o15 : List |
i16 : HA = homologyAlgebra(A) Computing generators in degree 1 : -- used 0.00146879 seconds Computing generators in degree 2 : -- used 0.011984 seconds Computing generators in degree 3 : -- used 0.0127462 seconds Finding easy relations : -- used 0.116843 seconds Computing relations in degree 1 : -- used 0.00820103 seconds Computing relations in degree 2 : -- used 0.0222567 seconds Computing relations in degree 3 : -- used 0.00810156 seconds Computing relations in degree 4 : -- used 0.00782974 seconds o16 = HA o16 : QuotientRing |
i17 : R = ZZ/101[a,b,c,d] o17 = R o17 : PolynomialRing |
i18 : S = R/ideal{a^4,b^4,c^4,d^4} o18 = S o18 : QuotientRing |
i19 : A = acyclicClosure(R,EndDegree=>3) o19 = {Ring => R } Underlying algebra => R[T , T , T , T ] 1 2 3 4 Differential => {a, b, c, d} isHomogeneous => true o19 : DGAlgebra |
i20 : B = A ** S o20 = {Ring => S } Underlying algebra => S[T , T , T , T ] 1 2 3 4 Differential => {a, b, c, d} isHomogeneous => true o20 : DGAlgebra |
i21 : HB = homologyAlgebra(B,GenDegreeLimit=>7,RelDegreeLimit=>14) Computing generators in degree 1 : -- used 0.00713544 seconds Computing generators in degree 2 : -- used 0.0165347 seconds Computing generators in degree 3 : -- used 0.015352 seconds Computing generators in degree 4 : -- used 0.00902241 seconds Computing generators in degree 5 : -- used 0.00111791 seconds Computing generators in degree 6 : -- used 0.00110712 seconds Computing generators in degree 7 : -- used 0.00111645 seconds Finding easy relations : -- used 0.0175752 seconds Computing relations in degree 1 : -- used 0.0021793 seconds Computing relations in degree 2 : -- used 0.00220358 seconds Computing relations in degree 3 : -- used 0.00213834 seconds Computing relations in degree 4 : -- used 0.00209255 seconds Computing relations in degree 5 : -- used 0.00194071 seconds Computing relations in degree 6 : -- used 0.00192837 seconds Computing relations in degree 7 : -- used 0.00193244 seconds Computing relations in degree 8 : -- used 0.00193284 seconds Computing relations in degree 9 : -- used 0.00210364 seconds Computing relations in degree 10 : -- used 0.00194224 seconds Computing relations in degree 11 : -- used 0.00192605 seconds Computing relations in degree 12 : -- used 0.00193922 seconds Computing relations in degree 13 : -- used 0.00193734 seconds Computing relations in degree 14 : -- used 0.00194496 seconds o21 = HB o21 : PolynomialRing |