next | previous | forward | backward | up | top | index | toc | Macaulay2 web site
Binomials :: randomBinomialIdeal

randomBinomialIdeal -- Random Binomial Ideals

Synopsis

Description

The exponents are drawn at random from {-d,...,d}. All coefficients are set to 1.
i1 : R = QQ[a..x]

o1 = R

o1 : PolynomialRing
i2 : randomBinomialIdeal (R,6,2,4,true)

               2    2      2      2       2         2        2   2     
o2 = ideal (h*l  - r v, c*l  - k*q , e*p*q  - u, b*f p - q, s t*u  - d,
     ------------------------------------------------------------------------
      2 2 2       2 2 2
     b r t  - g, g l q  - o)

o2 : Ideal of R
i3 : randomBinomialIdeal (R,3,4,10,false)

               4   4   3    3 2 2 2   3 4 3   3    2 2 2 2 4   3 3 3 3 2 2 2
o3 = ideal (e*i j*l u*x  - o s v w , a m q t*u  - b e f i v , a d i k n r s 
     ------------------------------------------------------------------------
          2 4   3 4 3 3 4 3 3 2      2
     - j*l o , a b c f g i m r  - h*u )

o3 : Ideal of R
This function is mostly for internal testing purposes. Don't expect anything from it.

Caveat

Minimal generators are produced. These can be less than n and of higher degree. They also need not be homogeneous