BitBake User Manual

BitBake Team

BitBake User Manual
by BitBake Team
Copyright © 2004, 2005, 2006 Chris Larson, Phil Blundell

This work is licensed under the Creative Commons Attribution License. To view a copy of this license, visit
http://creativecommons.org/licenses/by/2.5/ or send a letter to Creative Commons, 559 Nathan Abbott Way, Stanford, California
94305, USA.

http://creativecommons.org/licenses/by/2.5/

Table of Contents

Lo INtrOdUCHION . ..ottt ettt et 1
OVEIVIEW . .ttt ettt et et e et e e et e e e e e 1
Background and GOalSt 1
2. Metadata 2
DesCIIPtiono 2
Basic variable Setting 2
Variable eXpansionttt e 2
Immediate variable eXpansion (=)ttt 2
Appending (+=) and prepending (=+)ottt 2
Appending (.=) and prepending (=.) without spaces i 3
Conditional metadata Set 3
Conditional appending 3
INCIUSION ... 3
Requiring INCIUSIONo e 3
Python variable eXpansiono 3
Defining executable metadata 4
Defining python functions into the global python namespace i iiiiina.. 4
Variable Flags 4
INNETItANCE ...ttt e 4
A K S e e 5
BV ents .o 5
Dependency Handling 5
Dependencies internal to the .bbfile 5
DEPEN DS 6
R EPE N DS . e 6
Recursive DEPEN DS ... 6
Recursive RDEPEND S 6
Inter TasK ..o 6
ParSIn g .. 6
Configuration FIles 6
a8« ottt 7
B 0o 30 (P 7
3. File Download support 8
OVEIVIEW . .ottt t e ettt et e e e et et e e 8
Local File FetCher e e e e 8
CVS File FetCher e e e e e 8
HTTP/ETP FetCher e e e 8
SVEK FetCher . ..o e 9
SVN FetCher . ..o e e e 9
GIT FetCher e 9
4. ComMANdS ... 10
0] o) (7 T PP 10
DItDAKE .. .t 10
INtrodUCHION e 10
Usage and SYNLAXottt et e e e 10
Special variables 12
MELAdataottt e 12

iii

List of Examples

4.1. Executing a task against a single .bb 11
4.2. Executing tasks against aset of .bbfiles 11
4.3. Generating dependency Sraphsooiiiii i 12
4.4. Setting BBFILES 12
4.5. Depending on another .bb 12
4.6. Using PROVIDES 13
4.7. Specifying version preferenceooi it 13
4.8. Using “bbfile COLIECHONS™ttt ettt et e e e et 13

v

Chapter 1. Introduction
Overview

BitBake is, at its simplest, a tool for executing tasks and managing metadata. As such, its similarities to GNU
make and other build tools are readily apparent. It was inspired by Portage, the package management system used
by the Gentoo Linux distribution. BitBake is the basis of the OpenEmbedded [http://www.openembedded.org/]
project, which is being used to build and maintain a number of embedded Linux distributions, including
OpenZaurus and Familiar.

Background and Goals

Prior to BitBake, no other build tool adequately met the needs of an aspiring embedded Linux distribution. All of
the buildsystems used by traditional desktop Linux distributions lacked important functionality, and none of the
ad-hoc buildroot systems, prevalent in the embedded space, were scalable or maintainable.

Some important goals for BitBake were:

* Handle crosscompilation.

* Handle interpackage dependencies (build time on target architecture, build time on native architecture, and
runtime).

 Support running any number of tasks within a given package, including, but not limited to, fetching upstream
sources, unpacking them, patching them, configuring them, et cetera.

e Must be linux distribution agnostic (both build and target).

* Must be architecture agnostic

* Must support multiple build and target operating systems (including cygwin, the BSDs, etc).

* Must be able to be self contained, rather than tightly integrated into the build machine’s root filesystem.

* There must be a way to handle conditional metadata (on target architecture, operating system, distribution,
machine).

* It must be easy for the person using the tools to supply their own local metadata and packages to operate against.
* Must make it easy to collaborate between multiple projects using BitBake for their builds.

* Should provide an inheritance mechanism to share common metadata between many packages.

 Et cetera...

BitBake satisfies all these and many more. Flexibility and power have always been the priorities. It is highly
extensible, supporting embedded Python code and execution of any arbitrary tasks.

http://www.openembedded.org/
http://www.openembedded.org/

Chapter 2. Metadata
Description

BitBake metadata can be classified into 3 major areas:

* Configuration Files
* .bb Files
* Classes

What follows are a large number of examples of BitBake metadata. Any syntax which isn’t supported in any of
the aforementioned areas will be documented as such.

Basic variable setting
VARIABLE = "value"

In this example, VARIABLE is value.

Variable expansion

BitBake supports variables referencing one another’s contents using a syntax which is similar to shell scripting

>
Il

"aval"
= "pre${A}post"

los]
|

This results in A containing aval and B containing preavalpost.

Immediate variable expansion (:=)

:=results in a variable’s contents being expanded immediately, rather than when the variable is actually used.

T = "123"

A := "${B} S${A} test S${T}"
T = "456"

B="${T} bval"

C "cval"

C := "S${Clappend"

In that example, A would contain test 123, B would contain 456 bval, and C would be cvalappend.

Appending (+=) and prepending (=+)

"bval"
= "additionaldata"
" Cval "
+ "test"

QO QW w
+

> |

eta-
ta

In this example, B is now bval additionaldataandCistest cval.
Appending (.=) and prepending (=.) without spaces

"bval"
.= "additionaldata"
"cval"
=. "test"

Q QW w
Il

In this example, B is now bvaladditionaldata and Cis testcval. In contrast to the above Appending
and Prepending operators no additional space will be introduced.

Conditional metadata set

OVERRIDES is a “:” seperated variable containing each item you want to satisfy conditions. So, if you have
a variable which is conditional on “arm”, and “arm” is in OVERRIDES, then the “arm” specific version of the
variable is used rather than the non-conditional version. Example:

OVERRIDES = "architecture:os:machine"

TEST = "defaultvalue"

TEST_os = "osspecificvalue"
TEST_condnotinoverrides = "othercondvalue"

In this example, TEST would be osspecificvalue, due to the condition “os” being in OVERRIDES.

Conditional appending

BitBake also supports appending and prepending to variables based on whether something is in OVERRIDES.
Example:

DEPENDS = "glibc ncurses"
OVERRIDES = "machine:local"
DEPENDS_append_machine = " libmad"

In this example, DEPENDS is set to glibc ncurses libmad.

Inclusion

Next, there is the include directive, which causes BitBake to parse in whatever file you specify, and insert it at
that location, which is not unlike make. However, if the path specified on the include line is a relative path,
BitBake will locate the first one it can find within BBPATH.

Requiring Inclusion

In contrast to the include directive, require will raise an ParseError if the to be included file can not be
found. Otherwise it will behave just like the include directive.

Python variable expansion

DATE = "${Q@time.strftime (’/ $Y%m%d’,time.gmtime ()) }"

eta-
ta

This would result in the DATE variable containing today’s date.

Defining executable metadata
NOTE: This is only supported in .bb and .bbclass files.
do_mytask () {

echo "Hello, world!"

}
This is essentially identical to setting a variable, except that this variable happens to be executable shell code.

python do_printdate () {
import time
print time.strftime (' $Y¥%m%d’, time.gmtime ())

This is the similar to the previous, but flags it as python so that BitBake knows it is python code.

Defining python functions into the global python
namespace
NOTE: This is only supported in .bb and .bbclass files.
def get_depends (bb, d):
if bb.data.getVar (' SOMECONDITION’, d, True) :
return "dependencywithcond"

else:
return "dependency"

SOMECONDITION = "1"
DEPENDS = "${@get_depends (bb, d) "

This would result in DEPENDS containing dependencywithcond.

Variable Flags

Variables can have associated flags which provide a way of tagging extra information onto a variable. Several flags
are used internally by bitbake but they can be used externally too if needed. The standard operations mentioned
above also work on flags.

VARIABLE [SOMEFLAG] = "value"

In this example, VARIABLE has a flag, SOMEFLAG which is set to value.

Inheritance
NOTE: This is only supported in .bb and .bbclass files.

The inherit directive is a means of specifying what classes of functionality your .bb requires. It is a
rudamentary form of inheritence. For example, you can easily abstract out the tasks involved in building a

4

eta-
ta

package that uses autoconf and automake, and put that into a bbclass for your packages to make use of. A given
bbclass is located by searching for classes/filename.oeclass in BBPATH, where filename is what you inherited.

Tasks
NOTE: This is only supported in .bb and .bbclass files.

In BitBake, each step that needs to be run for a given .bb is known as a task. There is a command addtask to
add new tasks (must be a defined python executable metadata and must start with “do_"") and describe intertask
dependencies.

python do_printdate () {
import time
print time.strftime (/' $Y%$m%d’, time.gmtime ())

addtask printdate before do_build

This defines the necessary python function and adds it as a task which is now a dependency of do_build (the
default task). If anyone executes the do_build task, that will result in do_printdate being run first.

Events
NOTE: This is only supported in .bb and .bbclass files.

BitBake allows to install event handlers. Events are triggered at certain points during operation, such as, the
beginning of operation against a given .bb, the start of a given task, task failure, task success, et cetera. The intent
was to make it easy to do things like email notifications on build failure.

addhandler myclass_eventhandler

python myclass_eventhandler () {
from bb.event import NotHandled, getName
from bb import data

print "The name of the Event is %$s" % getName (e)
print "The file we run for is %$s" % data.getVar ('FILE’, e.data, True)

return NotHandled

This event handler gets called every time an event is triggered. A global variable e is defined. e.data contains an
instance of bb.data. With the getName(e) method one can get the name of the triggered event.

The above event handler prints the name of the event and the content of the FILE variable.

Dependency Handling

Bitbake 1.7.x onwards works with the metadata at the task level since this is optimal when dealing with multiple
threads of execution. A robust method of specifing task dependencies is therefore needed.

Dependencies internal to the .bb file

eta-
ta

Where the dependencies are internal to a given .bb file, the dependencies are handled by the previously detailed
addtask directive.

DEPENDS

DEPENDS is taken to specify build time dependencies. The ’deptask’ flag for tasks is used to signify the task of
each DEPENDS which must have completed before that task can be executed.

do_configure|[deptask] = "do_populate_staging”

means the do_populate_staging task of each item in DEPENDS must have completed before do_configure can
execute.

RDEPENDS

RDEPENDS is taken to specify runtime dependencies. The ’rdeptask’ flag for tasks is used to signify the task of
each RDEPENDS which must have completed before that task can be executed.

do_package_write[rdeptask] = "do_package"

means the do_package task of each item in RDEPENDS must have completed before do_package_write can
execute.

Recursive DEPENDS

These are specified with the 'recdeptask’ flag and is used signify the task(s) of each DEPENDS which must have
completed before that task can be executed. It applies recursively so also, the DEPENDS of each item in the
original DEPENDS must be met and so on.

Recursive RDEPENDS

These are specified with the 'recrdeptask’ flag and is used signify the task(s) of each RDEPENDS which must
have completed before that task can be executed. It applies recursively so also, the RDEPENDS of each item in
the original RDEPENDS must be met and so on. It also runs all DEPENDS first too.

Inter Task

The ’depends’ flag for tasks is a more generic form of which allows an interdependency on specific tasks rather
than specifying the data in DEPENDS or RDEPENDS.

do_patch[depends] = "quilt-native:do_populate_staging"

means the do_populate_staging task of the target quilt-native must have completed before the do_patch can
execute.

Parsing

Configuration Files

The first of the classifications of metadata in BitBake is configuration metadata. This metadata is global, and
therefore affects all packages and tasks which are executed. Currently, BitBake has hardcoded knowledge of

6

eta-
ta

a single configuration file. It expects to find ’conf/bitbake.conf’ somewhere in the user specified BBPATH.
That configuration file generally has include directives to pull in any other metadata (generally files specific to
architecture, machine, local and so on.

Only variable definitions and include directives are allowed in .conf files.

Classes

BitBake classes are our rudamentary inheritence mechanism. As briefly mentioned in the metadata introduction,
they’re parsed when an inherit directive is encountered, and they are located in classes/ relative to the dirs in
BBPATH.

.bb Files

A BitBake (.bb) file is a logical unit of tasks to be executed. Normally this is a package to be built. Inter-.bb
dependencies are obeyed. The files themselves are located via the BBFILES variable, which is set to a space
seperated list of .bb files, and does handle wildcards.

Chapter 3. File Download support

Overview

BitBake provides support to download files this procedure is called fetching. The SRC_URI is normally used to
indicate BitBake which files to fetch. The next sections will describe th available fetchers and the options they
have. Each Fetcher honors a set of Variables and a per URI parameters separated by a “;” consisting of a key and a
value. The semantic of the Variables and Parameters are defined by the Fetcher. BitBakes tries to have a consistent

semantic between the different Fetchers.

Local File Fetcher

The URN for the Local File Fetcher is file. The filename can be either absolute or relative. If the filename is relative
FILESPATH and FILESDIR will be used to find the appropriate relative file depending on the OVERRIDES.
Single files and complete directories can be specified.

SRC_URI= "file://relativefile.patch"
SRC_URI= "file://relativefile.patch;this=ignored"
SRC_URI= "file:///Users/ich/very_important_software"

CVS File Fetcher

The URN for the CVS Fetcher is cvs. This Fetcher honors the variables DIL_DIR, SRCDATE,
FETCHCOMMAND_cvs, UPDATECOMMAND_cvs. DL_DIRS specifies where a temporary checkout is
saved, SRCDATE specifies which date to use when doing the fetching (the special value of "now" will cause the
checkout to be updated on every build), FETCHCOMMAND and UPDATECOMMAND specify which executables
should be used when doing the CVS checkout or update.

The supported Parameters are module, tag, date, method, localdir, rsh. The module specifies which
module to check out, the t ag describes which CVS TAG should be used for the checkout by default the TAG is
empty. A date can be specified to override the SRCDATE of the configuration to checkout a specific date. The
special value of "now" will cause the checkout to be updated on every build.method is by default pserver, if ext
is used the rsh parameter will be evaluated and CVS_RSH will be set. Finally localdir is used to checkout
into a special directory relative to CVSDIR>.

SRC_URI = "cvs://CVSROOT; module=mymodule; tag=some-version;method=ext"
SRC_URI = "cvs://CVSROOT; module=mymodule; date=20060126; localdir=usethat"

HTTP/FTP Fetcher

The URNs for the HTTP/FTP are http, https and ftp. This Fetcher honors the variables DI_DIR,
FETCHCOMMAND_wget, PREMIRRORS, MIRRORS. The DL_DIR defines where to store the fetched file,
FETCHCOMMAND contains the command used for fetching. “${URI}” and “${FILES}” will be replaced by the
uri and basename of the to be fetched file. PREMIRRORS will be tried first when fetching a file if that fails the
actual file will be tried and finally all MTRRORS will be tried.

The only supported Parameter is md5sum. After a fetch the md5sum of the file will be calculated and the two
sums will be compared.

SRC_URI "http://oce.handhelds.org/not_there.aac;md5sum=12343"
SRC_URI = "ftp://oe.handhelds.org/not_there_as_well.aac;md5sum=1234"

8

own-
o
_port
SRC_URI = "ftp://youloe.handheld.sorg/home/you/secret.plan;md5sum=1234"

SVK Fetcher

Currently NOT supported

SVN Fetcher

The URN for the SVN Fetcher is svn.

This Fetcher honors the variables FETCHCOMMAND_svn, DI._DIR, SRCDATE. FETCHCOMMAND contains the
subversion command, DI,_D1IR is the directory where tarballs will be saved, SRCDATE specifies which date to
use when doing the fetching (the special value of "now" will cause the checkout to be updated on every build).

The supported Parameters are proto, rev. proto is the subversion prototype, rev is the subversions revision.

SRC_URI = "svn://svn.oe.handhelds.org/svn;module=vip; proto=http; rev=667"
SRC_URI = "svn://svn.oe.handhelds.org/svn/;module=opie;proto=svn+ssh;date=20060126"

GIT Fetcher

The URN for the GIT Fetcher is git.

The Variables DI._DIR, GITDIR are used. DI._DIR will be used to store the checkedout version. GITDIR will
be used as the base directory where the git tree is cloned to.

The Parameters are fag, protocol. tag is a git tag, the default is “master”. protocol is the git protocol to use and
defaults to “rsync”.

SRC_URI "git://git.oce.handhelds.org/git/vip.git;tag=version—-1"
SRC_URI = "git://git.oce.handhelds.org/git/vip.git;protocol=http"

Chapter 4. Commands
bbread

bbread is a command for displaying BitBake metadata. =~ When run with no arguments, it has the core parse
’conf/bitbake.conf’, as located in BBPATH, and displays that. If you supply a file on the commandline, such as a
.bb, then it parses that afterwards, using the aforementioned configuration metadata.

NOTE: the stand a lone bbread command was removed. Instead of bbread use bitbake -e.

bitbake

Introduction

bitbake is the primary command in the system. It facilitates executing tasks in a single .bb file, or executing a
given task on a set of multiple .bb files, accounting for interdependencies amongst them.

Usage and Syntax

$ bitbake —-help
usage: bitbake [options] [package ...]

Executes the specified task (default is 'build’) for a given set of BitBake files.
It expects that BBFILES is defined, which is a space seperated list of files to

be executed. BBFILES does support wildcards.
Default BBFILES are the .bb files in the current directory.

options:
—-—-version show program’s version number and exit
-h, —-help show this help message and exit

-b BUILDFILE, —--buildfile=BUILDFILE
execute the task against this .bb file, rather than a
package from BBFILES.

-k, ——continue continue as much as possible after an error. While the
target that failed, and those that depend on it,
cannot be remade, the other dependencies of these
targets can be processed all the same.

-f, ——force force run of specified cmd, regardless of stamp status

-i, ——interactive drop into the interactive mode also called the BitBake
shell.

-c CMD, —--cmd=CMD Specify task to execute. Note that this only executes

the specified task for the providee and the packages
it depends on, i.e. 'compile’ does not implicitly call
stage for the dependencies (IOW: use only if you know
what you are doing) . Depending on the base.bbclass a
listtasks tasks is defined and will show available

tasks

-r FILE, —--read=FILE read the specified file before bitbake.conf

-v, ——verbose output more chit-chat to the terminal

-D, ——-debug Increase the debug level. You can specify this more
than once.

-n, ——dry-run don’t execute, just go through the motions

-p, ——parse-only quit after parsing the BB files (developers only)

—-d, ——disable-psyco disable using the psyco just-in-time compiler (not

Com-

_mands
recommended)
-s, ——show-versions show current and preferred versions of all packages
-e, ——environment show the global or per-package environment (this is
what used to be bbread)
-g, ——graphviz emit the dependency trees of the specified packages in

the dot syntax
—I IGNORED_DOT_DEPS, —--ignore-deps=IGNORED_DOT_DEPS
Stop processing at the given list of dependencies when
generating dependency graphs. This can help to make
the graph more appealing
-1 DEBUG_DOMAINS, —--log-domains=DEBUG_DOMAINS
Show debug logging for the specified logging domains
-P, —-profile profile the command and print a report

Example 4.1. Executing a task against a single .bb

Executing tasks for a single file is relatively simple. You specify the file in question, and bitbake parses it and
executes the specified task (or “build” by default). It obeys intertask dependencies when doing so.

“clean” task:
S bitbake -b blah_1.0.bb —-c clean
“build” task:

$ bitbake -b blah_1.0.bb

Example 4.2. Executing tasks against a set of .bb files

There are a number of additional complexities introduced when one wants to manage multiple .bb files. Clearly
there needs to be a way to tell bitbake what files are available, and of those, which we want to execute at this
time. There also needs to be a way for each .bb to express its dependencies, both for build time and runtime.
There must be a way for the user to express their preferences when multiple .bb’s provide the same functionality,
or when there are multiple versions of a .bb.

The next section, Metadata, outlines how one goes about specifying such things.

Note that the bitbake command, when not using --buildfile, accepts a PROVIDER, not a filename or anything
else. By default, a .bb generally PROVIDES its packagename, packagename-version, and packagename-version-
revision.

S bitbake blah
$ bitbake blah-1.0

$ bitbake blah-1.0-r0

Commands

$ bitbake —c clean blah
S bitbake virtual/whatever

S bitbake —c clean virtual/whatever

Example 4.3. Generating dependency graphs

BitBake is able to generate dependency graphs using the dot syntax. These graphs can be converted to images using
the dot application from graphviz [http://www.graphviz.org]. Two files will be written into the current working
directory, depends.dot containing dependency information at the package level and task-depends.dot containing
a breakdown of the dependencies at the task level. To stop depending on common depends one can use the —I
depend to omit these from the graph. This can lead to more readable graphs. E.g. this way DEPENDS from
inherited classes, e.g. base.bbclass, can be removed from the graph.

$ bitbake —g blah

$ bitbake —g -I virtual/whatever -I bloom blah

Special variables

Certain variables affect bitbake operation:

BB_NUMBER_ THREADS

The number of threads bitbake should run at once (default: 1).

Metadata

As you may have seen in the usage information, or in the information about .bb files, the BBFILES variable is
how the bitbake tool locates its files. This variable is a space seperated list of files that are available, and supports
wildcards.

Example 4.4. Setting BBFILES

BBFILES = "/path/to/bbfiles/x.bb"

With regard to dependencies, it expects the .bb to define a DEPENDS variable, which contains a space seperated
list of “package names”, which themselves are the PN variable. The PN variable is, in general, by default, set to
a component of the .bb filename.

Example 4.5. Depending on another .bb

a.bb:

PN = "package-a"
DEPENDS += "package-b"

12

http://www.graphviz.org
http://www.graphviz.org

Com-
_m(’c)lrr?ds

b.bb:

PN = "package-b"

Example 4.6. Using PROVIDES

This example shows the usage of the PROVIDES variable, which allows a given .bb to specify what functionality
it provides.

packagel.bb:

PROVIDES += "virtual/package"

package2.bb:

DEPENDS += "virtual/package"

package3.bb:
PROVIDES += "virtual/package"
As you can see, here there are two different .bb’s that provide the same functionality (virtual/package). Clearly,

there needs to be a way for the person running bitbake to control which of those providers gets used. There is,
indeed, such a way.

The following would go into a .conf file, to select packagel:

PREFERRED_PROVIDER_virtual/package = "packagel"

Example 4.7. Specifying version preference

When there are multiple “versions” of a given package, bitbake defaults to selecting the most recent version,
unless otherwise specified. If the .bb in question has a DEFAULT_PREFERENCE set lower than the other .bb’s
(default is 0), then it will not be selected. This allows the person or persons maintaining the repository of .bb files
to specify their preferences for the default selected version. In addition, the user can specify their preferences
with regard to version.

If the first .bb is named a_1 . 1 .bb, then the PN variable will be set to “a”, and the PV variable will be set to 1.1.

If we then have an a_1 .2 .Dbb, bitbake will choose 1.2 by default. However, if we define the following variable
in a .conf that bitbake parses, we can change that.

PREFERRED_VERSION_a = "1.1"

Example 4.8. Using “bbfile collections”

bbfile collections exist to allow the user to have multiple repositories of bbfiles that contain the same exact package.
For example, one could easily use them to make one’s own local copy of an upstream repository, but with custom
modifications that one does not want upstream. Usage:

13

Com-
Jﬁ%ﬁh

BBFILES = "/stuff/openembedded/*/*.bb /stuff/openembedded
BBFILE_COLLECTIONS = "upstream local"
BBFILE_PATTERN_upstream = ""/stuff/openembedded/"
BBFILE_PATTERN_local = "~/stuff/openembedded.modified/"
BBFILE_PRIORITY_upstream = "5"

BBFILE_PRIORITY_local = "10"

14

.modified/*/*.bb"

	BitBake User Manual
	Introduction
	Overview
	Background and Goals

	Metadata
	Description
	Dependency Handling
	Parsing

	File Download support
	Overview
	Local File Fetcher
	CVS File Fetcher
	HTTP/FTP Fetcher
	SVK Fetcher
	SVN Fetcher
	GIT Fetcher

	Commands
	bbread
	bitbake

