00001 // Map implementation -*- C++ -*- 00002 00003 // Copyright (C) 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010 00004 // Free Software Foundation, Inc. 00005 // 00006 // This file is part of the GNU ISO C++ Library. This library is free 00007 // software; you can redistribute it and/or modify it under the 00008 // terms of the GNU General Public License as published by the 00009 // Free Software Foundation; either version 3, or (at your option) 00010 // any later version. 00011 00012 // This library is distributed in the hope that it will be useful, 00013 // but WITHOUT ANY WARRANTY; without even the implied warranty of 00014 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 00015 // GNU General Public License for more details. 00016 00017 // Under Section 7 of GPL version 3, you are granted additional 00018 // permissions described in the GCC Runtime Library Exception, version 00019 // 3.1, as published by the Free Software Foundation. 00020 00021 // You should have received a copy of the GNU General Public License and 00022 // a copy of the GCC Runtime Library Exception along with this program; 00023 // see the files COPYING3 and COPYING.RUNTIME respectively. If not, see 00024 // <http://www.gnu.org/licenses/>. 00025 00026 /* 00027 * 00028 * Copyright (c) 1994 00029 * Hewlett-Packard Company 00030 * 00031 * Permission to use, copy, modify, distribute and sell this software 00032 * and its documentation for any purpose is hereby granted without fee, 00033 * provided that the above copyright notice appear in all copies and 00034 * that both that copyright notice and this permission notice appear 00035 * in supporting documentation. Hewlett-Packard Company makes no 00036 * representations about the suitability of this software for any 00037 * purpose. It is provided "as is" without express or implied warranty. 00038 * 00039 * 00040 * Copyright (c) 1996,1997 00041 * Silicon Graphics Computer Systems, Inc. 00042 * 00043 * Permission to use, copy, modify, distribute and sell this software 00044 * and its documentation for any purpose is hereby granted without fee, 00045 * provided that the above copyright notice appear in all copies and 00046 * that both that copyright notice and this permission notice appear 00047 * in supporting documentation. Silicon Graphics makes no 00048 * representations about the suitability of this software for any 00049 * purpose. It is provided "as is" without express or implied warranty. 00050 */ 00051 00052 /** @file stl_map.h 00053 * This is an internal header file, included by other library headers. 00054 * You should not attempt to use it directly. 00055 */ 00056 00057 #ifndef _STL_MAP_H 00058 #define _STL_MAP_H 1 00059 00060 #include <bits/functexcept.h> 00061 #include <bits/concept_check.h> 00062 #include <initializer_list> 00063 00064 _GLIBCXX_BEGIN_NESTED_NAMESPACE(std, _GLIBCXX_STD_D) 00065 00066 /** 00067 * @brief A standard container made up of (key,value) pairs, which can be 00068 * retrieved based on a key, in logarithmic time. 00069 * 00070 * @ingroup associative_containers 00071 * 00072 * Meets the requirements of a <a href="tables.html#65">container</a>, a 00073 * <a href="tables.html#66">reversible container</a>, and an 00074 * <a href="tables.html#69">associative container</a> (using unique keys). 00075 * For a @c map<Key,T> the key_type is Key, the mapped_type is T, and the 00076 * value_type is std::pair<const Key,T>. 00077 * 00078 * Maps support bidirectional iterators. 00079 * 00080 * The private tree data is declared exactly the same way for map and 00081 * multimap; the distinction is made entirely in how the tree functions are 00082 * called (*_unique versus *_equal, same as the standard). 00083 */ 00084 template <typename _Key, typename _Tp, typename _Compare = std::less<_Key>, 00085 typename _Alloc = std::allocator<std::pair<const _Key, _Tp> > > 00086 class map 00087 { 00088 public: 00089 typedef _Key key_type; 00090 typedef _Tp mapped_type; 00091 typedef std::pair<const _Key, _Tp> value_type; 00092 typedef _Compare key_compare; 00093 typedef _Alloc allocator_type; 00094 00095 private: 00096 // concept requirements 00097 typedef typename _Alloc::value_type _Alloc_value_type; 00098 __glibcxx_class_requires(_Tp, _SGIAssignableConcept) 00099 __glibcxx_class_requires4(_Compare, bool, _Key, _Key, 00100 _BinaryFunctionConcept) 00101 __glibcxx_class_requires2(value_type, _Alloc_value_type, _SameTypeConcept) 00102 00103 public: 00104 class value_compare 00105 : public std::binary_function<value_type, value_type, bool> 00106 { 00107 friend class map<_Key, _Tp, _Compare, _Alloc>; 00108 protected: 00109 _Compare comp; 00110 00111 value_compare(_Compare __c) 00112 : comp(__c) { } 00113 00114 public: 00115 bool operator()(const value_type& __x, const value_type& __y) const 00116 { return comp(__x.first, __y.first); } 00117 }; 00118 00119 private: 00120 /// This turns a red-black tree into a [multi]map. 00121 typedef typename _Alloc::template rebind<value_type>::other 00122 _Pair_alloc_type; 00123 00124 typedef _Rb_tree<key_type, value_type, _Select1st<value_type>, 00125 key_compare, _Pair_alloc_type> _Rep_type; 00126 00127 /// The actual tree structure. 00128 _Rep_type _M_t; 00129 00130 public: 00131 // many of these are specified differently in ISO, but the following are 00132 // "functionally equivalent" 00133 typedef typename _Pair_alloc_type::pointer pointer; 00134 typedef typename _Pair_alloc_type::const_pointer const_pointer; 00135 typedef typename _Pair_alloc_type::reference reference; 00136 typedef typename _Pair_alloc_type::const_reference const_reference; 00137 typedef typename _Rep_type::iterator iterator; 00138 typedef typename _Rep_type::const_iterator const_iterator; 00139 typedef typename _Rep_type::size_type size_type; 00140 typedef typename _Rep_type::difference_type difference_type; 00141 typedef typename _Rep_type::reverse_iterator reverse_iterator; 00142 typedef typename _Rep_type::const_reverse_iterator const_reverse_iterator; 00143 00144 // [23.3.1.1] construct/copy/destroy 00145 // (get_allocator() is normally listed in this section, but seems to have 00146 // been accidentally omitted in the printed standard) 00147 /** 00148 * @brief Default constructor creates no elements. 00149 */ 00150 map() 00151 : _M_t() { } 00152 00153 /** 00154 * @brief Creates a %map with no elements. 00155 * @param comp A comparison object. 00156 * @param a An allocator object. 00157 */ 00158 explicit 00159 map(const _Compare& __comp, 00160 const allocator_type& __a = allocator_type()) 00161 : _M_t(__comp, __a) { } 00162 00163 /** 00164 * @brief %Map copy constructor. 00165 * @param x A %map of identical element and allocator types. 00166 * 00167 * The newly-created %map uses a copy of the allocation object 00168 * used by @a x. 00169 */ 00170 map(const map& __x) 00171 : _M_t(__x._M_t) { } 00172 00173 #ifdef __GXX_EXPERIMENTAL_CXX0X__ 00174 /** 00175 * @brief %Map move constructor. 00176 * @param x A %map of identical element and allocator types. 00177 * 00178 * The newly-created %map contains the exact contents of @a x. 00179 * The contents of @a x are a valid, but unspecified %map. 00180 */ 00181 map(map&& __x) 00182 : _M_t(std::forward<_Rep_type>(__x._M_t)) { } 00183 00184 /** 00185 * @brief Builds a %map from an initializer_list. 00186 * @param l An initializer_list. 00187 * @param comp A comparison object. 00188 * @param a An allocator object. 00189 * 00190 * Create a %map consisting of copies of the elements in the 00191 * initializer_list @a l. 00192 * This is linear in N if the range is already sorted, and NlogN 00193 * otherwise (where N is @a l.size()). 00194 */ 00195 map(initializer_list<value_type> __l, 00196 const _Compare& __c = _Compare(), 00197 const allocator_type& __a = allocator_type()) 00198 : _M_t(__c, __a) 00199 { _M_t._M_insert_unique(__l.begin(), __l.end()); } 00200 #endif 00201 00202 /** 00203 * @brief Builds a %map from a range. 00204 * @param first An input iterator. 00205 * @param last An input iterator. 00206 * 00207 * Create a %map consisting of copies of the elements from [first,last). 00208 * This is linear in N if the range is already sorted, and NlogN 00209 * otherwise (where N is distance(first,last)). 00210 */ 00211 template<typename _InputIterator> 00212 map(_InputIterator __first, _InputIterator __last) 00213 : _M_t() 00214 { _M_t._M_insert_unique(__first, __last); } 00215 00216 /** 00217 * @brief Builds a %map from a range. 00218 * @param first An input iterator. 00219 * @param last An input iterator. 00220 * @param comp A comparison functor. 00221 * @param a An allocator object. 00222 * 00223 * Create a %map consisting of copies of the elements from [first,last). 00224 * This is linear in N if the range is already sorted, and NlogN 00225 * otherwise (where N is distance(first,last)). 00226 */ 00227 template<typename _InputIterator> 00228 map(_InputIterator __first, _InputIterator __last, 00229 const _Compare& __comp, 00230 const allocator_type& __a = allocator_type()) 00231 : _M_t(__comp, __a) 00232 { _M_t._M_insert_unique(__first, __last); } 00233 00234 // FIXME There is no dtor declared, but we should have something 00235 // generated by Doxygen. I don't know what tags to add to this 00236 // paragraph to make that happen: 00237 /** 00238 * The dtor only erases the elements, and note that if the elements 00239 * themselves are pointers, the pointed-to memory is not touched in any 00240 * way. Managing the pointer is the user's responsibility. 00241 */ 00242 00243 /** 00244 * @brief %Map assignment operator. 00245 * @param x A %map of identical element and allocator types. 00246 * 00247 * All the elements of @a x are copied, but unlike the copy constructor, 00248 * the allocator object is not copied. 00249 */ 00250 map& 00251 operator=(const map& __x) 00252 { 00253 _M_t = __x._M_t; 00254 return *this; 00255 } 00256 00257 #ifdef __GXX_EXPERIMENTAL_CXX0X__ 00258 /** 00259 * @brief %Map move assignment operator. 00260 * @param x A %map of identical element and allocator types. 00261 * 00262 * The contents of @a x are moved into this map (without copying). 00263 * @a x is a valid, but unspecified %map. 00264 */ 00265 map& 00266 operator=(map&& __x) 00267 { 00268 // NB: DR 1204. 00269 // NB: DR 675. 00270 this->clear(); 00271 this->swap(__x); 00272 return *this; 00273 } 00274 00275 /** 00276 * @brief %Map list assignment operator. 00277 * @param l An initializer_list. 00278 * 00279 * This function fills a %map with copies of the elements in the 00280 * initializer list @a l. 00281 * 00282 * Note that the assignment completely changes the %map and 00283 * that the resulting %map's size is the same as the number 00284 * of elements assigned. Old data may be lost. 00285 */ 00286 map& 00287 operator=(initializer_list<value_type> __l) 00288 { 00289 this->clear(); 00290 this->insert(__l.begin(), __l.end()); 00291 return *this; 00292 } 00293 #endif 00294 00295 /// Get a copy of the memory allocation object. 00296 allocator_type 00297 get_allocator() const 00298 { return _M_t.get_allocator(); } 00299 00300 // iterators 00301 /** 00302 * Returns a read/write iterator that points to the first pair in the 00303 * %map. 00304 * Iteration is done in ascending order according to the keys. 00305 */ 00306 iterator 00307 begin() 00308 { return _M_t.begin(); } 00309 00310 /** 00311 * Returns a read-only (constant) iterator that points to the first pair 00312 * in the %map. Iteration is done in ascending order according to the 00313 * keys. 00314 */ 00315 const_iterator 00316 begin() const 00317 { return _M_t.begin(); } 00318 00319 /** 00320 * Returns a read/write iterator that points one past the last 00321 * pair in the %map. Iteration is done in ascending order 00322 * according to the keys. 00323 */ 00324 iterator 00325 end() 00326 { return _M_t.end(); } 00327 00328 /** 00329 * Returns a read-only (constant) iterator that points one past the last 00330 * pair in the %map. Iteration is done in ascending order according to 00331 * the keys. 00332 */ 00333 const_iterator 00334 end() const 00335 { return _M_t.end(); } 00336 00337 /** 00338 * Returns a read/write reverse iterator that points to the last pair in 00339 * the %map. Iteration is done in descending order according to the 00340 * keys. 00341 */ 00342 reverse_iterator 00343 rbegin() 00344 { return _M_t.rbegin(); } 00345 00346 /** 00347 * Returns a read-only (constant) reverse iterator that points to the 00348 * last pair in the %map. Iteration is done in descending order 00349 * according to the keys. 00350 */ 00351 const_reverse_iterator 00352 rbegin() const 00353 { return _M_t.rbegin(); } 00354 00355 /** 00356 * Returns a read/write reverse iterator that points to one before the 00357 * first pair in the %map. Iteration is done in descending order 00358 * according to the keys. 00359 */ 00360 reverse_iterator 00361 rend() 00362 { return _M_t.rend(); } 00363 00364 /** 00365 * Returns a read-only (constant) reverse iterator that points to one 00366 * before the first pair in the %map. Iteration is done in descending 00367 * order according to the keys. 00368 */ 00369 const_reverse_iterator 00370 rend() const 00371 { return _M_t.rend(); } 00372 00373 #ifdef __GXX_EXPERIMENTAL_CXX0X__ 00374 /** 00375 * Returns a read-only (constant) iterator that points to the first pair 00376 * in the %map. Iteration is done in ascending order according to the 00377 * keys. 00378 */ 00379 const_iterator 00380 cbegin() const 00381 { return _M_t.begin(); } 00382 00383 /** 00384 * Returns a read-only (constant) iterator that points one past the last 00385 * pair in the %map. Iteration is done in ascending order according to 00386 * the keys. 00387 */ 00388 const_iterator 00389 cend() const 00390 { return _M_t.end(); } 00391 00392 /** 00393 * Returns a read-only (constant) reverse iterator that points to the 00394 * last pair in the %map. Iteration is done in descending order 00395 * according to the keys. 00396 */ 00397 const_reverse_iterator 00398 crbegin() const 00399 { return _M_t.rbegin(); } 00400 00401 /** 00402 * Returns a read-only (constant) reverse iterator that points to one 00403 * before the first pair in the %map. Iteration is done in descending 00404 * order according to the keys. 00405 */ 00406 const_reverse_iterator 00407 crend() const 00408 { return _M_t.rend(); } 00409 #endif 00410 00411 // capacity 00412 /** Returns true if the %map is empty. (Thus begin() would equal 00413 * end().) 00414 */ 00415 bool 00416 empty() const 00417 { return _M_t.empty(); } 00418 00419 /** Returns the size of the %map. */ 00420 size_type 00421 size() const 00422 { return _M_t.size(); } 00423 00424 /** Returns the maximum size of the %map. */ 00425 size_type 00426 max_size() const 00427 { return _M_t.max_size(); } 00428 00429 // [23.3.1.2] element access 00430 /** 00431 * @brief Subscript ( @c [] ) access to %map data. 00432 * @param k The key for which data should be retrieved. 00433 * @return A reference to the data of the (key,data) %pair. 00434 * 00435 * Allows for easy lookup with the subscript ( @c [] ) 00436 * operator. Returns data associated with the key specified in 00437 * subscript. If the key does not exist, a pair with that key 00438 * is created using default values, which is then returned. 00439 * 00440 * Lookup requires logarithmic time. 00441 */ 00442 mapped_type& 00443 operator[](const key_type& __k) 00444 { 00445 // concept requirements 00446 __glibcxx_function_requires(_DefaultConstructibleConcept<mapped_type>) 00447 00448 iterator __i = lower_bound(__k); 00449 // __i->first is greater than or equivalent to __k. 00450 if (__i == end() || key_comp()(__k, (*__i).first)) 00451 __i = insert(__i, value_type(__k, mapped_type())); 00452 return (*__i).second; 00453 } 00454 00455 // _GLIBCXX_RESOLVE_LIB_DEFECTS 00456 // DR 464. Suggestion for new member functions in standard containers. 00457 /** 00458 * @brief Access to %map data. 00459 * @param k The key for which data should be retrieved. 00460 * @return A reference to the data whose key is equivalent to @a k, if 00461 * such a data is present in the %map. 00462 * @throw std::out_of_range If no such data is present. 00463 */ 00464 mapped_type& 00465 at(const key_type& __k) 00466 { 00467 iterator __i = lower_bound(__k); 00468 if (__i == end() || key_comp()(__k, (*__i).first)) 00469 __throw_out_of_range(__N("map::at")); 00470 return (*__i).second; 00471 } 00472 00473 const mapped_type& 00474 at(const key_type& __k) const 00475 { 00476 const_iterator __i = lower_bound(__k); 00477 if (__i == end() || key_comp()(__k, (*__i).first)) 00478 __throw_out_of_range(__N("map::at")); 00479 return (*__i).second; 00480 } 00481 00482 // modifiers 00483 /** 00484 * @brief Attempts to insert a std::pair into the %map. 00485 00486 * @param x Pair to be inserted (see std::make_pair for easy creation 00487 * of pairs). 00488 00489 * @return A pair, of which the first element is an iterator that 00490 * points to the possibly inserted pair, and the second is 00491 * a bool that is true if the pair was actually inserted. 00492 * 00493 * This function attempts to insert a (key, value) %pair into the %map. 00494 * A %map relies on unique keys and thus a %pair is only inserted if its 00495 * first element (the key) is not already present in the %map. 00496 * 00497 * Insertion requires logarithmic time. 00498 */ 00499 std::pair<iterator, bool> 00500 insert(const value_type& __x) 00501 { return _M_t._M_insert_unique(__x); } 00502 00503 #ifdef __GXX_EXPERIMENTAL_CXX0X__ 00504 /** 00505 * @brief Attempts to insert a list of std::pairs into the %map. 00506 * @param list A std::initializer_list<value_type> of pairs to be 00507 * inserted. 00508 * 00509 * Complexity similar to that of the range constructor. 00510 */ 00511 void 00512 insert(std::initializer_list<value_type> __list) 00513 { insert (__list.begin(), __list.end()); } 00514 #endif 00515 00516 /** 00517 * @brief Attempts to insert a std::pair into the %map. 00518 * @param position An iterator that serves as a hint as to where the 00519 * pair should be inserted. 00520 * @param x Pair to be inserted (see std::make_pair for easy creation 00521 * of pairs). 00522 * @return An iterator that points to the element with key of @a x (may 00523 * or may not be the %pair passed in). 00524 * 00525 00526 * This function is not concerned about whether the insertion 00527 * took place, and thus does not return a boolean like the 00528 * single-argument insert() does. Note that the first 00529 * parameter is only a hint and can potentially improve the 00530 * performance of the insertion process. A bad hint would 00531 * cause no gains in efficiency. 00532 * 00533 * See 00534 * http://gcc.gnu.org/onlinedocs/libstdc++/manual/bk01pt07ch17.html 00535 * for more on @a hinting. 00536 * 00537 * Insertion requires logarithmic time (if the hint is not taken). 00538 */ 00539 iterator 00540 insert(iterator __position, const value_type& __x) 00541 { return _M_t._M_insert_unique_(__position, __x); } 00542 00543 /** 00544 * @brief Template function that attempts to insert a range of elements. 00545 * @param first Iterator pointing to the start of the range to be 00546 * inserted. 00547 * @param last Iterator pointing to the end of the range. 00548 * 00549 * Complexity similar to that of the range constructor. 00550 */ 00551 template<typename _InputIterator> 00552 void 00553 insert(_InputIterator __first, _InputIterator __last) 00554 { _M_t._M_insert_unique(__first, __last); } 00555 00556 #ifdef __GXX_EXPERIMENTAL_CXX0X__ 00557 // _GLIBCXX_RESOLVE_LIB_DEFECTS 00558 // DR 130. Associative erase should return an iterator. 00559 /** 00560 * @brief Erases an element from a %map. 00561 * @param position An iterator pointing to the element to be erased. 00562 * @return An iterator pointing to the element immediately following 00563 * @a position prior to the element being erased. If no such 00564 * element exists, end() is returned. 00565 * 00566 * This function erases an element, pointed to by the given 00567 * iterator, from a %map. Note that this function only erases 00568 * the element, and that if the element is itself a pointer, 00569 * the pointed-to memory is not touched in any way. Managing 00570 * the pointer is the user's responsibility. 00571 */ 00572 iterator 00573 erase(iterator __position) 00574 { return _M_t.erase(__position); } 00575 #else 00576 /** 00577 * @brief Erases an element from a %map. 00578 * @param position An iterator pointing to the element to be erased. 00579 * 00580 * This function erases an element, pointed to by the given 00581 * iterator, from a %map. Note that this function only erases 00582 * the element, and that if the element is itself a pointer, 00583 * the pointed-to memory is not touched in any way. Managing 00584 * the pointer is the user's responsibility. 00585 */ 00586 void 00587 erase(iterator __position) 00588 { _M_t.erase(__position); } 00589 #endif 00590 00591 /** 00592 * @brief Erases elements according to the provided key. 00593 * @param x Key of element to be erased. 00594 * @return The number of elements erased. 00595 * 00596 * This function erases all the elements located by the given key from 00597 * a %map. 00598 * Note that this function only erases the element, and that if 00599 * the element is itself a pointer, the pointed-to memory is not touched 00600 * in any way. Managing the pointer is the user's responsibility. 00601 */ 00602 size_type 00603 erase(const key_type& __x) 00604 { return _M_t.erase(__x); } 00605 00606 #ifdef __GXX_EXPERIMENTAL_CXX0X__ 00607 // _GLIBCXX_RESOLVE_LIB_DEFECTS 00608 // DR 130. Associative erase should return an iterator. 00609 /** 00610 * @brief Erases a [first,last) range of elements from a %map. 00611 * @param first Iterator pointing to the start of the range to be 00612 * erased. 00613 * @param last Iterator pointing to the end of the range to be erased. 00614 * @return The iterator @a last. 00615 * 00616 * This function erases a sequence of elements from a %map. 00617 * Note that this function only erases the element, and that if 00618 * the element is itself a pointer, the pointed-to memory is not touched 00619 * in any way. Managing the pointer is the user's responsibility. 00620 */ 00621 iterator 00622 erase(iterator __first, iterator __last) 00623 { return _M_t.erase(__first, __last); } 00624 #else 00625 /** 00626 * @brief Erases a [first,last) range of elements from a %map. 00627 * @param first Iterator pointing to the start of the range to be 00628 * erased. 00629 * @param last Iterator pointing to the end of the range to be erased. 00630 * 00631 * This function erases a sequence of elements from a %map. 00632 * Note that this function only erases the element, and that if 00633 * the element is itself a pointer, the pointed-to memory is not touched 00634 * in any way. Managing the pointer is the user's responsibility. 00635 */ 00636 void 00637 erase(iterator __first, iterator __last) 00638 { _M_t.erase(__first, __last); } 00639 #endif 00640 00641 /** 00642 * @brief Swaps data with another %map. 00643 * @param x A %map of the same element and allocator types. 00644 * 00645 * This exchanges the elements between two maps in constant 00646 * time. (It is only swapping a pointer, an integer, and an 00647 * instance of the @c Compare type (which itself is often 00648 * stateless and empty), so it should be quite fast.) Note 00649 * that the global std::swap() function is specialized such 00650 * that std::swap(m1,m2) will feed to this function. 00651 */ 00652 void 00653 swap(map& __x) 00654 { _M_t.swap(__x._M_t); } 00655 00656 /** 00657 * Erases all elements in a %map. Note that this function only 00658 * erases the elements, and that if the elements themselves are 00659 * pointers, the pointed-to memory is not touched in any way. 00660 * Managing the pointer is the user's responsibility. 00661 */ 00662 void 00663 clear() 00664 { _M_t.clear(); } 00665 00666 // observers 00667 /** 00668 * Returns the key comparison object out of which the %map was 00669 * constructed. 00670 */ 00671 key_compare 00672 key_comp() const 00673 { return _M_t.key_comp(); } 00674 00675 /** 00676 * Returns a value comparison object, built from the key comparison 00677 * object out of which the %map was constructed. 00678 */ 00679 value_compare 00680 value_comp() const 00681 { return value_compare(_M_t.key_comp()); } 00682 00683 // [23.3.1.3] map operations 00684 /** 00685 * @brief Tries to locate an element in a %map. 00686 * @param x Key of (key, value) %pair to be located. 00687 * @return Iterator pointing to sought-after element, or end() if not 00688 * found. 00689 * 00690 * This function takes a key and tries to locate the element with which 00691 * the key matches. If successful the function returns an iterator 00692 * pointing to the sought after %pair. If unsuccessful it returns the 00693 * past-the-end ( @c end() ) iterator. 00694 */ 00695 iterator 00696 find(const key_type& __x) 00697 { return _M_t.find(__x); } 00698 00699 /** 00700 * @brief Tries to locate an element in a %map. 00701 * @param x Key of (key, value) %pair to be located. 00702 * @return Read-only (constant) iterator pointing to sought-after 00703 * element, or end() if not found. 00704 * 00705 * This function takes a key and tries to locate the element with which 00706 * the key matches. If successful the function returns a constant 00707 * iterator pointing to the sought after %pair. If unsuccessful it 00708 * returns the past-the-end ( @c end() ) iterator. 00709 */ 00710 const_iterator 00711 find(const key_type& __x) const 00712 { return _M_t.find(__x); } 00713 00714 /** 00715 * @brief Finds the number of elements with given key. 00716 * @param x Key of (key, value) pairs to be located. 00717 * @return Number of elements with specified key. 00718 * 00719 * This function only makes sense for multimaps; for map the result will 00720 * either be 0 (not present) or 1 (present). 00721 */ 00722 size_type 00723 count(const key_type& __x) const 00724 { return _M_t.find(__x) == _M_t.end() ? 0 : 1; } 00725 00726 /** 00727 * @brief Finds the beginning of a subsequence matching given key. 00728 * @param x Key of (key, value) pair to be located. 00729 * @return Iterator pointing to first element equal to or greater 00730 * than key, or end(). 00731 * 00732 * This function returns the first element of a subsequence of elements 00733 * that matches the given key. If unsuccessful it returns an iterator 00734 * pointing to the first element that has a greater value than given key 00735 * or end() if no such element exists. 00736 */ 00737 iterator 00738 lower_bound(const key_type& __x) 00739 { return _M_t.lower_bound(__x); } 00740 00741 /** 00742 * @brief Finds the beginning of a subsequence matching given key. 00743 * @param x Key of (key, value) pair to be located. 00744 * @return Read-only (constant) iterator pointing to first element 00745 * equal to or greater than key, or end(). 00746 * 00747 * This function returns the first element of a subsequence of elements 00748 * that matches the given key. If unsuccessful it returns an iterator 00749 * pointing to the first element that has a greater value than given key 00750 * or end() if no such element exists. 00751 */ 00752 const_iterator 00753 lower_bound(const key_type& __x) const 00754 { return _M_t.lower_bound(__x); } 00755 00756 /** 00757 * @brief Finds the end of a subsequence matching given key. 00758 * @param x Key of (key, value) pair to be located. 00759 * @return Iterator pointing to the first element 00760 * greater than key, or end(). 00761 */ 00762 iterator 00763 upper_bound(const key_type& __x) 00764 { return _M_t.upper_bound(__x); } 00765 00766 /** 00767 * @brief Finds the end of a subsequence matching given key. 00768 * @param x Key of (key, value) pair to be located. 00769 * @return Read-only (constant) iterator pointing to first iterator 00770 * greater than key, or end(). 00771 */ 00772 const_iterator 00773 upper_bound(const key_type& __x) const 00774 { return _M_t.upper_bound(__x); } 00775 00776 /** 00777 * @brief Finds a subsequence matching given key. 00778 * @param x Key of (key, value) pairs to be located. 00779 * @return Pair of iterators that possibly points to the subsequence 00780 * matching given key. 00781 * 00782 * This function is equivalent to 00783 * @code 00784 * std::make_pair(c.lower_bound(val), 00785 * c.upper_bound(val)) 00786 * @endcode 00787 * (but is faster than making the calls separately). 00788 * 00789 * This function probably only makes sense for multimaps. 00790 */ 00791 std::pair<iterator, iterator> 00792 equal_range(const key_type& __x) 00793 { return _M_t.equal_range(__x); } 00794 00795 /** 00796 * @brief Finds a subsequence matching given key. 00797 * @param x Key of (key, value) pairs to be located. 00798 * @return Pair of read-only (constant) iterators that possibly points 00799 * to the subsequence matching given key. 00800 * 00801 * This function is equivalent to 00802 * @code 00803 * std::make_pair(c.lower_bound(val), 00804 * c.upper_bound(val)) 00805 * @endcode 00806 * (but is faster than making the calls separately). 00807 * 00808 * This function probably only makes sense for multimaps. 00809 */ 00810 std::pair<const_iterator, const_iterator> 00811 equal_range(const key_type& __x) const 00812 { return _M_t.equal_range(__x); } 00813 00814 template<typename _K1, typename _T1, typename _C1, typename _A1> 00815 friend bool 00816 operator==(const map<_K1, _T1, _C1, _A1>&, 00817 const map<_K1, _T1, _C1, _A1>&); 00818 00819 template<typename _K1, typename _T1, typename _C1, typename _A1> 00820 friend bool 00821 operator<(const map<_K1, _T1, _C1, _A1>&, 00822 const map<_K1, _T1, _C1, _A1>&); 00823 }; 00824 00825 /** 00826 * @brief Map equality comparison. 00827 * @param x A %map. 00828 * @param y A %map of the same type as @a x. 00829 * @return True iff the size and elements of the maps are equal. 00830 * 00831 * This is an equivalence relation. It is linear in the size of the 00832 * maps. Maps are considered equivalent if their sizes are equal, 00833 * and if corresponding elements compare equal. 00834 */ 00835 template<typename _Key, typename _Tp, typename _Compare, typename _Alloc> 00836 inline bool 00837 operator==(const map<_Key, _Tp, _Compare, _Alloc>& __x, 00838 const map<_Key, _Tp, _Compare, _Alloc>& __y) 00839 { return __x._M_t == __y._M_t; } 00840 00841 /** 00842 * @brief Map ordering relation. 00843 * @param x A %map. 00844 * @param y A %map of the same type as @a x. 00845 * @return True iff @a x is lexicographically less than @a y. 00846 * 00847 * This is a total ordering relation. It is linear in the size of the 00848 * maps. The elements must be comparable with @c <. 00849 * 00850 * See std::lexicographical_compare() for how the determination is made. 00851 */ 00852 template<typename _Key, typename _Tp, typename _Compare, typename _Alloc> 00853 inline bool 00854 operator<(const map<_Key, _Tp, _Compare, _Alloc>& __x, 00855 const map<_Key, _Tp, _Compare, _Alloc>& __y) 00856 { return __x._M_t < __y._M_t; } 00857 00858 /// Based on operator== 00859 template<typename _Key, typename _Tp, typename _Compare, typename _Alloc> 00860 inline bool 00861 operator!=(const map<_Key, _Tp, _Compare, _Alloc>& __x, 00862 const map<_Key, _Tp, _Compare, _Alloc>& __y) 00863 { return !(__x == __y); } 00864 00865 /// Based on operator< 00866 template<typename _Key, typename _Tp, typename _Compare, typename _Alloc> 00867 inline bool 00868 operator>(const map<_Key, _Tp, _Compare, _Alloc>& __x, 00869 const map<_Key, _Tp, _Compare, _Alloc>& __y) 00870 { return __y < __x; } 00871 00872 /// Based on operator< 00873 template<typename _Key, typename _Tp, typename _Compare, typename _Alloc> 00874 inline bool 00875 operator<=(const map<_Key, _Tp, _Compare, _Alloc>& __x, 00876 const map<_Key, _Tp, _Compare, _Alloc>& __y) 00877 { return !(__y < __x); } 00878 00879 /// Based on operator< 00880 template<typename _Key, typename _Tp, typename _Compare, typename _Alloc> 00881 inline bool 00882 operator>=(const map<_Key, _Tp, _Compare, _Alloc>& __x, 00883 const map<_Key, _Tp, _Compare, _Alloc>& __y) 00884 { return !(__x < __y); } 00885 00886 /// See std::map::swap(). 00887 template<typename _Key, typename _Tp, typename _Compare, typename _Alloc> 00888 inline void 00889 swap(map<_Key, _Tp, _Compare, _Alloc>& __x, 00890 map<_Key, _Tp, _Compare, _Alloc>& __y) 00891 { __x.swap(__y); } 00892 00893 _GLIBCXX_END_NESTED_NAMESPACE 00894 00895 #endif /* _STL_MAP_H */