00001 // Multimap implementation -*- C++ -*- 00002 00003 // Copyright (C) 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010 00004 // Free Software Foundation, Inc. 00005 // 00006 // This file is part of the GNU ISO C++ Library. This library is free 00007 // software; you can redistribute it and/or modify it under the 00008 // terms of the GNU General Public License as published by the 00009 // Free Software Foundation; either version 3, or (at your option) 00010 // any later version. 00011 00012 // This library is distributed in the hope that it will be useful, 00013 // but WITHOUT ANY WARRANTY; without even the implied warranty of 00014 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 00015 // GNU General Public License for more details. 00016 00017 // Under Section 7 of GPL version 3, you are granted additional 00018 // permissions described in the GCC Runtime Library Exception, version 00019 // 3.1, as published by the Free Software Foundation. 00020 00021 // You should have received a copy of the GNU General Public License and 00022 // a copy of the GCC Runtime Library Exception along with this program; 00023 // see the files COPYING3 and COPYING.RUNTIME respectively. If not, see 00024 // <http://www.gnu.org/licenses/>. 00025 00026 /* 00027 * 00028 * Copyright (c) 1994 00029 * Hewlett-Packard Company 00030 * 00031 * Permission to use, copy, modify, distribute and sell this software 00032 * and its documentation for any purpose is hereby granted without fee, 00033 * provided that the above copyright notice appear in all copies and 00034 * that both that copyright notice and this permission notice appear 00035 * in supporting documentation. Hewlett-Packard Company makes no 00036 * representations about the suitability of this software for any 00037 * purpose. It is provided "as is" without express or implied warranty. 00038 * 00039 * 00040 * Copyright (c) 1996,1997 00041 * Silicon Graphics Computer Systems, Inc. 00042 * 00043 * Permission to use, copy, modify, distribute and sell this software 00044 * and its documentation for any purpose is hereby granted without fee, 00045 * provided that the above copyright notice appear in all copies and 00046 * that both that copyright notice and this permission notice appear 00047 * in supporting documentation. Silicon Graphics makes no 00048 * representations about the suitability of this software for any 00049 * purpose. It is provided "as is" without express or implied warranty. 00050 */ 00051 00052 /** @file stl_multimap.h 00053 * This is an internal header file, included by other library headers. 00054 * You should not attempt to use it directly. 00055 */ 00056 00057 #ifndef _STL_MULTIMAP_H 00058 #define _STL_MULTIMAP_H 1 00059 00060 #include <bits/concept_check.h> 00061 #include <initializer_list> 00062 00063 _GLIBCXX_BEGIN_NESTED_NAMESPACE(std, _GLIBCXX_STD_D) 00064 00065 /** 00066 * @brief A standard container made up of (key,value) pairs, which can be 00067 * retrieved based on a key, in logarithmic time. 00068 * 00069 * @ingroup associative_containers 00070 * 00071 * Meets the requirements of a <a href="tables.html#65">container</a>, a 00072 * <a href="tables.html#66">reversible container</a>, and an 00073 * <a href="tables.html#69">associative container</a> (using equivalent 00074 * keys). For a @c multimap<Key,T> the key_type is Key, the mapped_type 00075 * is T, and the value_type is std::pair<const Key,T>. 00076 * 00077 * Multimaps support bidirectional iterators. 00078 * 00079 * The private tree data is declared exactly the same way for map and 00080 * multimap; the distinction is made entirely in how the tree functions are 00081 * called (*_unique versus *_equal, same as the standard). 00082 */ 00083 template <typename _Key, typename _Tp, 00084 typename _Compare = std::less<_Key>, 00085 typename _Alloc = std::allocator<std::pair<const _Key, _Tp> > > 00086 class multimap 00087 { 00088 public: 00089 typedef _Key key_type; 00090 typedef _Tp mapped_type; 00091 typedef std::pair<const _Key, _Tp> value_type; 00092 typedef _Compare key_compare; 00093 typedef _Alloc allocator_type; 00094 00095 private: 00096 // concept requirements 00097 typedef typename _Alloc::value_type _Alloc_value_type; 00098 __glibcxx_class_requires(_Tp, _SGIAssignableConcept) 00099 __glibcxx_class_requires4(_Compare, bool, _Key, _Key, 00100 _BinaryFunctionConcept) 00101 __glibcxx_class_requires2(value_type, _Alloc_value_type, _SameTypeConcept) 00102 00103 public: 00104 class value_compare 00105 : public std::binary_function<value_type, value_type, bool> 00106 { 00107 friend class multimap<_Key, _Tp, _Compare, _Alloc>; 00108 protected: 00109 _Compare comp; 00110 00111 value_compare(_Compare __c) 00112 : comp(__c) { } 00113 00114 public: 00115 bool operator()(const value_type& __x, const value_type& __y) const 00116 { return comp(__x.first, __y.first); } 00117 }; 00118 00119 private: 00120 /// This turns a red-black tree into a [multi]map. 00121 typedef typename _Alloc::template rebind<value_type>::other 00122 _Pair_alloc_type; 00123 00124 typedef _Rb_tree<key_type, value_type, _Select1st<value_type>, 00125 key_compare, _Pair_alloc_type> _Rep_type; 00126 /// The actual tree structure. 00127 _Rep_type _M_t; 00128 00129 public: 00130 // many of these are specified differently in ISO, but the following are 00131 // "functionally equivalent" 00132 typedef typename _Pair_alloc_type::pointer pointer; 00133 typedef typename _Pair_alloc_type::const_pointer const_pointer; 00134 typedef typename _Pair_alloc_type::reference reference; 00135 typedef typename _Pair_alloc_type::const_reference const_reference; 00136 typedef typename _Rep_type::iterator iterator; 00137 typedef typename _Rep_type::const_iterator const_iterator; 00138 typedef typename _Rep_type::size_type size_type; 00139 typedef typename _Rep_type::difference_type difference_type; 00140 typedef typename _Rep_type::reverse_iterator reverse_iterator; 00141 typedef typename _Rep_type::const_reverse_iterator const_reverse_iterator; 00142 00143 // [23.3.2] construct/copy/destroy 00144 // (get_allocator() is also listed in this section) 00145 /** 00146 * @brief Default constructor creates no elements. 00147 */ 00148 multimap() 00149 : _M_t() { } 00150 00151 /** 00152 * @brief Creates a %multimap with no elements. 00153 * @param comp A comparison object. 00154 * @param a An allocator object. 00155 */ 00156 explicit 00157 multimap(const _Compare& __comp, 00158 const allocator_type& __a = allocator_type()) 00159 : _M_t(__comp, __a) { } 00160 00161 /** 00162 * @brief %Multimap copy constructor. 00163 * @param x A %multimap of identical element and allocator types. 00164 * 00165 * The newly-created %multimap uses a copy of the allocation object 00166 * used by @a x. 00167 */ 00168 multimap(const multimap& __x) 00169 : _M_t(__x._M_t) { } 00170 00171 #ifdef __GXX_EXPERIMENTAL_CXX0X__ 00172 /** 00173 * @brief %Multimap move constructor. 00174 * @param x A %multimap of identical element and allocator types. 00175 * 00176 * The newly-created %multimap contains the exact contents of @a x. 00177 * The contents of @a x are a valid, but unspecified %multimap. 00178 */ 00179 multimap(multimap&& __x) 00180 : _M_t(std::forward<_Rep_type>(__x._M_t)) { } 00181 00182 /** 00183 * @brief Builds a %multimap from an initializer_list. 00184 * @param l An initializer_list. 00185 * @param comp A comparison functor. 00186 * @param a An allocator object. 00187 * 00188 * Create a %multimap consisting of copies of the elements from 00189 * the initializer_list. This is linear in N if the list is already 00190 * sorted, and NlogN otherwise (where N is @a __l.size()). 00191 */ 00192 multimap(initializer_list<value_type> __l, 00193 const _Compare& __comp = _Compare(), 00194 const allocator_type& __a = allocator_type()) 00195 : _M_t(__comp, __a) 00196 { _M_t._M_insert_equal(__l.begin(), __l.end()); } 00197 #endif 00198 00199 /** 00200 * @brief Builds a %multimap from a range. 00201 * @param first An input iterator. 00202 * @param last An input iterator. 00203 * 00204 * Create a %multimap consisting of copies of the elements from 00205 * [first,last). This is linear in N if the range is already sorted, 00206 * and NlogN otherwise (where N is distance(first,last)). 00207 */ 00208 template<typename _InputIterator> 00209 multimap(_InputIterator __first, _InputIterator __last) 00210 : _M_t() 00211 { _M_t._M_insert_equal(__first, __last); } 00212 00213 /** 00214 * @brief Builds a %multimap from a range. 00215 * @param first An input iterator. 00216 * @param last An input iterator. 00217 * @param comp A comparison functor. 00218 * @param a An allocator object. 00219 * 00220 * Create a %multimap consisting of copies of the elements from 00221 * [first,last). This is linear in N if the range is already sorted, 00222 * and NlogN otherwise (where N is distance(first,last)). 00223 */ 00224 template<typename _InputIterator> 00225 multimap(_InputIterator __first, _InputIterator __last, 00226 const _Compare& __comp, 00227 const allocator_type& __a = allocator_type()) 00228 : _M_t(__comp, __a) 00229 { _M_t._M_insert_equal(__first, __last); } 00230 00231 // FIXME There is no dtor declared, but we should have something generated 00232 // by Doxygen. I don't know what tags to add to this paragraph to make 00233 // that happen: 00234 /** 00235 * The dtor only erases the elements, and note that if the elements 00236 * themselves are pointers, the pointed-to memory is not touched in any 00237 * way. Managing the pointer is the user's responsibility. 00238 */ 00239 00240 /** 00241 * @brief %Multimap assignment operator. 00242 * @param x A %multimap of identical element and allocator types. 00243 * 00244 * All the elements of @a x are copied, but unlike the copy constructor, 00245 * the allocator object is not copied. 00246 */ 00247 multimap& 00248 operator=(const multimap& __x) 00249 { 00250 _M_t = __x._M_t; 00251 return *this; 00252 } 00253 00254 #ifdef __GXX_EXPERIMENTAL_CXX0X__ 00255 /** 00256 * @brief %Multimap move assignment operator. 00257 * @param x A %multimap of identical element and allocator types. 00258 * 00259 * The contents of @a x are moved into this multimap (without copying). 00260 * @a x is a valid, but unspecified multimap. 00261 */ 00262 multimap& 00263 operator=(multimap&& __x) 00264 { 00265 // NB: DR 1204. 00266 // NB: DR 675. 00267 this->clear(); 00268 this->swap(__x); 00269 return *this; 00270 } 00271 00272 /** 00273 * @brief %Multimap list assignment operator. 00274 * @param l An initializer_list. 00275 * 00276 * This function fills a %multimap with copies of the elements 00277 * in the initializer list @a l. 00278 * 00279 * Note that the assignment completely changes the %multimap and 00280 * that the resulting %multimap's size is the same as the number 00281 * of elements assigned. Old data may be lost. 00282 */ 00283 multimap& 00284 operator=(initializer_list<value_type> __l) 00285 { 00286 this->clear(); 00287 this->insert(__l.begin(), __l.end()); 00288 return *this; 00289 } 00290 #endif 00291 00292 /// Get a copy of the memory allocation object. 00293 allocator_type 00294 get_allocator() const 00295 { return _M_t.get_allocator(); } 00296 00297 // iterators 00298 /** 00299 * Returns a read/write iterator that points to the first pair in the 00300 * %multimap. Iteration is done in ascending order according to the 00301 * keys. 00302 */ 00303 iterator 00304 begin() 00305 { return _M_t.begin(); } 00306 00307 /** 00308 * Returns a read-only (constant) iterator that points to the first pair 00309 * in the %multimap. Iteration is done in ascending order according to 00310 * the keys. 00311 */ 00312 const_iterator 00313 begin() const 00314 { return _M_t.begin(); } 00315 00316 /** 00317 * Returns a read/write iterator that points one past the last pair in 00318 * the %multimap. Iteration is done in ascending order according to the 00319 * keys. 00320 */ 00321 iterator 00322 end() 00323 { return _M_t.end(); } 00324 00325 /** 00326 * Returns a read-only (constant) iterator that points one past the last 00327 * pair in the %multimap. Iteration is done in ascending order according 00328 * to the keys. 00329 */ 00330 const_iterator 00331 end() const 00332 { return _M_t.end(); } 00333 00334 /** 00335 * Returns a read/write reverse iterator that points to the last pair in 00336 * the %multimap. Iteration is done in descending order according to the 00337 * keys. 00338 */ 00339 reverse_iterator 00340 rbegin() 00341 { return _M_t.rbegin(); } 00342 00343 /** 00344 * Returns a read-only (constant) reverse iterator that points to the 00345 * last pair in the %multimap. Iteration is done in descending order 00346 * according to the keys. 00347 */ 00348 const_reverse_iterator 00349 rbegin() const 00350 { return _M_t.rbegin(); } 00351 00352 /** 00353 * Returns a read/write reverse iterator that points to one before the 00354 * first pair in the %multimap. Iteration is done in descending order 00355 * according to the keys. 00356 */ 00357 reverse_iterator 00358 rend() 00359 { return _M_t.rend(); } 00360 00361 /** 00362 * Returns a read-only (constant) reverse iterator that points to one 00363 * before the first pair in the %multimap. Iteration is done in 00364 * descending order according to the keys. 00365 */ 00366 const_reverse_iterator 00367 rend() const 00368 { return _M_t.rend(); } 00369 00370 #ifdef __GXX_EXPERIMENTAL_CXX0X__ 00371 /** 00372 * Returns a read-only (constant) iterator that points to the first pair 00373 * in the %multimap. Iteration is done in ascending order according to 00374 * the keys. 00375 */ 00376 const_iterator 00377 cbegin() const 00378 { return _M_t.begin(); } 00379 00380 /** 00381 * Returns a read-only (constant) iterator that points one past the last 00382 * pair in the %multimap. Iteration is done in ascending order according 00383 * to the keys. 00384 */ 00385 const_iterator 00386 cend() const 00387 { return _M_t.end(); } 00388 00389 /** 00390 * Returns a read-only (constant) reverse iterator that points to the 00391 * last pair in the %multimap. Iteration is done in descending order 00392 * according to the keys. 00393 */ 00394 const_reverse_iterator 00395 crbegin() const 00396 { return _M_t.rbegin(); } 00397 00398 /** 00399 * Returns a read-only (constant) reverse iterator that points to one 00400 * before the first pair in the %multimap. Iteration is done in 00401 * descending order according to the keys. 00402 */ 00403 const_reverse_iterator 00404 crend() const 00405 { return _M_t.rend(); } 00406 #endif 00407 00408 // capacity 00409 /** Returns true if the %multimap is empty. */ 00410 bool 00411 empty() const 00412 { return _M_t.empty(); } 00413 00414 /** Returns the size of the %multimap. */ 00415 size_type 00416 size() const 00417 { return _M_t.size(); } 00418 00419 /** Returns the maximum size of the %multimap. */ 00420 size_type 00421 max_size() const 00422 { return _M_t.max_size(); } 00423 00424 // modifiers 00425 /** 00426 * @brief Inserts a std::pair into the %multimap. 00427 * @param x Pair to be inserted (see std::make_pair for easy creation 00428 * of pairs). 00429 * @return An iterator that points to the inserted (key,value) pair. 00430 * 00431 * This function inserts a (key, value) pair into the %multimap. 00432 * Contrary to a std::map the %multimap does not rely on unique keys and 00433 * thus multiple pairs with the same key can be inserted. 00434 * 00435 * Insertion requires logarithmic time. 00436 */ 00437 iterator 00438 insert(const value_type& __x) 00439 { return _M_t._M_insert_equal(__x); } 00440 00441 /** 00442 * @brief Inserts a std::pair into the %multimap. 00443 * @param position An iterator that serves as a hint as to where the 00444 * pair should be inserted. 00445 * @param x Pair to be inserted (see std::make_pair for easy creation 00446 * of pairs). 00447 * @return An iterator that points to the inserted (key,value) pair. 00448 * 00449 * This function inserts a (key, value) pair into the %multimap. 00450 * Contrary to a std::map the %multimap does not rely on unique keys and 00451 * thus multiple pairs with the same key can be inserted. 00452 * Note that the first parameter is only a hint and can potentially 00453 * improve the performance of the insertion process. A bad hint would 00454 * cause no gains in efficiency. 00455 * 00456 * For more on @a hinting, see: 00457 * http://gcc.gnu.org/onlinedocs/libstdc++/manual/bk01pt07ch17.html 00458 * 00459 * Insertion requires logarithmic time (if the hint is not taken). 00460 */ 00461 iterator 00462 insert(iterator __position, const value_type& __x) 00463 { return _M_t._M_insert_equal_(__position, __x); } 00464 00465 /** 00466 * @brief A template function that attempts to insert a range 00467 * of elements. 00468 * @param first Iterator pointing to the start of the range to be 00469 * inserted. 00470 * @param last Iterator pointing to the end of the range. 00471 * 00472 * Complexity similar to that of the range constructor. 00473 */ 00474 template<typename _InputIterator> 00475 void 00476 insert(_InputIterator __first, _InputIterator __last) 00477 { _M_t._M_insert_equal(__first, __last); } 00478 00479 #ifdef __GXX_EXPERIMENTAL_CXX0X__ 00480 /** 00481 * @brief Attempts to insert a list of std::pairs into the %multimap. 00482 * @param list A std::initializer_list<value_type> of pairs to be 00483 * inserted. 00484 * 00485 * Complexity similar to that of the range constructor. 00486 */ 00487 void 00488 insert(initializer_list<value_type> __l) 00489 { this->insert(__l.begin(), __l.end()); } 00490 #endif 00491 00492 #ifdef __GXX_EXPERIMENTAL_CXX0X__ 00493 // _GLIBCXX_RESOLVE_LIB_DEFECTS 00494 // DR 130. Associative erase should return an iterator. 00495 /** 00496 * @brief Erases an element from a %multimap. 00497 * @param position An iterator pointing to the element to be erased. 00498 * @return An iterator pointing to the element immediately following 00499 * @a position prior to the element being erased. If no such 00500 * element exists, end() is returned. 00501 * 00502 * This function erases an element, pointed to by the given iterator, 00503 * from a %multimap. Note that this function only erases the element, 00504 * and that if the element is itself a pointer, the pointed-to memory is 00505 * not touched in any way. Managing the pointer is the user's 00506 * responsibility. 00507 */ 00508 iterator 00509 erase(iterator __position) 00510 { return _M_t.erase(__position); } 00511 #else 00512 /** 00513 * @brief Erases an element from a %multimap. 00514 * @param position An iterator pointing to the element to be erased. 00515 * 00516 * This function erases an element, pointed to by the given iterator, 00517 * from a %multimap. Note that this function only erases the element, 00518 * and that if the element is itself a pointer, the pointed-to memory is 00519 * not touched in any way. Managing the pointer is the user's 00520 * responsibility. 00521 */ 00522 void 00523 erase(iterator __position) 00524 { _M_t.erase(__position); } 00525 #endif 00526 00527 /** 00528 * @brief Erases elements according to the provided key. 00529 * @param x Key of element to be erased. 00530 * @return The number of elements erased. 00531 * 00532 * This function erases all elements located by the given key from a 00533 * %multimap. 00534 * Note that this function only erases the element, and that if 00535 * the element is itself a pointer, the pointed-to memory is not touched 00536 * in any way. Managing the pointer is the user's responsibility. 00537 */ 00538 size_type 00539 erase(const key_type& __x) 00540 { return _M_t.erase(__x); } 00541 00542 #ifdef __GXX_EXPERIMENTAL_CXX0X__ 00543 // _GLIBCXX_RESOLVE_LIB_DEFECTS 00544 // DR 130. Associative erase should return an iterator. 00545 /** 00546 * @brief Erases a [first,last) range of elements from a %multimap. 00547 * @param first Iterator pointing to the start of the range to be 00548 * erased. 00549 * @param last Iterator pointing to the end of the range to be erased. 00550 * @return The iterator @a last. 00551 * 00552 * This function erases a sequence of elements from a %multimap. 00553 * Note that this function only erases the elements, and that if 00554 * the elements themselves are pointers, the pointed-to memory is not 00555 * touched in any way. Managing the pointer is the user's responsibility. 00556 */ 00557 iterator 00558 erase(iterator __first, iterator __last) 00559 { return _M_t.erase(__first, __last); } 00560 #else 00561 // _GLIBCXX_RESOLVE_LIB_DEFECTS 00562 // DR 130. Associative erase should return an iterator. 00563 /** 00564 * @brief Erases a [first,last) range of elements from a %multimap. 00565 * @param first Iterator pointing to the start of the range to be 00566 * erased. 00567 * @param last Iterator pointing to the end of the range to be erased. 00568 * 00569 * This function erases a sequence of elements from a %multimap. 00570 * Note that this function only erases the elements, and that if 00571 * the elements themselves are pointers, the pointed-to memory is not 00572 * touched in any way. Managing the pointer is the user's responsibility. 00573 */ 00574 void 00575 erase(iterator __first, iterator __last) 00576 { _M_t.erase(__first, __last); } 00577 #endif 00578 00579 /** 00580 * @brief Swaps data with another %multimap. 00581 * @param x A %multimap of the same element and allocator types. 00582 * 00583 * This exchanges the elements between two multimaps in constant time. 00584 * (It is only swapping a pointer, an integer, and an instance of 00585 * the @c Compare type (which itself is often stateless and empty), so it 00586 * should be quite fast.) 00587 * Note that the global std::swap() function is specialized such that 00588 * std::swap(m1,m2) will feed to this function. 00589 */ 00590 void 00591 swap(multimap& __x) 00592 { _M_t.swap(__x._M_t); } 00593 00594 /** 00595 * Erases all elements in a %multimap. Note that this function only 00596 * erases the elements, and that if the elements themselves are pointers, 00597 * the pointed-to memory is not touched in any way. Managing the pointer 00598 * is the user's responsibility. 00599 */ 00600 void 00601 clear() 00602 { _M_t.clear(); } 00603 00604 // observers 00605 /** 00606 * Returns the key comparison object out of which the %multimap 00607 * was constructed. 00608 */ 00609 key_compare 00610 key_comp() const 00611 { return _M_t.key_comp(); } 00612 00613 /** 00614 * Returns a value comparison object, built from the key comparison 00615 * object out of which the %multimap was constructed. 00616 */ 00617 value_compare 00618 value_comp() const 00619 { return value_compare(_M_t.key_comp()); } 00620 00621 // multimap operations 00622 /** 00623 * @brief Tries to locate an element in a %multimap. 00624 * @param x Key of (key, value) pair to be located. 00625 * @return Iterator pointing to sought-after element, 00626 * or end() if not found. 00627 * 00628 * This function takes a key and tries to locate the element with which 00629 * the key matches. If successful the function returns an iterator 00630 * pointing to the sought after %pair. If unsuccessful it returns the 00631 * past-the-end ( @c end() ) iterator. 00632 */ 00633 iterator 00634 find(const key_type& __x) 00635 { return _M_t.find(__x); } 00636 00637 /** 00638 * @brief Tries to locate an element in a %multimap. 00639 * @param x Key of (key, value) pair to be located. 00640 * @return Read-only (constant) iterator pointing to sought-after 00641 * element, or end() if not found. 00642 * 00643 * This function takes a key and tries to locate the element with which 00644 * the key matches. If successful the function returns a constant 00645 * iterator pointing to the sought after %pair. If unsuccessful it 00646 * returns the past-the-end ( @c end() ) iterator. 00647 */ 00648 const_iterator 00649 find(const key_type& __x) const 00650 { return _M_t.find(__x); } 00651 00652 /** 00653 * @brief Finds the number of elements with given key. 00654 * @param x Key of (key, value) pairs to be located. 00655 * @return Number of elements with specified key. 00656 */ 00657 size_type 00658 count(const key_type& __x) const 00659 { return _M_t.count(__x); } 00660 00661 /** 00662 * @brief Finds the beginning of a subsequence matching given key. 00663 * @param x Key of (key, value) pair to be located. 00664 * @return Iterator pointing to first element equal to or greater 00665 * than key, or end(). 00666 * 00667 * This function returns the first element of a subsequence of elements 00668 * that matches the given key. If unsuccessful it returns an iterator 00669 * pointing to the first element that has a greater value than given key 00670 * or end() if no such element exists. 00671 */ 00672 iterator 00673 lower_bound(const key_type& __x) 00674 { return _M_t.lower_bound(__x); } 00675 00676 /** 00677 * @brief Finds the beginning of a subsequence matching given key. 00678 * @param x Key of (key, value) pair to be located. 00679 * @return Read-only (constant) iterator pointing to first element 00680 * equal to or greater than key, or end(). 00681 * 00682 * This function returns the first element of a subsequence of elements 00683 * that matches the given key. If unsuccessful the iterator will point 00684 * to the next greatest element or, if no such greater element exists, to 00685 * end(). 00686 */ 00687 const_iterator 00688 lower_bound(const key_type& __x) const 00689 { return _M_t.lower_bound(__x); } 00690 00691 /** 00692 * @brief Finds the end of a subsequence matching given key. 00693 * @param x Key of (key, value) pair to be located. 00694 * @return Iterator pointing to the first element 00695 * greater than key, or end(). 00696 */ 00697 iterator 00698 upper_bound(const key_type& __x) 00699 { return _M_t.upper_bound(__x); } 00700 00701 /** 00702 * @brief Finds the end of a subsequence matching given key. 00703 * @param x Key of (key, value) pair to be located. 00704 * @return Read-only (constant) iterator pointing to first iterator 00705 * greater than key, or end(). 00706 */ 00707 const_iterator 00708 upper_bound(const key_type& __x) const 00709 { return _M_t.upper_bound(__x); } 00710 00711 /** 00712 * @brief Finds a subsequence matching given key. 00713 * @param x Key of (key, value) pairs to be located. 00714 * @return Pair of iterators that possibly points to the subsequence 00715 * matching given key. 00716 * 00717 * This function is equivalent to 00718 * @code 00719 * std::make_pair(c.lower_bound(val), 00720 * c.upper_bound(val)) 00721 * @endcode 00722 * (but is faster than making the calls separately). 00723 */ 00724 std::pair<iterator, iterator> 00725 equal_range(const key_type& __x) 00726 { return _M_t.equal_range(__x); } 00727 00728 /** 00729 * @brief Finds a subsequence matching given key. 00730 * @param x Key of (key, value) pairs to be located. 00731 * @return Pair of read-only (constant) iterators that possibly points 00732 * to the subsequence matching given key. 00733 * 00734 * This function is equivalent to 00735 * @code 00736 * std::make_pair(c.lower_bound(val), 00737 * c.upper_bound(val)) 00738 * @endcode 00739 * (but is faster than making the calls separately). 00740 */ 00741 std::pair<const_iterator, const_iterator> 00742 equal_range(const key_type& __x) const 00743 { return _M_t.equal_range(__x); } 00744 00745 template<typename _K1, typename _T1, typename _C1, typename _A1> 00746 friend bool 00747 operator==(const multimap<_K1, _T1, _C1, _A1>&, 00748 const multimap<_K1, _T1, _C1, _A1>&); 00749 00750 template<typename _K1, typename _T1, typename _C1, typename _A1> 00751 friend bool 00752 operator<(const multimap<_K1, _T1, _C1, _A1>&, 00753 const multimap<_K1, _T1, _C1, _A1>&); 00754 }; 00755 00756 /** 00757 * @brief Multimap equality comparison. 00758 * @param x A %multimap. 00759 * @param y A %multimap of the same type as @a x. 00760 * @return True iff the size and elements of the maps are equal. 00761 * 00762 * This is an equivalence relation. It is linear in the size of the 00763 * multimaps. Multimaps are considered equivalent if their sizes are equal, 00764 * and if corresponding elements compare equal. 00765 */ 00766 template<typename _Key, typename _Tp, typename _Compare, typename _Alloc> 00767 inline bool 00768 operator==(const multimap<_Key, _Tp, _Compare, _Alloc>& __x, 00769 const multimap<_Key, _Tp, _Compare, _Alloc>& __y) 00770 { return __x._M_t == __y._M_t; } 00771 00772 /** 00773 * @brief Multimap ordering relation. 00774 * @param x A %multimap. 00775 * @param y A %multimap of the same type as @a x. 00776 * @return True iff @a x is lexicographically less than @a y. 00777 * 00778 * This is a total ordering relation. It is linear in the size of the 00779 * multimaps. The elements must be comparable with @c <. 00780 * 00781 * See std::lexicographical_compare() for how the determination is made. 00782 */ 00783 template<typename _Key, typename _Tp, typename _Compare, typename _Alloc> 00784 inline bool 00785 operator<(const multimap<_Key, _Tp, _Compare, _Alloc>& __x, 00786 const multimap<_Key, _Tp, _Compare, _Alloc>& __y) 00787 { return __x._M_t < __y._M_t; } 00788 00789 /// Based on operator== 00790 template<typename _Key, typename _Tp, typename _Compare, typename _Alloc> 00791 inline bool 00792 operator!=(const multimap<_Key, _Tp, _Compare, _Alloc>& __x, 00793 const multimap<_Key, _Tp, _Compare, _Alloc>& __y) 00794 { return !(__x == __y); } 00795 00796 /// Based on operator< 00797 template<typename _Key, typename _Tp, typename _Compare, typename _Alloc> 00798 inline bool 00799 operator>(const multimap<_Key, _Tp, _Compare, _Alloc>& __x, 00800 const multimap<_Key, _Tp, _Compare, _Alloc>& __y) 00801 { return __y < __x; } 00802 00803 /// Based on operator< 00804 template<typename _Key, typename _Tp, typename _Compare, typename _Alloc> 00805 inline bool 00806 operator<=(const multimap<_Key, _Tp, _Compare, _Alloc>& __x, 00807 const multimap<_Key, _Tp, _Compare, _Alloc>& __y) 00808 { return !(__y < __x); } 00809 00810 /// Based on operator< 00811 template<typename _Key, typename _Tp, typename _Compare, typename _Alloc> 00812 inline bool 00813 operator>=(const multimap<_Key, _Tp, _Compare, _Alloc>& __x, 00814 const multimap<_Key, _Tp, _Compare, _Alloc>& __y) 00815 { return !(__x < __y); } 00816 00817 /// See std::multimap::swap(). 00818 template<typename _Key, typename _Tp, typename _Compare, typename _Alloc> 00819 inline void 00820 swap(multimap<_Key, _Tp, _Compare, _Alloc>& __x, 00821 multimap<_Key, _Tp, _Compare, _Alloc>& __y) 00822 { __x.swap(__y); } 00823 00824 _GLIBCXX_END_NESTED_NAMESPACE 00825 00826 #endif /* _STL_MULTIMAP_H */