PROCSERV(1)

PROCSERV(1)




PROCSERV(1)

REVISION HISTORY

NUMBER

DATE

DESCRIPTION

NAME




PROCSERV(1)

Contents

1 NAME

2 SYNOPSIS

3 DESCRIPTION

4 OPTIONS

5 USAGE

6 ENVIRONMENT VARIABLES
7 KNOWN PROBLEMS

8 REPORTING BUGS

9 AUTHORS

10 RESOURCES

11 COPYING




PROCSERV(1)

1 NAME

procServ - Process Server with Telnet Console and Log Access

2 SYNOPSIS

procServ [OPTIONS] port command args. ..

3 DESCRIPTION

procServ(1l) creates a run time environment for a command (e.g. a soft IOC). It forks a server run as a daemon into the back-
ground, which creates a child process running command with all remaining args from the command line. The server provides
console access (stdin/stdout) to the child process by offering a telnet connection at the specified port. For security reasons, access
is restricted to connections from localhost (127.0.0.1), so that logging into a valid account on the host machine is required.

procServ can be configured to write a console log of all in- and output of the child process into a file using the -L (--logfile)
option. To facilitate running under a central console access management (like conserver), the -1 (--logport) option creates an
additional telnet port, which is by default public (i.e. not restricted to localhost), and provides read-only log access to the child’s
console. The -r (--restrict) option restricts the log port to localhost, similar to the access port.

Both access and log ports allow multiple connections, which are handled transparently: all input from access connections is
forwarded to the child process, all output from the child is forwarded to all access and log connections (and written to the log
file). All diagnostic messages from the server process start with "@@@ " to be clearly distinguished from child process messages.
A name specified by the -n (--name) option will replace the command string in many messages for increased readability.

The server will by default automatically respawn a child process when it dies. To avoid spinning, a minimum time between child
process restarts is honoured (default: 15 seconds, can be changed using the --holdoff option). This behaviour can be toggled
online using the toggle command " T, the default may be changed using the --noautorestart option. You can restart a running
child manually by sending a signal to the child process using the kill command ~X. With the child process being shut down, the
server accepts two commands: "R to restart the child and ~Q to quit the server. The -w (--wait) option starts the server in this
shut down mode, waiting for the telnet connection to issue a manual start command to create the child.

To block input characters that are potentially dangerous to the child (e.g. "D and “C on soft IOCs), the -i (--ignore) option can
be used to specify characters that are silently ignored when coming from a console access port.

To facilitate being started and stopped as a standard system service, the -p (--pidfile) option tells the server to create a standard
PID file containing the PID of the server process.

The -d (--debug) option runs the server in debug mode: the daemon process stays in the foreground, printing all regular log
content plus additional debug messages to stdout.

4 OPTIONS

--allow
Allow control connections from anywhere. (Default: restrict control access to localhost.) Creates a serious security hole,
as telnet clients from anywhere can connect to the child’s stdin/stdout and execute arbitrary commands on the host, if the
child permits. Needs to be enabled at compile-time (see Makefile). Please do not enable and use this option unless you
exactly know why and what you are doing.

--autorestartcmd=char
Toggle auto restart flag when char is sent on an access connection. Use " to specify a control character, "" to disable.
Default is “T.




PROCSERV(1)
2/4

--coresize=size
Set the maximum size of core file. See getrlimit(2) documentation for details. Setting size to O will keep child from creating
core files.

-¢, --chdir=dir
Change directory to dir before starting child. This is done each time the child is started to make sure symbolic links are
resolved on child restart.

-d, --debug
Enter debug mode. Debug mode will keep the server process in the foreground and enables diagnostic messages that will
be sent to the controlling terminal.

-h, --help
Print help message.

--holdoff=n
Wait at least n seconds between child restart attempts. Default is 15 seconds.

-i, --ignore=chars
Ignore all characters in chars on access connections. This can be used to shield the child process from input characters that
are potentially dangerous, e.g. "D and ~C characters that would shut down a soft IOC. Use ~ to specify control characters,
~” to specify a single " character.

-k, --killemd=char
Kill the child process (child will be restarted automatically by default) when char is sent on an access connection. Use ~
to specify a control character, " " for no kill command. Default is "~ X.

--killsig=signal
Kill the child using signal when receiving the kill command. Default is 9 (SIGKILL).

-1, --logport=port
Provide read-only access to the child’s console on port. By default all hosts can connect to port, use the -r (--restrict)
option to restrict access to localhost.

-L, --logfile=file
Write a console log of all in- and output to file.

-n, --name=title
In all server messages, use fitle instead of the full command line to increase readability.

--noautorestart
Do not automatically restart child process on exit.

-p, --pidfile=file
Write the PID of the server process into file to facilitate integration into regular system service administration mechanisms.

--timefmt=fmt
Set the format string used to print time stamps to fint. Default is "%c". (See strftime(3) documentation for details.)

-q, --quiet
Do not write informational output (server). Avoids cluttering the screen when run as part of a system script.

--restrict
Restrict log connections to localhost.

-V, --version
Print program version.

-Ww, --wait
Do not start the child. Instead, wait for a telnet connection and a manual start command.




PROCSERV(1)
3/4

5 USAGE

To start a soft IOC using procServ, change the directory into the IOC’s boot directory. A typical command line would be

procServ -n "My SoftIOC" -i ~D”C 20000 ./st.cmd

To connect to the IOC, log into the soft IOC’s host and connect to port 20000 using

telnet localhost 20000

To connect from a remote machine, ssh to a user account on procservhost and connect to port 20000 using

ssh -t user@procservhost telnet localhost 20000

You will be connected to the soft IOCs console and receive an informative welcome message. All output from the procServ
server will start with "@@@ " to allow telling it apart from messages that your IOC sends.

> telnet localhost 20000

Trying 127.0.0.1...

Connected to localhost.

Escape character is ""*]'.

@@@ Welcome to the procServ process server (procServ Version 2.1.0)

@@@ Use "X to kill the child, auto restart is ON, use “T to toggle auto restart
@Q@ procServ server PID: 21413

@@Q Startup directory: /projects/ctl/lange/epics/ioc/test314/iocBoot/iocexample
@@Q Child "My SoftIOC" started as: ./st.cmd

@@@ Child "My SoftIOC" PID: 21414

@@Q@ procServ server started at: Fri Apr 25 16:43:00 2008

@@Q@ Child "My SoftIOC" started at: Fri Apr 25 16:43:00 2008

@@Q@ 0 user(s) and 0 logger (s) connected (plus you)

Type the kill command character ~X to reboot the soft IOC and get server messages about this action.

Type the telnet escape character ~ ] to get back to a telnet prompt and quit to exit telnet (and ssh when you were connecting
remotely).

While procServ was originally intended to be an environment to run soft IOCs, any process might be started as child. It provides
an environment for any program that requires access to its console and should be run in the background as a daemon. By writing
a file log directly or through a console access and logging facility (such as conserver), the log of such a program’s output can
be used to correlate its messages to other events. E.g., in an EPICS environment, running casw (the beacon anomaly watcher)
can provide useful log output to analyse and track down network issues (name resolution broadcast storms).

6 ENVIRONMENT VARIABLES

PROCSERV_PID
This sets the file name to write the PID of the server process into. (See -p option.)

PROCSERV_DEBUG
If set, procServ starts in debug mode. (See -d option.)

7 KNOWN PROBLEMS

None so far.




PROCSERV(1)

4/4

8 REPORTING BUGS

Report bugs on the procServ Trac at http://sourceforge.net/apps/trac/procserv/ or to the authors.

9 AUTHORS

Written by David H. Thompson <thompsondh@ornl.gov> and Ralph Lange <Ralph.Lange @bessy.de>.

10 RESOURCES

SourceForge project: http://sourceforge.net/projects/procserv/

11 COPYING

All copyrights reserved. Free use of this software is granted under the terms of the GNU General Public License (GPLv3).



http://sourceforge.net/apps/trac/procserv/
mailto:thompsondh@ornl.gov
mailto:Ralph.Lange@bessy.de
http://sourceforge.net/projects/procserv/

	NAME
	SYNOPSIS
	DESCRIPTION
	OPTIONS
	USAGE
	ENVIRONMENT VARIABLES
	KNOWN PROBLEMS
	REPORTING BUGS
	AUTHORS
	RESOURCES
	COPYING

