| v

ERLANG

Erlang Run-Time System Application
(ERTS)

Copyright © 1997-2011 Ericsson AB. All Rights Reserved.
Erlang Run-Time System Application (ERTS) 5.8.3
March 21 2011

Copyright © 1997-2011 Ericsson AB. All Rights Reserved.

The contents of this file are subject to the Erlang Public License, Version 1.1, (the "License"); you may not use
this file except in compliance with the License. You should have received a copy of the Erlang Public License
along with this software. If not, it can be retrieved online at http://www.erlang.org/. Software distributed under the
License is distributed on an "AS IS" basis, WITHOUT WARRANTY OF ANY KIND, either express or implied. See
the License for the specific language governing rights and limitations under the License. Ericsson AB. All Rights
Reserved..

March 21 2011

Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS) | 1

1.1 Match specifications in Erlang

1 User's Guide

The Erlang Runtime System Application ERTS.

1.1 Match specifications in Erlang

A "match specification” (match_spec) isan Erlang term describing asmall "program” that will try to match something
(either the parameters to a function as used in the er | ang: trace_patt ern/ 2 BIF, or the objects in an ETS
table.). The match_spec in many waysworks like asmall function in Erlang, but isinterpreted/compiled by the Erlang
runtime system to something much more efficient than calling an Erlang function. The match_spec isalso very limited
compared to the expressiveness of real Erlang functions.

Match specificationsaregiventotheBlIF er | ang: t race_patt er n/ 2 to execute matching of function arguments
as well as to define some actions to be taken when the match succeeds (the Mat chBody part). Match specifications
can also be used in ETS, to specify objects to be returned from an et s: sel ect/ 2 call (or other select calls). The
semantics and restrictions differ dightly when using match specifications for tracing and in ETS, the differences are
defined in a separate paragraph below.

The most notable difference between a match_spec and an Erlang fun is of course the syntax. Match specifications
are Erlang terms, not Erlang code. A match_spec also has a somewhat strange concept of exceptions. An exception
(e.g., badar g) in the Mat chCondi t i on part, which resembles an Erlang guard, will generate immediate failure,
while an exception in the Mat chBody part, which resembles the body of an Erlang function, isimplicitly caught and
resultsinthesingleatom' EXI T' .

1.1.1 Grammar
A match_spec used in tracing can be described in thisinformal grammar:

e MatchExpression ::= [MatchFunction, ...]

e MatchFunction ::= { MatchHead, MatchConditions, MatchBody }

* MatchHead ::= MatchVariable|' _' |[MatchHeadPart, ...]

e MatchHeadPart ::= term() | MatchVariable |* _'

e MatchVariable ::= '$<number>'

» MatchConditions ::= [MatchCondition, ...] | []

e MatchCondition ::={ GuardFunction} | { GuardFunction, ConditionExpression, ... }

e BoolFunction::=is_atom|is_constant |is_float |[is_integer |is_|ist|is_nunber |
is pid|is_port |is_referencel|is_tuple|is_ binary|is function]is_record|
is_seq trace|'and' |'or' |'not' |'xor' |andal so|orel se

» ConditionExpression ::= ExprMatchVariable | { GuardFunction} | { GuardFunction, ConditionExpression, ... }
| TermConstruct

» ExprMatchVariable ::= MatchVariable (bound in the MatchHead) |* $_' |' $$'

e TermConstruct = {{}} | {{ ConditionExpression, ... }} |[] | [ConditionExpression, ...] | NonCompositeTerm |
Constant

* NonCompositeTerm ::=term() (not list or tuple)
e Constant ::={const , term()}

2 | Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS)

1.1 Match specifications in Erlang

e GuardFunction ::= BoolFunction | abs | el ement |hd |l engt h |[node [round |size|t] |[trunc|'+
["-" |"*" ["div' |'rem |"band" |'bor' |"bxor' |'bnot' |"bsl' |"bsr' |'>" |">="|'<" |
=< I=rE == == T = | sel f |get _tew

e MatchBody ::=[ActionTerm]

e ActionTerm ::= ConditionExpression | ActionCall

e ActionCal ::= {ActionFunction} | { ActionFunction, ActionTerm, ...}

« ActionFunction::=set _seq_t oken |get _seq_t oken|nmessage |return_trace|
exception_trace|process_dunp|enabl e_trace|di sable_trace|trace |display|
caller |set _tcw]|silent

A match_spec used in ets can be described in this informal grammar:

e MatchExpression ::= [MatchFunction, ...]

e MatchFunction ::= { MatchHead, MatchConditions, MatchBody }

e MatchHead ::= MatchVariable|' ' |{ MatchHeadPart, ... }

e MatchHeadPart ::= term() | MatchVariable|' '

e MatchVariable ::='$<number>'

e MatchConditions ::= [MatchCondition, ...] |[]

e MatchCondition ::={ GuardFunction} | { GuardFunction, ConditionExpression, ... }

e BoolFunction::=is_atom|is_constant |is_float |[is_integer |is_list |is_nunber |
is_pid|is_port |is_reference|is_tuple|is_binary|is_function]is_record|
is_seq_trace|'"and |'or' |'not' |'xor' |andal so|orel se

» ConditionExpression ::= ExprMatchVariable | { GuardFunction} |{ GuardFunction, ConditionExpression, ... }
| TermConstruct

» ExprMatchVariable ::= MatchVariable (bound in the MatchHead) |' $_' |' $$'

e TermConstruct = {{}} [{{ ConditionExpression, ... }} |[] | [ConditionExpression, ...] | NonCompositeTerm |
Constant

e NonCompositeTerm ::=term() (not list or tuple)
e Constant ::={const , term()}

e GuardFunction ::= BoolFunction | abs | el enent |hd || engt h |node |round |size|t] |[trunc|' +
["-"|"*" ["div' |"rem |'"band" |'bor' |"bxor' ["bnot' |'"bsl" |"bsr' |'>" |'>=" |'<" |
=< == == == = | sel fo|get _tew

e MatchBody ::=[ConditionExpression, ...]

1.1.2 Function descriptions

Functions allowed in all types of match specifications
The different functions allowed in mat ch_spec work like this:

is atom, is constant, is float, is integer, is list, is number, is pid, is port, is reference, is tuple, is binary,
is function: Like the corresponding guard testsin Erlang, returnt r ue or f al se.

is record: Takes an additional parameter, which SHALL be the result of record_info(size,
<record_type>),likein{is_record, '$1', rectype, record_info(size, rectype)}.

'not": Negates its single argument (anything other than f al se givesf al se).

'‘and’: Returnst r ue if al its arguments (variable length argument list) evaluate to t r ue, else f al se. Evauation
order is undefined.

‘or': Returnst rue if any of its arguments evaluates to t r ue. Variable length argument list. Evaluation order is
undefined.

Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS) | 3

1.1 Match specifications in Erlang

andalso: Like' and' , but quits evaluating its arguments as soon as one argument evaluates to something else than
true. Arguments are evaluated | eft to right.

orelse: Like' or ', but quits evaluating as soon as one of its arguments evaluatesto t r ue. Arguments are eval uated
left to right.

'xor': Only two arguments, of which one has to be true and the other false to return t r ue; otherwise' xor' returns
false.

abs, element, hd, length, node, round, size, tl, trunc, '+', '-', ™', 'div, 'rem’, 'band’, 'bor’, 'bxor', 'bnot', 'bdl', 'bsr',
S>>t et =t =t =)= Y= sdft Work as the corresponding Erlang bif's (or operators). In case of
bad arguments, the result depends on the context. In the Mat chCondi ti ons part of the expression, the test fails
immediately (like in an Erlang guard), but in the Mat chBody, exceptions are implicitly caught and the call results
intheatom' EXI T' .

Functions allowed only for tracing
is seq trace: Returnst r ue if asequential trace token is set for the current process, otherwisef al se.

set_seq token: Workslikeseq_trace: set _t oken/ 2, butreturnst r ue onsuccessand' EXI T' on error or bad
argument. Only allowed in the Mat chBody part and only allowed when tracing.

get_seq token: Works just like seq_t race: get _t oken/ 0, and is only allowed in the Mat chBody part when
tracing.

message: Sets an additional message appended to the trace message sent. One can only set one additional message
in the body; subsequent calls will replace the appended message. As aspecia case, { message, fal se} disables
sending of trace messages (‘call' and 'return_to") for this function call, just like if the match_spec had not matched,
which can be useful if only the side effects of the Mat chBody are desired. Another special case is { mressage,
t rue} which sets the default behavior, as if the function had no match_spec, trace message is sent with no extra
information (if no other callsto message are placed before{ mressage, true},itisinfacta"noop").

Takes one argument, the message. Returnst r ue and can only be used in the Mat chBody part and when tracing.

return_trace: Causes ar et ur n_f r omtrace message to be sent upon return from the current function. Takes no
arguments, returnst r ue and can only beused inthe Mat chBody part whentracing. If the processtraceflag si | ent
isactivether et ur n_f r omtrace message is inhibited.

NOTE! If the traced function is tail recursive, this match spec function destroys that property. Hence, if a match
spec executing this function is used on a perpetual server process, it may only be active for a limited time, or the
emulator will eventually use all memory in the host machine and crash. If this match_spec function is inhibited using
thesi | ent processtrace flag tail recursiveness till remains.

exception_trace: Same asreturn_trace, plus; if the traced function exits due to an exception, an excepti on_from
trace message is generated, whether the exception is caught or not.

process_dump: Returns some textua information about the current process as a binary. Takes no arguments and is
only allowed in the Mat chBody part when tracing.

enable_trace: With one parameter this function turns on tracing like the Erlang call er |l ang: trace(sel f (),
true, [P2]), whereP2 isthe parameter to enabl e_t r ace. With two parameters, the first parameter should
be either a process identifier or the registered name of a process. In this case tracing is turned on for the designated
processin the ssmeway asinthe Erlang call er | ang: trace(P1, true, [P2]),wherePlisthefirstand P2
is the second argument. The process P1 gets its trace messages sent to the same tracer as the process executing the
statement uses. P1 can not be one of theatomsal | , newor exi st i ng (unless, of course, they are registered names).
P2 cannotbecpu_ti mestanp nor{tracer, }.Returnstr ue and may only be used in the Mat chBody part
when tracing.

disable trace: With one parameter this function disables tracing like the Erlang call er | ang: t race(sel f (),
fal se, [P2]),whereP2 istheparametertodi sabl e_t r ace. Withtwo parametersit workslike the Erlang call

4 | Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS)

1.1 Match specifications in Erlang

erlang:trace(Pl, false, [P2]),wherePl can be either aprocess identifier or a registered name and is
given asthefirst argument to the match_spec function. P2 cannotbecpu_ti mestanmpnor{tracer, }.Returns
t r ue and may only be used in the Mat chBody part when tracing.

trace: With two parameters this function takes a list of trace flags to disable as first parameter and a list of trace
flags to enable as second parameter. Logically, the disable list is applied first, but effectively all changes are applied
atomically. The trace flags are the same as for er | ang: t race/ 3 not including cpu_t i mest anp but including
{tracer, }.If atracer isspecifiedinbothlists, thetracer in the enablelist takes precedence. If no tracer is specified
the sametracer as the process executing the match spec is used. With three parametersto thisfunction thefirst iseither
aprocess identifier or the registered name of a process to set trace flags on, the second isthe disable list, and the third
isthe enablelist. Returnst r ue if any trace property was changed for the trace target processor f al se if not. It may
only be used in the Mat chBody part when tracing.

caller: Returns the calling function as a tuple {Module, Function, Arity} or the atom undef i ned if the calling
function cannot be determined. May only be used in the Mat chBody part when tracing.

Note that if a"technically built in function” (i.e. afunction not written in Erlang) istraced, thecal | er function will
sometimes return the atom undef i ned. The calling Erlang function is not available during such calls.

display: For debugging purposes only; displaysthe single argument as an Erlang term on stdout, which is seldom what
iswanted. Returnst r ue and may only be used in the Mat chBody part when tracing.

get tcw: Takes no argument and returns the value of the node's trace control word. The same is done by
erlang: system.info(trace_control _word).

The trace control word is a 32-hit unsigned integer intended for generic trace control. The trace control word can be
tested and set both from within trace match specifications and with BIFs. This call is only allowed when tracing.

set tcw: Takes one wunsigned integer argument, sets the value of the node's trace control
word to the value of the argument and returns the previous value. The same is done by
erl ang: system flag(trace _control _word, Value). It is only alowed to use set _tcw in the
Mat chBody part when tracing.

silent: Takes one argument. If the argument ist r ue, the call trace message mode for the current process is set to
silent for this call and al subsequent, i.e call trace messages are inhibited even if { nessage, true} iscaledin
the Mat chBody part for atraced function.

This mode can aso be activated withthe si | ent flagtoer| ang: trace/ 3.

If the argument is f al se, the call trace message mode for the current process is set to normal (non-silent) for this
call and all subsequent.

If the argument is neither t r ue nor f al se, the call trace message mode is unaffected.

Notethat all "function calls" haveto betuples, even if they take no arguments. Thevaueof sel f istheatom() sel f,
but the value of { sel f} isthe pid() of the current process.

1.1.3 Variables and literals

Variablestaketheform' $<nunber >' where<numnber > isaninteger between 0 (zero) and 100000000 (1e+8), the
behavior if the number is outside these limitsis undefined. In the Mat chHead part, the specia variable' ' matches
anything, and never gets bound (like _ in Erlang). In the Mat chCondi ti on/ Mat chBody parts, no unbound
variablesareallowed, why' ' isinterpreted asitself (an atom). Variables can only be bound inthe Mat chHead part.
In the Mat chBody and Mat chCondi t i on parts, only variables bound previously may be used. As aspecial case,
inthe Mat chCondi t i on/ Mat chBody parts, the variable' $ ' expands to the whole expression which matched
the Mat chHead (i.e., the whole parameter list to the possibly traced function or the whole matching object in the ets
table) andthevariable' $$' expandstoalist of thevaluesof all boundvariablesinorder (i.e.[' $1',"' $2', ...]).

In the Mat chHead part, al literas (except the variables noted above) are interpreted as is. In the
Mat chCondi ti on/ Mat chBody parts, however, the interpretation is in some ways different. Literals in the

Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS) | 5

1.1 Match specifications in Erlang

Mat chCondi ti on/ Mat chBody can either be written asis, which works for al literals except tuples, or by using
the special form { const, T}, where T isany Erlang term. For tuple literals in the match_spec, one can also use
double tuple parentheses, i.e., construct them as a tuple of arity one containing a single tuple, which is the one to be
constructed. The "double tuple parenthesis’ syntax is useful to construct tuples from already bound variables, like in
{{"$1', [a,b,"$2']}}. Someexamples may be needed:

Expression Variable bindings Result

{{'s1','$2}} $l'=a,'$2'=b {ab}

{const, {'$1', '$2'}} doesn't matter {'$1, '$2}

a doesn't matter a

3T B =] [l

[$1] B =] (1]

[{{a}}] doesn't matter [{a}]

42 doesn't matter 42

"hello” doesn't matter "hello”

$1 doesn't matter 419) (the ASCII value for the character

Table 1.1: Literals in the MatchCondition/MatchBody parts of a match_spec

1.1.4 Execution of the match

The execution of the match expression, when the runtime system decides whether a trace message should be sent,
goes asfollows:

For each tuplein the Mat chExpr essi on list and while no match has succeeded:

e Match the Mat chHead part against the arguments to the function, binding the' $<nunber >' variables
(much likein et s: mat ch/ 2). If the Mat chHead cannot match the arguments, the match fails.
» Evauateeach Mat chCondi ti on (whereonly ' $<numnber >' variables previously bound in the
Mat chHead can occur) and expect it to return the atom t r ue. As soon as a condition does not evaluate to
t r ue, the match fails. If any BIF call generates an exception, aso fail.
« « |fthematch spec isexecuting when tracing:
Evaluate each Act i onTer min the same way asthe Mat chCondi t i ons, but completely ignore the
return values. Regardless of what happens in this part, the match has succeeded.
» |Ifthe match_spec is executed when selecting objects from an ETStable:
Evaluate the expressionsin order and return the value of the last expression (typically thereisonly one
expression in this context)

1.1.5 Differences between match specifications in ETS and tracing

ETS match specifications are there to produce a return vaue. Usually the Mat chBody contains one single
Condi ti onExpr essi on which defines the return value without having any side effects. Calls with side effects
are not alowed in the ETS context.

6 | Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS)

1.1 Match specifications in Erlang

When tracing there is no return value to produce, the match specification either matches or doesn't. The effect when
the expression matches is a trace message rather then a returned term. The Act i onTer nis are executed as in an
imperative language, i.e. for their side effects. Functions with side effects are also allowed when tracing.

In ETS the match head isat upl e() (or asingle match variable) whileitisalist (or asingle match variable) when
tracing.

1.1.6 Examples

Match an argument list of three where the first and third arguments are equal:

"e1, T, 81,

tt,ots1,],
{ ">, "s1, 3},
]

Match an argument list of three, wherethe third argument isatuple containing argument one and two or alist beginning
with argument oneandtwo (i.e.[a, b,[a, b, c]] or[a, b, {a, b}]):

[{[%1, "$2', "$3'],

[{orel se,
==, 83, {{ %1, $2' 1)},
{'and’
{'==", "$1', {hd, '$3'}},
{"==", '"$2", {hd, {tl, "$3'}}}}}],

[1}]
The above problem may also be solved like this:

[{[s1", "$2', {"$1', "$2}], []. []},
{{rs1, "s2', ["s$1, "$20 | '_'"1]1, [], [I}]

Match two arguments where the first is a tuple beginning with alist which in turn begins with the second argument
timestwo (i. e [{[4,x],y},2] or [{[8], Y, Z} ,4])

[{['$1, "$2'1,[{'==, {"*', 2, '$2'}, {hd, {elenment, 1, '$1'}}}],
[1}]

Match three arguments. When al three are equal and are numbers, append the process dump to the trace message, else
let the trace message be asiis, but set the sequential trace token label to 4711.

Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS) | 7

1.2 How to interpret the Erlang crash dumps

[{["'$1", "$1', '"$1'],
[{is_nunber, "'$1'}],
[{message, {process_dunp}}]},
{"_', [1, [{set_seq_token, |abel, 4711}]}]

Ascan be noted above, the parameter list can be matched against asingleMat chVar i abl eoran' ' . Toreplacethe
whole parameter list with asingle variable is aspecial case. In al other casesthe Mat chHead hasto be a proper list.

Match all objects in an ets table where the first element is the atom 'strider' and the tuple arity is 3 and return the
whole object.

[{{strider," "," "},

[1,
['$_'1}H
Match all objectsin an ets table with arity > 1 and the first element is 'gandalf', return element 2.

[{ s$1,
[{'==", gandalf, {element, 1, '$1'}},{' >=',6 {size, '$1'},2}],
[{element,2,'$1'}]}]

In the above example, if the first element had been the key, it's much more efficient to match that key in the
Mat chHead part than in the Mat chCondi t i ons part. The search space of the tables is restricted with regards to
the Mat chHead so that only objects with the matching key are searched.

Match tuples of 3 elements where the second element is either 'merry’ or 'pippin’, return the whole objects.

[({{' . merry,” '},
(1,
['$_'1},

{{' ", pippin,*_"},
(1,

['$_'1}]

Thefunctionet s: t est _ns/ 2 can be useful for testing complicated ets matches.

1.2 How to interpret the Erlang crash dumps

This document describestheer | _crash. dunp file generated upon abnormal exit of the Erlang runtime system.

Important: For OTP release RIC the Erlang crash dump has had a major facelift. This means that the information in
this document will not be directly applicable for older dumps. However, if you use the Crashdump Viewer tool on
older dumps, the crash dumps are translated into a format similar to this.

The system will write the crash dump in the current directory of the emulator or in the file pointed out by the
environment variable (whatever that means on the current operating system) ERL_CRASH_DUMP. For acrash dump
to be written, there has to be a writable file system mounted.

8 | Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS)

1.2 How to interpret the Erlang crash dumps

Crash dumps are written mainly for one of two reasons. either the builtin function er | ang: hal t/ 1 is called
explicitly with astring argument from running Erlang code, or elsethe runtime system has detected an error that cannot
be handled. The most usual reason that the system can't handle the error is that the cause is external limitations, such
as running out of memory. A crash dump due to an internal error may be caused by the system reaching limitsin the
emulator itself (like the number of atoms in the system, or too many simultaneous ets tables). Usually the emulator
or the operating system can be reconfigured to avoid the crash, which is why interpreting the crash dump correctly
isimportant.

The erlang crash dump is areadable text file, but it might not be very easy to read. Using the Crashdump Viewer tool
inthe obser ver application will simplify the task. Thisisan HTML based tool for browsing Erlang crash dumps.

1.2.1 General information

The first part of the dump shows the creation time for the dump, a slogan indicating the reason for the dump, the
system version, of the node from which the dump originates, the compile time of the emulator running the originating
node and the number of atoms in the atom table.

Reasons for crash dumps (slogan)

The reason for the dump is noted in the beginning of the file as Sogan: <reason> (the word "slogan™" has historical
roots). If the system is halted by the BIF er | ang: hal t/ 1, the slogan is the string parameter passed to the BIF,
otherwiseit isadescription generated by theemulator or the (Erlang) kernel. Normally the message should be enough to
understand the problem, but neverthel ess some messages are described here. Note however that the suggested reasons
for the crash are only suggestions. The exact reasons for the errors may vary depending on the local applications and
the underlying operating system.

e "<A>: Cannot alocate <N> bytes of memory (of type"<T>")." - The system has run out of memory. <A>is
the allocator that failed to allocate memory, <N> is the number of bytes that <A> tried to allocate, and <T>
isthe memory block type that the memory was needed for. The most common case is that a process stores
huge amounts of data. In this case <T> ismost often heap, ol d_heap, heap_fr ag, or bi nary. For more
information on allocators see erts_alloc(3).

e "<A>: Cannot reallocate <N> bytes of memory (of type "<T>")." - Same as above with the exception that
memory was being reallocated instead of being allocated when the system ran out of memory.

e "Unexpected op code N" - Error in compiled code, beamfile damaged or error in the compiler.

e "Module Name undefined” | "Function Name undefined” | "No function Name:Name/1" | "No function
Name:start/2" - The kernel/stdlib applications are damaged or the start script is damaged.

» "Driver_select called with too large file descriptor N' - The number of file descriptors for sockets exceed 1024
(Unix only). The limit on file-descriptors in some Unix flavors can be set to over 1024, but only 1024 sockets/
pipes can be used simultaneously by Erlang (due to limitationsin the Unix sel ect call). The number of open
regular filesis not affected by this.

e "Received SIGUSRL1" - The SIGUSR1 signal was sent to the Erlang machine (Unix only).

* "Kernel pid terminated (Who) (Exit-reason)" - The kernel supervisor has detected afailure, usually that the
application_controll er hasshut down(Wo =application_controll er,Wy =shut down).
The application controller may have shut down for a number of reasons, the most usual being that the node
name of the distributed Erlang node is already in use. A complete supervisor tree "crash” (i.e., the top
supervisors have exited) will give about the same result. This message comes from the Erlang code and not
from the virtual machineitself. It is always due to some kind of failure in an application, either within OTP or a
"user-written" one. Looking at the error log for your application is probably the first step to take.

e "Init terminating in do_boot ()" - The primitive Erlang boot sequence was terminated, most probably because
the boot script has errors or cannot be read. Thisis usually a configuration error - the system may have been
started with afaulty - boot parameter or with aboot script from the wrong version of OTP.

e "Could not start kernel pid (Who) ()" - One of the kernel processes could not start. Thisis probably dueto
faulty arguments (like errorsin a- conf i g argument) or faulty configuration files. Check that al filesarein

Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS) | 9

1.2 How to interpret the Erlang crash dumps

their correct location and that the configuration files (if any) are not damaged. Usually there are also messages
written to the controlling terminal and/or the error log explaining what's wrong.

Other errors than the ones mentioned above may occur, astheer | ang: hal t/ 1 BIF may generate any message. If
the message is not generated by the BIF and does not occur in the list above, it may be due to an error in the emulator.
There may however be unusual messages that | haven't mentioned, that still are connected to an application failure.
There is alot more information available, so more thorough reading of the crash dump may reveal the crash reason.
The size of processes, the number of ets tables and the Erlang data on each process stack can be useful for tracking
down the problem.

Number of atoms

Thenumber of atomsin the system at thetime of the crash is shown as Atoms: <number>. Someten thousandsatomsis
perfectly normal, but more could indicatethat the BIF er | ang: i st _t o_at onf 1 isused to dynamically generate
alot of different atoms, which is never agood idea.

1.2.2 Memory information

Under the tag =memory you will find information similar to what you can obtain on a living node with
erlang: memory().

1.2.3 Internal table information

The tags =hash_table:<table name> and =index_table:<table name> presentsinternal tables. These are mostly of
interest for runtime system developers.

1.2.4 Allocated areas

Under the tag =allocated_areas you will find information similar to what you can obtain on a living node with
erlang:system info(allocated areas).

1.2.5 Allocator

Under the tag =allocator:<A> you will find various information about allocator <A>. The information is similar
to what you can obtain on a living node with erlang:system info({allocator, <A>}). For more information see the
documentation of erlang:system info({allocator, <A>}), and the erts_alloc(3) documentation.

1.2.6 Process information

The Erlang crashdump contains alisting of each living Erlang process in the system. The process information for one
process may look like this (line numbers have been added):

The following fields can exist for a process:
=proc:<pid>
Heading, states the process identifier
Sate
The state of the process. This can be one of the following:

e Scheduled - The process was scheduled to run but not currently running ("in the run queue™).
* Waiting - The process was waiting for something (inr ecei ve).

« Running - The process was currently running. If the BIF er | ang: hal t / 1 was called, thiswas the
process caling it.

« Exiting - The process was on its way to exit.

e Garhing - Thisisbad luck, the process was garbage collecting when the crash dump was written, the rest
of the information for this processis limited.

10 | Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS)

1.2 How to interpret the Erlang crash dumps

e Suspended - The processis suspended, either by the BIF er | ang: suspend_pr ocess/ 1 or because it
istrying to write to a busy port.

Registered name
The registered name of the process, if any.

Spawned as
The entry point of the process, i.e., what function was referenced in the spawn or spawn_| i nk call that
started the process.

Last scheduled in for | Current call
The current function of the process. These fields will not always exist.

Spawned by
The parent of the process, i.e. the process which executed spawn or spawn_| i nk.

Sarted
The date and time when the process was started.

Message queue length
The number of messages in the process' message queue.

Number of heap fragments
The number of allocated heap fragments.

Heap fragment data
Size of fragmented heap data. Thisis data either created by messages being sent to the process or by the Erlang
BIFs. This amount depends on so many things that thisfield is utterly uninteresting.

Link list
Processid's of processes linked to this one. May also contain ports. If process monitoring is used, thisfield also
tellsin which direction the monitoring isin effect, i.e., alink being "to" a process tells you that the "current"
process was monitoring the other and alink "from" a process tells you that the other process was monitoring
the current one.

Reductions
The number of reductions consumed by the process.

Sack+heap
The size of the stack and heap (they share memory segment)

OldHeap
The size of the "old heap”. The Erlang virtual machine uses generational garbage collection with two
generations. There is one heap for new dataitems and one for the data that have survived two garbage
collections. The assumption (which is almost always correct) is that data that survive two garbage collections
can be "tenured” to a heap more seldom garbage collected, as they will live for along period. Thisisaquite
usua technique in virtual machines. The sum of the heaps and stack together constitute most of the process's
alocated memory.

Heap unused, OldHeap unused
The amount of unused memory on each heap. Thisinformation is usually useless.

Sack
If the system uses shared heap, the fields Sack+heap, OldHeap, Heap unused and OldHeap unused do not
exist. Instead this field presents the size of the process' stack.

Program counter
The current instruction pointer. Thisis only interesting for runtime system devel opers. The function into which
the program counter points is the current function of the process.

CP
The continuation pointer, i.e. the return address for the current call. Usually useless for other than runtime
system devel opers. This may be followed by the function into which the CP points, which is the function
calling the current function.

Arity
The number of live argument registers. The argument registers, if any are live, will follow. These may contain
the arguments of the function if they are not yet moved to the stack.

Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS) | 11

1.2 How to interpret the Erlang crash dumps

See also the section about process data.

1.2.7 Port information

This section lists the open ports, their owners, any linked processed, and the name of their driver or external process.

1.2.8 ETS tables

This section contains information about all the ETS tablesin the system. The following fields are interesting for each
table:

=ets.<owner>
Heading, states the owner of the table (a process identifier)
Table
Theidentifier for the table. If thetableisanamed_t abl e, thisisthe name.
Name
The name of the table, regardless of whether itisananmed_t abl e or not.
Buckets
Thisoccursif thetableisahash table, i.e. if itisnot an or der ed_set .
Ordered set (AVL tree), Elements
Thisoccursonly if thetableisan or der ed_set . (The number of elementsis the same as the number of
objectsin the table.)
Objects
The number of objectsin the table
Words
The number of words (usually 4 bytes/word) allocated to datain the table.

1.2.9 Timers

This section contains information about al the timers started with the BIFs er| ang: start _tiner/3 and
erl ang: send_aft er/ 3. Thefollowing fields exists for each timer:

=timer:<owner>
Heading, states the owner of the timer (a process identifier) i.e. the process to receive the message when the
timer expires.
Message
The message to be sent.
Time left
Number of milliseconds left until the message would have been sent.

1.2.10 Distribution information

If the Erlang node was alive, i.e., set up for communicating with other nodes, this section lists the connections that
were active. The following fields can exist:

=node:<node_name>
The name of the node

no_distribution
Thiswill only occur if the node was not distributed.

=visible_node: <channel>
Heading for avisible nodes, i.e. an aive node with a connection to the node that crashed. States the channel
number for the node.

=hidden_node: < channel>
Heading for a hidden node. A hidden node is the same as a visible node, except that it is started with the "-
hidden” flag. States the channel number for the node.

12 | Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS)

1.2 How to interpret the Erlang crash dumps

=not_connected: < channel>
Heading for a node which is has been connected to the crashed node earlier. References (i.e. process or port
identifiers) to the not connected node existed at the time of the crash. exist. States the channel number for the
node.
Name
The name of the remote node.
Controller
The port which controls the communication with the remote node.
Creation
An integer (1-3) which together with the node name identifies a specific instance of the node.
Remote monitoring: <local_proc> <remote proc>
Thelocal process was monitoring the remote process at the time of the crash.
Remotely monitored by: <local_proc> <remote proc>
The remote process was monitoring the local process at the time of the crash.
Remote link: <local_proc> <remote _proc>
A link existed between the local process and the remote process at the time of the crash.

1.2.11 Loaded module information

This section contains information about all loaded modules. First, the memory usage by loaded code is summarized.
There is one field for "Current code" which is code that is the current latest version of the modules. Thereisalso a
field for "Old code" which is code where there exists a newer version in the system, but the old version is not yet
purged. The memory usageisin bytes.

All loaded modules are then listed. The following fields exist:

=mod:<module_name>
Heading, and the name of the module.
Current size
Memory usage for the loaded code in bytes
Old size
Memory usage for the old code, if any.
Current attributes
Module attributes for the current code. Thisfield is decoded when looked at by the Crashdump Viewer tool.
Old attributes
Module attributes for the old code, if any. Thisfield is decoded when looked at by the Crashdump Viewer tool.
Current compilation info
Compilation information (options) for the current code. Thisfield is decoded when looked at by the Crashdump
Viewer tool.
Old compilation info
Compilation information (options) for the old code, if any. Thisfield is decoded when looked at by the
Crashdump Viewer tool.

1.2.12 Fun information
In this section, al funs are listed. The following fields exist for each fun:

=fun

Heading
Module

The name of the module where the fun was defined.
Unig, Index

Identifiers

Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS) | 13

1.3 How to implement an alternative carrier for the Erlang distribution

Address

The address of the fun's code.
Native address

The address of the fun's code when HiPE is enabled.
Refc

The number of references to the fun.

1.2.13 Process Data

For each process there will be at least one =proc_stack and one =proc_heap tag followed by the raw memory
information for the stack and heap of the process.

For each process there will also be a =proc_messages tag if the process message queue is non-empty and a
=proc_dictionary tag if the process dictionary (theput / 2 and get / 1 thing) is non-empty.

The raw memory information can be decoded by the Crashdump Viewer tool. Y ou will then be able to see the stack
dump, the message queue (if any) and the dictionary (if any).

The stack dump is adump of the Erlang process stack. Most of the live data (i.e., variables currently in use) are placed
on the stack; thus this can be quite interesting. One has to "guess’ what's what, but as the information is symbolic,
thorough reading of this information can be very useful. As an example we can find the state variable of the Erlang
primitive loader on line (5) in the example below:

(1) 3cac44 Return addr Ox13BF58 (<term nate process nornally>)

(2) y(0) ["/view siri_r10_dev/clearcase/otp/erts/libl/kernel/ebin","/viewsiri_r10_dev/

(3) clearcase/otp/erts/lib/stdlib/ebin"]

(4) y(1) <0.1. 0>

(5) vy(2) {state,[], none, #Fun<er| _pri m | oader. 6. 7085890>, undef i ned, #Fun<er| _pri m | oader. 7. 9000327>, #Fun<er|
(6) vy(3) infinity

When interpreting the datafor aprocess, it ishelpful to know that anonymous function objects (funs) are given aname
constructed from the name of the function in which they are created, and a number (starting with 0) indicating the
number of that fun within that function.

1.2.14 Atoms

Now all the atomsin the system are written. Thisis only interesting if one suspects that dynamic generation of atoms
could be a problem, otherwise this section can be ignored.

Note that the last created atom is printed first.

1.2.15 Disclaimer

Theformat of the crash dump evolves between rel eases of OTP. Some information here may not apply to your version.
A description as thiswill never be complete; it is meant as an explanation of the crash dump in general and as a help
when trying to find application errors, not as a complete specification.

1.3 How to implement an alternative carrier for the Erlang distribution

Thisdocument describes how one canimplement onesown carrier protocol for the Erlang distribution. Thedistribution
is normally carried by the TCP/IP protocol. What's explained here is the method for replacing TCP/IP with another
protocol.

The document is a step by step explanation of theuds_di st example application (seated in the kernel applications
exanpl es directory). Theuds_di st application implements distribution over Unix domain sockets and is written

14 | Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS)

1.3 How to implement an alternative carrier for the Erlang distribution

for the Sun Solaris 2 operating environment. The mechanisms are however general and appliesto any operating system
Erlang runs on. The reason the C code is not made portable, is simply readability.

Note:

This document was written along time ago. Most of it is still valid, but some things have changed since it was
first written. Most notably the driver interface. There have been some updates to the documentation of the driver
presented in this documentation, but more could be done and are planned for the future. The reader is encouraged
to also read the erl_driver, and the driver_entry documentation.

1.3.1 Introduction

To implement a new carrier for the Erlang distribution, one must first make the protocol available to the Erlang
machine, which involves writing an Erlang driver. There is no way one can use a port program, there has to be an
Erlang driver. Erlang drivers can either be statically linked to the emulator, which can be an alternative when using
the open source distribution of Erlang, or dynamically loaded into the Erlang machines address space, which is the
only aternative if a precompiled version of Erlang isto be used.

Writing an Erlang driver is by no means easy. The driver is written as a couple of call-back functions called by the
Erlang emulator when datais sent to the driver or the driver has any data available on a file descriptor. Asthe driver
call-back routines execute in the main thread of the Erlang machine, the call-back functions can perform no blocking
activity whatsoever. The call-backs should only set up file descriptors for waiting and/or read/write available data.
All 1/0 has to be non blocking. Driver call-backs are however executed in sequence, why a global state can safely
be updated within the routines.

When the driver is implemented, one would preferably write an Erlang interface for the driver to be able to test the
functionality of the driver separately. This interface can then be used by the distribution module which will cover the
details of the protocol fromthenet _ker nel . The easiest pathisto mimicthei net andi net _t cp interfaces, but
alot of functionality in those modules need not be implemented. In the example application, only a few of the usual
interfaces are implemented, and they are much simplified.

When the protocol is available to Erlang through a driver and an Erlang interface module, a distribution module can
be written. The distribution module is a module with well defined call-backs, much like agen_ser ver (thereis
no compiler support for checking the call-backs though). The details of finding other nodes (i.e. talking to epmd or
something similar), creating alisten port (or similar), connecting to other nodes and performing the handshakes/cookie
verification are all implemented by this module. There is however a utility module, di st _uti |, that will do most
of the hard work of handling handshakes, cookies, timers and ticking. Using di st _ut i | makes implementing a
distribution module much easier and that's what we are doing in the example application.

Thelast step isto create boot scripts to make the protocol implementation available at boot time. The implementation
can be debugged by starting the distribution when al of the system is running, but in area system the distribution
should start very early, why aboot-script and some command line parameters are necessary. Thislast step alsoimplies
that the Erlang code in the interface and distribution modules is written in such away that it can be run in the startup
phase. Most notably there can be no callsto the appl i cati on module or to any modules not loaded at boot-time
(i.e.only ker nel , st dl i b and the application itself can be used).

1.3.2 The driver
Although Erlang driversin general may be beyond the scope of thisdocument, abrief introduction seemsto bein place.

Drivers in general

An Erlang driver is a native code module written in C (or assembler) which serves as an interface for some special
operating system service. Thisis a general mechanism that is used throughout the Erlang emulator for all kinds of 1/

Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS) | 15

1.3 How to implement an alternative carrier for the Erlang distribution

O. An Erlang driver can be dynamically linked (or loaded) to the Erlang emulator at runtime by usingtheer | _ddl |
Erlang module. Some of the drivers in OTP are however statically linked to the runtime system, but that's more an
optimization than a necessity.

The driver data-types and the functions available to the driver writer are defined in the header fileer | _dri ver. h
(there is al'so an deprecated version called dr i ver . h, don't use that one.) seated in Erlang's include directory (and
in $ERL_TOP/erts’emulator/beam in the source code distribution). Refer to that file for function prototypes etc.

When writing adriver to make a communications protocol available to Erlang, one should know just about everything
worth knowing about that particular protocol. All operation has to be non blocking and all possible situations should
be accounted for in the driver. A non stable driver will affect and/or crash the whole Erlang runtime system, which
is seldom what's wanted.

The emulator calls the driver in the following situations:

* Whenthedriver isloaded. This call-back has to have a special name and will inform the emulator of what call-
backs should be used by returning apointer to aEr | Dr vEnt r y struct, which should be properly filled in (see
below).

* When aport to the driver is opened (by aopen_port cal from Erlang). This routine should set up internal
data structures and return an opaque data entity of the type Er | Dr vDat a, which is a data-type large enough to
hold a pointer. The pointer returned by this function will be the first argument to all other call-backs concerning
this particular port. It isusually called the port handle. The emulator only stores the handle and does never try
tointerpret it, why it can be virtually anything (well anything not larger than a pointer that is) and can point to
anything if it isapointer. Usually this pointer will refer to a structure holding information about the particular
port, asi t doesin our example.

* When an Erlang process sends data to the port. The datawill arrive as a buffer of bytes, the interpretation is not
defined, but is up to the implementor. This call-back returns nothing to the caller, answers are sent to the caller
asmessages (using aroutine called dr i ver _out put availableto all drivers). Thereisalso away totalk ina
synchronous way to drivers, described below. There can be an additional call-back function for handling data
that is fragmented (sent in adeep io-list). That interface will get the datain aform suitable for Unix wri t ev
rather than in asingle buffer. There is no need for a distribution driver to implement such a call-back, so we
wont.

* When afile descriptor is signaled for input. This call-back is called when the emulator detects input on
afile descriptor which the driver has marked for monitoring by using the interfacedr i ver _sel ect .
The mechanism of driver select makesit possible to read non blocking from file descriptors by calling
dri ver _sel ect when reading is needed and then do the actual reading in this call-back (when reading is
actually possible). Thetypica scenarioisthat dri ver _sel ect iscaled when an Erlang process orders a
read operation, and that this routine sends the answer when data is available on the file descriptor.

e When afiledescriptor is signaled for output. This call-back is called in asimilar way as the previous, but when
writing to afile descriptor is possible. The usual scenario isthat Erlang orders writing on a file descriptor and
that the driver callsdr i ver _sel ect . When the descriptor is ready for output, this call-back is called an the
driver can try to send the output. There may of course be queuing involved in such operations, and there are
some convenient queue routines available to the driver writer to use in such situations.

* When aport is closed, either by an Erlang process or by the driver calling one of thedri ver _fai | ure_XXX
routines. This routine should clean up everything connected to one particular port. Note that when other call-
backscall adri ver _f ai | ur e_XXXroutine, this routine will be immediately called and the call-back routine
issuing the error can make no more use of the data structures for the port, as this routine surely has freed al
associated data and closed al file descriptors. If the queue utility available to driver writes is used, this routine
will however not be called until the queue is empty.

* Whenan Erlang process callser | ang: port _contr ol / 3, whichisasynchronous interface to drivers. The
control interface is used to set driver options, change states of ports etc. We'll use thisinterface quite alot in our
example.

16 | Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS)

1.3 How to implement an alternative carrier for the Erlang distribution

e When atimer expires. The driver can set timerswith the functiondri ver _set _ti ner.When such timers
expire, a specific call-back function is called. We will not use timersin our example.

* When the whole driver is unloaded. Every resource allocated by the driver should be freed.

The distribution driver's data structures

Thedriver used for Erlang distribution should implement areliable, order maintaining, variable length packet oriented
protocol. All error correction, re-sending and such need to be implemented in the driver or by the underlying
communications protocol. If the protocol is stream oriented (as is the case with both TCP/IP and our streamed Unix
domain sockets), some mechanism for packaging is needed. We will use the simple method of having a header of four
bytes containing the length of the package in a big endian 32 bit integer (as Unix domain sockets only can be used
between processes on the same machine, we actually don't need to code the integer in some special endianess, but I'll
do it anyway because in most situation you do need to do it. Unix domain sockets are reliable and order maintaining,
so we don't need to implement resends and such in our driver.

Lets start writing our example Unix domain sockets driver by declaring prototypes and filling in a static EriDrvEntry
structure.

(1) #include <stdio. h>

(2) #include <stdlib.h>

(3) #include <string.h>

(4) #include <unistd. h>

(5) #include <errno. h>

(6) #include <sys/types. h>
(7) #include <sys/stat.h>

(8) #include <sys/socket.h>
(9) #include <sys/un.h>
(10) #include <fcntl.h>

(11) #define HAVE_ U O H
(12) #include "erl _driver.h"

(13) /*

(14) ** Interface routines

(15) */

(16) static ErlDrvData uds_start(Erl DrvPort port, char *buff);

(17) static void uds_stop(ErlDrvData handl e);

(18) static void uds_comuand(Erl DrvData handl e, char *buff, int bufflen);
(19) static void uds_input(ErlDrvData handl e, ErlDrvEvent event);

(20) static void uds_output (Erl DrvData handl e, ErlDrvEvent event);

(21) static void uds_finish(void);

(22) static int uds_control (Erl DrvData handl e, unsigned int command

(23) char* buf, int count, char** res, int res_size);

(24) /* The driver entry */
(25) static ErlDrvEntry uds_driver_entry = {

(26) NULL, /* init, NNA*/

(27) uds_start, /* start, called when port is opened */
(28) uds_st op, /* stop, called when port is closed */
(29) uds_conmand, /* output, called when erlang has sent */
(30) uds_i nput, /* ready_i nput, called when input

(31) descriptor ready */

(32) uds_out put, /* ready_output, called when out put
(33) descriptor ready */

(34) "uds_drv", /* char *driver_nane, the argunent

(35) to open_port */

(36) uds_fi ni sh, /* finish, called when unl oaded */

(37) NULL, /* void * that is not used (BC) */

(38) uds_control , /* control, port_control callback */
(39) NULL, /* timeout, called on tinmeouts */

(40) NULL, /* outputv, vector output interface */

Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS) | 17

1.3 How to implement an alternative carrier for the Erlang distribution

(41) NULL, /* ready_async cal |l back */

(42) NULL, /* flush call back */

(43) NULL, /* call callback */

(44) NULL, /* event callback */

(45) ERL_DRV_EXTENDED MARKER, /* Extended driver interface marker */
(46) ERL_DRV_EXTENDED MAJOR VERSI ON, /* Major version nunber */

(47) ERL_DRV_EXTENDED M NOR _VERSION, /* M nor version nunber */

(48) ERL_DRV_FLAG _SOFT_BUSY, /* Driver flags. Soft busy flag is
(49) required for distribution drivers */
(50) NULL, /* Reserved for internal use */

(51) NULL, /* process_exit callback */

(52) NULL /* stop_sel ect callback */

(53) };

On line 1 to 10 we have included the OS headers needed for our driver. As this driver is written for Solaris, we
know that the header ui 0. h exists, why we can define the preprocessor variable HAVE_UI O_H before we include
erl _driver. hatlinel2. Thedefinition of HAVE_Ul O_Hwill makethe I/O vectors used in Erlang's driver queues
to correspond to the operating systems ditto, which is very convenient.

The different call-back functions are declared ("forward declarations") on line 16 to 23.

The driver structure is similar for statically linked in drivers and dynamically loaded. However some of the fields
should be left empty (i.e. initialized to NULL) in the different types of drivers. The first field (the i ni t function
pointer) isalways|eft blank in adynamically loaded driver, which can be seen on line 26. The NULL on line 37 should
always bethere, thefield isno longer used and is retained for backward compatibility. We use no timersin thisdriver,
why no call-back for timers is needed. The out put v field (line 40) can be used to implement an interface similar
to Unix wr i t ev for output. The Erlang runtime system could previously not use out put v for the distribution, but
since erts version 5.7.2 it can. Since this driver was written before erts version 5.7.2 it does not use the out put v
callback. Using the out put v callback is preferred since it reduces copying of data. (We will however use scatter/
gather 1/O internally in the driver).

As of erts version 5.5.3 the driver interface was extended with version control and the possibility to pass capability
information. Capability flags are present at line 48. As of ertsversion 5.7.4 the ERL_DRV_FLAG_SOFT_BUSY flag
is required for drivers that are to be used by the distribution. The soft busy flag implies that the driver is capable of
handling calls to the out put and out put v calbacks even though it has marked itself as busy. This has aways
been a requirement on drivers used by the distribution, but there have previously not been any capability information
available about this. For more information see set_busy _port()).

Thisdriver waswritten before the runtime system had SM P support. Thedriver will still functioninthe runtime system
with SMP support, but performance will suffer from lock contention on the driver lock used for the driver. Thiscan be
alleviated by reviewing and perhaps rewriting the code so that each instance of the driver safely can executein parallel.
When instances safely can execute in parallel it is safe to enable instance specific locking on the driver. Thisis done
by passing ERL_DRV_FLAG _USE PORT_LOCKING as adriver flag. Thisis|eft as an exercise for the reader.

Our defined call-backs thus are:

e uds start, which shall initiate data for a port. We wont create any actual sockets here, just initialize data
structures.

e uds stop, the function called when a port is closed.

e uds_command, which will handle messages from Erlang. The messages can either be plain data to be sent or
more subtle instructions to the driver. We will use this function mostly for data pumping.

e uds input, thisisthe call-back which is called when we have something to read from a socket.
e uds output, thisisthe function called when we can write to a socket.

e uds finish, whichis called when the driver is unloaded. A distribution driver will actually (or hopefully) never
be unloaded, but we include this for completeness. Being able to clean up after oneself is always a good thing.

e uds control, theer | ang: port _contr ol / 2 call-back, which will be used alot in thisimplementation.

18 | Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS)

1.3 How to implement an alternative carrier for the Erlang distribution

The portsimplemented by thisdriver will operate in two major modes, which i will call the command and data modes.
In command mode, only passive reading and writing (like gen_tcp:recv/gen_tcp:send) can be done, and this is the
mode the port will bein during the distribution handshake. When the connection is up, the port will be switched to data
mode and all datawill be immediately read and passed further to the Erlang emulator. In data mode, no data arriving
to the uds_command will be interpreted, but just packaged and sent out on the socket. The uds_control call-back will
do the switching between those two modes.

Whilethenet _ker nel informsdifferent subsystemsthat the connection iscoming up, the port should accept datato
send, but not receive any data, to avoid that data arrives from another node before every kernel subsystem is prepared
to handle it. We have athird mode for this intermediate stage, lets call it the intermediate mode.

Lets define an enum for the different types of ports we have:

1) typedef enum {

(

(2 por t TypeUnknown, /* An uninitialized port */

(3) port Typeli st ener, /* A listening port/socket */

(4) port TypeAccept or, /* An interm di ate stage when accepting

(5 on a listen port */

(6) por t TypeConnect or, /* An intermedi ate stage when connecting */
(7 por t TypeConmand, /* A connected open port in comrand node */
(8) port Typel ntermedi ate, /* A connected open port in special

(9 hal f active node */

(10) port TypeDat a /* A connectec open port in data node */

(11) } Port Type;

Letslook at the different types:

« portTypeUnknown - The type a port has when it's opened, but not actually bound to any file descriptor.

e portTypeListener - A port that is connected to alisten socket. This port will not do especially much, there will
be no data pumping done on this socket, but there will be read data available when one istrying to do an accept
on the port.

e portTypeAcceptor - Thisisaport that isto represent the result of an accept operation. It is created when one
wants to accept from a listen socket, and it will be converted to a portTypeCommand when the accept succeeds.

e portTypeConnector - Very similar to portTypeAcceptor, an intermediate stage between the request for a connect
operation and that the socket isreally connected to an accepting ditto in the other end. As soon as the sockets
are connected, the port will switch type to portTypeCommand.

* portTypeCommand - A connected socket (or accepted socket if you want) that isin the command mode
mentioned earlier.

e portTypelntermediate - The intermediate stage for a connected socket. There should be no processing of input
for this socket.

* portTypeData - The mode where datais pumped through the port and the uds_command routine will regard
every call as acall where sending iswanted. In this mode all input available will be read and sent to Erlang as
soon asit arrives on the socket, much like in the active mode of agen_t cp socket.

Now lets look at the state we'll need for our ports. One can note that not al fields are used for al types of ports and
that one could save some space by using unions, but that would clutter the code with multiple indirections, soi simply
use one struct for all types of ports, for readability.

(1) typedef unsigned char Byte;
(2) typedef unsigned int Wrd;

3) typedef struct uds_data {
4) int fd; /* File descriptor */
5) Erl DrvPort port; /* The port identifier */

—_~—~

Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS) | 19

1.3 How to implement an alternative carrier for the Erlang distribution

(6
(7
(8
(9
(10)
(11)
(12)
(13)
(14)
(15)
(16)
(17)
(18)
(19)
(20)
(21)

int |ockfd; /* The file descriptor for a lock file in
case of |isten sockets */
Byte creation; /* The creation serial derived fromthe
| ockfile */
Port Type type; [* Type of port */
char *narne; /* Short name of socket for unlink */
Wrd sent; /* Bytes sent */
Word received; /* Bytes received */
struct uds_data *partner; /* The partner in an accept/listen pair */
struct uds_data *next; /* Next structure in list */
/* The input buffer and its data */
int buffer_size; /* The allocated size of the input buffer */
int buffer_pos; /* Current position in input buffer */
i nt header _pos; /* Where the current header is in the
i nput buffer */
Byte *buffer; /* The actual input buffer */

(22) } UdsDat a

This structure is used for all types of ports athough some fields are useless for some types. The least memory
consuming solution would be to arrange this structure as aunion of structures, but the multipleindirectionsin the code
to access afield in such a structure will clutter the code to much for an example.

Let'slook at the fieldsin our structure:

« fd- Thefile descriptor of the socket associated with the port.

e port - The port identifier for the port which this structure corresponds to. It is needed for most dr i ver XXX
calls from the driver back to the emulator.

« lockfd - If the socket is alisten socket, we use a separate (regular) file for two purposes:

We want alocking mechanism that gives no race conditions, so that we can be sure of if another Erlang
node uses the listen socket name we require or if the file is only left there from a previous (crashed)

session.

We storethe creation serial number inthefile. The creation isanumber that should change between different
instances of different Erlang emulators with the same name, so that process identifiers from one emulator
won't be valid when sent to a new emulator with the same distribution name. The creation can be between 0
and 3 (two bits) and is stored in every process identifier sent to another node.

In a system with TCP based distribution, this datais kept in the Erlang port mapper daemon (epnd), which
is contacted when a distributed node starts. The lock-file and a convention for the UDS listen socket's name
will remove the need for epnd when using this distribution module. UDS is always restricted to one host,
why avoiding a port mapper is easy.

» creation - The creation number for alisten socket, which is calculated as (the value found in the lock-file + 1)
rem 4. This creation value is also written back into the lock-file, so that the next invocation of the emulator will
found our valuein thefile.

e type- The current type/state of the port, which can be one of the values declared above.

* name - The name of the socket file (the path prefix removed), which allows for deletion (unl i nk) when the
socket is closed.

e sent - How many bytes that have been sent over the socket. This may wrap, but that's no problem for
the distribution, as the only thing that interests the Erlang distribution isif this value has changed (the
Erlang net_kernel ticker uses this value by calling the driver to fetch it, which is done through the
erl ang: port_control routine).

* received - How many bytes that are read (received) from the socket, used in similar waysassent .

e partner - A pointer to another port structure, which is either the listen port from which this port is accepting a
connection or the other way around. The "partner relation” is always bidirectional.

20 | Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS)

1.3 How to implement an alternative carrier for the Erlang distribution

e next - Pointer to next structurein alinked list of all port structures. Thislist is used when accepting connections
and when the driver is unloaded.

« buffer_size, buffer_pos, header pos, buffer - data for input buffering. Refer to the source code (in the kernel/
examples directory) for details about the input buffering. That certainly goes beyond the scope of this
document.

Selected parts of the distribution driver implementation

Thedistribution driversimplementation is not completely covered in thistext, details about buffering and other things
unrelated to driver writing are not explained. Likewise are some peculiarities of the UDS protocol not explained in
detail. The chosen protocol is not important.

Prototypes for the driver call-back routines can befound intheer | _dri ver . h header file.

The driver initialization routine is (usually) declared with a macro to make the driver easier to port between different
operating systems (and flavours of systems). Thisis the only routine that has to have a well defined name. All other
call-backs are reached through the driver structure. The macro to useis named DRI VER_| NI T and takes the driver
name as parameter.

(1) /* Beginning of linked list of ports */
(2) static UdsData *first_data;

(3) DRIVER_I NI T(uds_drv)

(4 {

(5) first_data = NULL;

(6) return &uds_driver_entry;
(7}

The routine initializes the single global data structure and returns a pointer to the driver entry. The routine will be
caledwhener!| _ddl|:1oad_dri ver iscaledfrom Erlang.

Theuds_start routineis called when a port is opened from Erlang. In our case, we only alocate a structure and
initialize it. Creating the actual socket isleft to theuds_comand routine.

(1) static ErlDrvData uds_start(Erl DrvPort port, char *buff)
(2 {

(3) UdsDat a *ud;

(4

(5 ud = ALLOC(si zeof (UdsDat a)) ;
(6) ud->fd = -1;

(7 ud- >l ockfd = -1;

(8) ud->creation = 0;

(9 ud- >port = port;

(10) ud- >t ype = port TypeUnknown;
(112) ud- >nanme = NULL;

(12) ud- >buffer_size = 0;

(13) ud- >buf fer _pos = 0;

(14) ud- >header _pos = 0;

(15) ud->buffer = NULL;

(16) ud- >sent = 0;

(17) ud- >recei ved = 0;

(18) ud- >partner = NULL;

(19) ud- >next = first_data;

(20) first_data = ud;

(21)

(22) return((Erl DrvData) ud);

Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS) | 21

1.3 How to implement an alternative carrier for the Erlang distribution

(23) }

Every dataitem isinitialized, so that no problems will arise when anewly created port is closed (without there being
any corresponding socket). Thisroutineis called when open_port ({spawn, "uds_drv"},[]) iscaledfrom
Erlang.

The uds_conmand routine is the routine called when an Erlang process sends data to the port. All asynchronous
commands when the port is in command mode as well as the sending of all data when the port is in data mode is
handled in this9s routine. Let's have alook at it:

(1) static void uds_comuand(Erl DrvData handl e, char *buff, int bufflen)

(2 {

(3) UdsData *ud = (UdsData *) handl e;

(4) if (ud->type == portTypeData || ud->type == port Typel nternedi ate) {
(5 DEBUGK((" Passi ve do_send %", bufflen));

(6) do_send(ud, buff + 1, bufflen - 1); /* XXX */
(7 return;

(8 }

(9 if (bufflen == 0) {

(10) return;

(11) }

(12) switch (*buff) {

(13) case 'L':

(14) if (ud->type != port TypeUnknown) {

(15) driver_failure_posix(ud->port, ENOTSUP);
(16) return;

(17) }

(18) uds_conmand_I i st en(ud, buf f, buf fl en);

(19) return;

(20) case 'A:

(21) if (ud->type != port TypeUnknown) {

(22) driver_failure_posix(ud->port, ENOTSUP);
(23) return;

(24) }

(25) uds_conmand_accept (ud, buf f, buf fl en) ;

(26) return;

(27) case 'C:

(28) if (ud->type != port TypeUnknown) {

(29) driver_fail ure_posix(ud->port, ENOTSUP);
(30) return;

(31) }

(32) uds_conmmand_connect (ud, buff, buf fl en);

(33) return;

(34) case 'S':

(35) if (ud->type != port TypeCommand) {

(36) driver_failure_posix(ud->port, ENOTSUP);
(37) return;

(38) }

(39) do_send(ud, buff + 1, bufflen - 1);

(40) return;

(41) case 'R :

(42) if (ud->type != port TypeComrand) {

(43) driver_failure_posix(ud->port, ENOTSUP);
(44) return;

(45) }

(46) do_recv(ud);

(47) return;

(48) defaul t:

(49) return;

(50) }

22 | Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS)

1.3 How to implement an alternative carrier for the Erlang distribution

(51) }

The command routine takes three parameters; the handle returned for the port by uds_st ar t , which isapointer to
the internal port structure, the data buffer and the length of the data buffer. The buffer is the data sent from Erlang (a
list of bytes) converted to an C array (of bytes).

If Erlang sends i.e. the list [$a, $b, $c] to the port, the buf f | en variable will be 3 ant the buf f variable will
contain{'a',"'b',"'c'} (nonull termination). Usually the first byte is used as an opcode, which isthe casein our
driver to (at least when the port isin command mode). The opcodes are defined as:

» 'L'<socketname>: Create and listen on socket with the given name.

o 'A<listennumber as 32 hit bigendian>: Accept from the listen socket identified by the given identification
number. The identification number is retrieved with the uds_control routine.

e 'C'<socketname>: Connect to the socket named <socketname>.

* 'S<data>: Send the data <data> on the connected/accepted socket (in command mode). The sending is acked
when the data has left this process.

e 'R Receive one packet of data.

One may wonder what is meant by "one packet of data" in the'R' command. This driver always sends data packeted
with a4 byte header containing a big endian 32 bit integer that represents the length of the datain the packet. Thereis
no need for different packet sizes or some kind of streamed mode, as this driver is for the distribution only. One may
wonder why the header word is coded explicitly in big endian when an UDS socket is local to the host. The answer
simply isthat | see it as a good practice when writing a distribution driver, as distribution in practice usualy cross
the host boundaries.

Online4-8wehandlethe casewherethe port isin dataor intermediate mode, therest of theroutine handlesthe different
commands. We see (first on line 15) that theroutine usesthedr i ver _fai | ure_posi x() routineto report errors.
One important thing to remember isthat the failure routines make acall to our uds_st op routine, which will remove
theinternal port data. The handle (and the casted handle ud) istherefore invalid pointers after adri ver _fail ure
call and we should immediately return. The runtime system will send exit signalsto all linked processes.

Theuds_input routine gets called when dataisavailable on afiledescriptor previously passedtothedr i ver _sel ect
routine. Typically this happens when aread command is issued and no data is available. Lets look at the do_r ecv
routine:

1) static void do_recv(UdsData *ud)

(

(2 {

(3) int res;

(4) char *i buf;

(5) for(;;) {

(6) if ((res = buffered_read_package(ud, & buf)) < 0) {

7 if (res == NORVAL_READ FAI LURE) {

(8) driver_sel ect (ud->port, (ErlDrvEvent) ud->fd, DO READ, 1);
(9 } else {

(10) driver_fail ure_eof (ud->port);

(11) }

(12) return;

(13) }

(14) /* CGot a package */

(15) if (ud->type == port TypeComrand) {

(16) ibuf[-1] = "R ; /* There is always roomfor a single byte
(17) opcode before the actual buffer

(18) (where the packet header was) */

(19) driver_out put (ud->port,ibuf - 1, res + 1);

(20) driver_sel ect (ud->port, (ErlDrvEvent) ud->fd, DO READ, 0);
(21) return;

(22) } else {

Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS) | 23

1.3 How to implement an alternative carrier for the Erlang distribution

(23) i buf[-1] = DI ST_MAG C RECV_TAG /* XXX */

(24) driver_out put (ud->port,ibuf - 1, res + 1);

(25) driver_sel ect (ud->port, (ErlDrvEvent) ud->fd, DO READ, 1);
(26) }

(27) }

(28) }

The routine tries to read data until a packet is read or the buf f er ed_r ead_package routine returns a
NORMAL_READ_FAI LURE (aninternally defined constant for the modul e that means that the read operation resulted
in an EWOUL DBL OCK). If the port isin command mode, the reading stops when one package isread, but if itisin data
mode, the reading continues until the socket buffer is empty (read failure). If no more data can be read and more is
wanted (always the case when socket is in data mode) driver_select is called to make the uds_i nput call-back be
called when more datais available for reading.

When the port is in data mode, all data is sent to Erlang in a format that suits the distribution, in fact the raw data
will never reach any Erlang process, but will be translated/interpreted by the emulator itself and then delivered in the
correct format to the correct processes. In the current emulator version, received data should be tagged with asingle
byte of 100. Thats what the macro DI ST_MAG C_RECV_TAG s defined to. The tagging of data in the distribution
will possibly change in the future.

The uds_i nput routine will handle other input events (like nonblocking accept), but most importantly handle
data arriving at the socket by callingdo_r ecv:

(1) static void uds_input(ErlDrvData handl e, ErlDrvEvent event)

(2 {

(3) UdsData *ud = (UdsData *) handl e;

(4) if (ud->type == port TypeLi stener) {

(5 UdsData *ad = ud->part ner;

(6) struct sockaddr _un peer;

(7 int pl = sizeof(struct sockaddr_un);

(8 int fd;

(9 if ((fd = accept(ud->fd, (struct sockaddr *) &peer, &pl)) < 0) {
(10) if (errno != EWOULDBLOCK) {

(112) driver_fail ure_posix(ud->port, errno);
(12) return;

(13) }

(14) return;

(15) }

(16) SET_NONBLOCKI NG(f d) ;

(17) ad->fd = fd;

(18) ad->partner = NULL;

(19) ad->type = port TypeComand;

(20) ud- >partner = NULL;

(21) driver_sel ect (ud->port, (ErlDrvEvent) ud->fd, DO READ, 0);
(22) driver_out put (ad->port, "Aok", 3);

(23) return;

(24) }

(25) do_recv(ud);

(26) }

Theimportant line hereisthe last linein the function, thedo_r ead routineis called to handle new input. The rest of
the function handles input on alisten socket, which means that there should be possible to do an accept on the socket,
which is also recognized as aread event.

The output mechanisms are similar to the input. Letsfirst look at thedo_send routine:

24 | Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS)

1.3 How to implement an alternative carrier for the Erlang distribution

1) static void do_send(UdsData *ud, char *buff, int bufflen)

(

(2 {

(3) char header[4];

(4) int witten;

(5 Sysl Ovec iov[2];

(6) Erl | Ovec eio;

7 Erl DrvBinary *binv[] = {NULL, NULL};

(8) put _packet _| engt h(header, bufflen);

(9 iov[0].iov_base = (char *) header;

(10) iov[0].iov_len = 4;

(112) iov[1l].iov_base = buff;

(12) iov[1l].iov_len = bufflen;

(13) eio.iov = iov;

(14) ei 0. binv = biny;

(15) ei 0.vsize = 2;

(16) ei0.size = bufflen + 4;

(17) witten = 0;

(18) if (driver_sizeq(ud->port) == 0) {

(19) if ((witten = witev(ud->fd, iov, 2)) == eio.size) {
(20) ud->sent += written;

(21) if (ud->type == port TypeComrand) {
(22) driver_out put (ud->port, "Sok", 3);
(23) }

(24) return;

(25) } elseif (witten < 0) {

(26) if (errno != EWOULDBLOCK) {

(27) driver_fail ure_eof (ud->port);
(28) return;

(29) } else {

(30) witten = 0;

(31) }

(32) } else {

(33) ud->sent += written;

(34) }

(35) /* Enqueue renaining */

(36) }

(37) driver_engv(ud->port, &eio, witten);
(38) send_out _queue(ud);

(39) }

Thisdriver usesthewr i t ev system call to send data onto the socket. A combination of writev and the driver output
gueuesis very convenient. An ErllOVec structure contains a SyslOVec (which is equivalent tothest ruct i ovec
structure defined in ui 0. h. The ErllOVec also contains an array of ErlDrvBinary pointers, of the same length asthe
number of buffersin the I/O vector itself. One can use this to allocate the binaries for the queue "manually" in the
driver, but we'll just fill the binary array with NULL values (line 7) , which will make the runtime system allocate its
own bufferswhen wecall dri ver _enqv (line 37).

The routine builds an 1/O vector containing the header bytes and the buffer (the opcode has been removed and the
buffer length decreased by the output routine). If the queue is empty, we'll write the data directly to the socket (or at
least try to). If any dataisleft, it is stored in the queue and then we try to send the queue (line 38). An ack is sent when
the message is delivered completely (line 22). The send_out _queue will send acks if the sending is completed
there. If the port isin command mode, the Erlang code serializes the send operations so that only one packet can be
waiting for delivery at atime. Therefore the ack can be sent simply whenever the queue is empty.

A short look at thesend_out _queue routine:

(1) static int send_out_ queue(UdsData *ud)
(2 {

Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS) | 25

1.3 How to implement an alternative carrier for the Erlang distribution

3) for(;;) {

(

(4) int vlen;

(5 Sysl Ovec *tnp = driver_peekqg(ud->port, &vlen);
(6) int wote;

7 if (tmp == NULL) {

(8) driver_sel ect (ud->port, (ErlDrvEvent) ud->fd, DO WRI TE, 0);
(9 if (ud->type == port TypeCommand) {

(10) driver_out put (ud->port, "Sok", 3);

(11) }

(12) return O;

(13) }

(14) if (vlen > I O VECTOR MAX) {

(15) vlien = |1 O VECTOR MAX;

(16) }

(17) if ((wote = witev(ud->fd, tnp, vlien)) < 0) {
(18) if (errno == EWOULDBLOCK) {

(19) driver_sel ect (ud->port, (ErlDrvEvent) ud->fd,
(20) DO WRITE, 1);

(21) return O;

(22) } else {

(23) driver_fail ure_eof (ud->port);

(24) return -1;

(25) }

(26) }

(27) driver_deq(ud->port, wote);

(28) ud- >sent += wrote;

(29) }

(30) }

What we do is simply to pick out an I/O vector from the queue (which is the whole queue as an SyslOVex). If the l/O
vectoristolong (I0_VECTOR_MAX isdefined to 16), the vector length is decreased (line 15), otherwisethewr i t ev
(line 17) call will fail. Writing istried and anything written isdequeued (line 27). If thewritefail swith EWOUL DBL OCK
(note that all sockets are in nonblocking mode), dri ver _sel ect iscalled to make the uds_out put routine be
called when there is space to write again.

We will continue trying to write until the queue is empty or the writing would block.
The routine above are called from the uds__out put routine, which looks like this:

(1) static void uds_output (Erl DrvData handl e, Erl DrvEvent event)
(2 {

(3) UdsData *ud = (UdsData *) handl e;

(4) if (ud->type == port TypeConnector) {

(5 ud- >t ype = port TypeComrand;

(6) driver_sel ect (ud->port, (ErlDrvEvent) ud->fd, DO WRI TE, 0);
(7 driver_out put (ud->port, "Cok", 3);

(8) return;

(9 }

(10) send_out _queue(ud);

(11) }

Theroutineissimple, it first handles the fact that the output select will concern a socket in the business of connecting
(and the connecting blocked). If the socket isin aconnected state it simply sends the output queue, thisroutineiscalled
when there is possible to write to a socket where we have an output queue, so there is no question what to do.

The driver implements a control interface, which is a synchronous interface called when Erlang calls
erl ang: port_control /3. Thisis the only interface that can control the driver when it is in data mode and it
may be called with the following opcodes:

e 'C" Set port in command mode.

26 | Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS)

1.3 How to implement an alternative carrier for the Erlang distribution

'I'; Set port in intermediate mode.
'D": Set port in data mode.

'N': Get identification number for listen port, this identification number is used in an accept command to the
driver, it is returned as a big endian 32 bit integer, which happensto be the file identifier for the listen socket.

'S Get statistics, which is the number of bytes received, the number of bytes sent and the number of bytes
pending in the output queue. This data is used when the distribution checks that a connection is alive (ticking).
The statisticsis returned as 3 32 bit big endian integers.

T": Send atick message, which is apacket of length 0. Ticking is done when the port isin data mode, so the
command for sending data cannot be used (besides it ignores zero length packages in command mode). This
isused by the ticker to send dummy data when no other traffic is present. Note that it isimportant that the
interface for sending ticksis not blocking. Thisimplementation useser | ang: port _cont r ol / 3 which
does not block the caller. If er | ang: port _comrand isused, useer | ang: port _conmand/ 3 and pass
[force] asoption list; otherwise, the caller can be blocked indefinitely on abusy port and prevent the system
from taking down a connection that is not functioning.

'R': Get creation number of listen socket, which is used to dig out the number stored in the lock file to
differentiate between invocations of Erlang nodes with the same name.

The control interface gets a buffer to return its value in, but is free to alocate its own buffer is the provided one is
to small. Hereisthe code for uds_control :

1) static int uds_control (Erl DrvData handl e, unsigned int conmand,
2) char* buf, int count, char** res, int res_size)

3) {

4) /* Local nmacro to ensure |arge enough buffer. */

5) #define ENSURE(N) \
6) do { \
7) if (res_size < N) { \
8) *res = ALLOC(N); \
9) } \
10) } whil e(0)
(112) UdsData *ud = (UdsData *) handl e;
(12) switch (command) {
(13) case 'S':
(14) {
(15) ENSURE(13) ;
(16) **res = 0;
(17) put _packet length((*res) + 1, ud->received);
(18) put _packet length((*res) + 5, ud->sent);
(19) put _packet length((*res) + 9, driver_sizeq(ud->port));
(20) return 13;
(21) }
(22) case 'C:
(23) if (ud->type < port TypeCommand) {
(24) return report_control _error(res, res_size, "einval");
(25) }
(26) ud- >t ype = port TypeComrand;
(27) driver_sel ect (ud->port, (ErlDrvEvent) ud->fd, DO READ, 0);
(28) ENSURE(1) ;
(29) **res = 0;
(30) return 1;
(31) case "I’
(32) if (ud->type < port TypeCommand) {
(33) return report_control _error(res, res_size, "einval");
(34) }
(35) ud- >t ype = port Typel nt er nedi at e;
(36) driver_sel ect (ud->port, (ErlDrvEvent) ud->fd, DO READ, 0);

Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS) | 27

1.3 How to implement an alternative carrier for the Erlang distribution

(37) ENSURE(1) ;

(38) **res = 0;

(39) return 1;

(40) case 'D:

(41) if (ud->type < port TypeConmand) {

(42) return report_control _error(res, res_size, "einval");
(43) }

(44) ud- >t ype = port TypeDat a;

(45) do_recv(ud);

(46) ENSURE(1) ;

(47) **res = 0;

(48) return 1;

(49) case 'N:

(50) if (ud->type != port T TypeLi stener) {

(51) return report_control _error(res, res_size, "einval");
(52) }

(53) ENSURE(5) ;

(54) (*res)[0] = O;

(55) put _packet _| ength((*res) + 1, ud->fd);

(56) return 5;

(57) case 'T': [* tick */

(58) if (ud->type != portTypeData) {

(59) return report_control _error(res, res_size, "einval");
(60) }

(61) do_send(ud, "", 0);

(62) ENSURE(1) ;

(63) **res = 0;

(64) return 1;

(65) case 'R :

(66) if (ud->type != port T TypeLi stener) {

(67) return report_control _error(res, res_size, "einval");
(68) }

(69) ENSURE(2) ;

(70) (*res)[0] = O;

(71) (*res)[1] = ud->creation;

(72) return 2;

(73) defaul t:

(74) return report_control _error(res, res_size, "einval");
(75) }

(76) #undef ENSURE

(77) }

The macro ENSURE (line 5 to 10) is used to ensure that the buffer is large enough for our answer. We switch on the
command and take actions, there is not much to say about this routine. Worth noting is that we always has read select
active on a port in data mode (achieved by calling do_r ecv on line 45), but turn off read selection in intermediate
and command modes (line 27 and 36).

Therest of the driver is more or less UDS specific and not of general interest.

1.3.3 Putting it all together

Totest thedistribution, onecanusethenet _ker nel : st art/ 1 function, whichisuseful asit startsthe distribution
on a running system, where tracing/debugging can be performed. The net _kernel : start/ 1 routine takes a
list as its single argument. The lists first element should be the node name (without the " @hostname”) as an atom,
and the second (and last) element should be one of the atoms shor t nanes or | ongnanes. In the example case
shor t nanes is preferred.

For net kernel to find out which distribution module to use, the command line argument - pr ot o_di st isused. The
argument is followed by one or more distribution module names, with the "_dist" suffix removed, i.e. uds dist asa
distribution moduleis specified as- prot o_di st uds.

28 | Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS)

1.4 The Abstract Format

If no epmd (TCP port mapper daemon) is used, one should also specify the command line option - no_epnd, which
will make Erlang skip the epmd startup, both as a OS process and as an Erlang ditto.

The path to the directory where the distribution modul es reside must be known at boot, which can either be achieved by
specifying - pa <pat h> on the command line or by building a boot script containing the applications used for your
distribution protocol (in the uds_dist protocal, it'sonly the uds_dist application that needs to be added to the script).

The distribution will be started at boot if all the above is specified and an - sname <nane> flag is present at the
command line, here follows two examples:

$ erl -pa $ERL_TOP/Ii b/ kernel / exanpl es/ uds_di st/ ebin -proto_dist uds -no_epnd
Erl ang (BEAM enul ator version 5.0

Eshell V5.0 (abort with ~"QG

1> net _kernel : start ([bi ng, short nanes]) .
{ ok, <0. 30. 0>}

(bi ng@ador) 2>

$ erl -pa $ERL_TOP/Ii b/ ker nel / exanpl es/ uds_di st/ ebin -proto_di st uds \
-no_epnd -snanme bong
Erl ang (BEAM enul ator version 5.0

Eshell V5.0 (abort with "G
(bong@ador) 1>

One can utilize the ERL_FLAGS environment variable to store the complicated parametersin:

$ ERL_FLAGS=-pa $ERL_TOP/ | i b/ ker nel / exanpl es/ uds_di st/ ebin \
-proto_dist uds -no_epnd

$ export ERL_FLAGS

$ erl -sname bang

Erl ang (BEAM enul ator version 5.0

Eshell V5.0 (abort with ~"Q
(bang@ador) 1>

The ERL_FLAGS should preferably not include the name of the node.

1.4 The Abstract Format

This document describes the standard representation of parse trees for Erlang programs as Erlang terms. This
representation isknown asthe abstract format. Functionsdealing with such parsetreesareconpi | e: for s/ [1, 2]
and functionsinthe modulesepp, erl _eval ,erl _lint,erl _pp,erl_parse,andi 0. They areaso used as
input and output for parse transforms (see the module conpi | e).

We use the function Rep to denote the mapping from an Erlang source construct Cto its abstract format representation
R, andwriteR = Rep(C) .

Theword LI NE below representsan integer, and denotesthe number of thelinein the sourcefilewherethe construction
occurred. Several instances of L1 NE in the same construction may denote different lines.

Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS) | 29

1.4 The Abstract Format

Since operators are not termsin their own right, when operators are mentioned bel ow, the representati on of an operator
should be taken to be the atom with a printname consisting of the same characters as the operator.

1.4.1 Module declarations and forms
A module declaration consists of a sequence of forms that are either function declarations or attributes.

« |f Disamodule declaration consisting of theformsF_1, ..., F_k,thenRep(D) =[Rep(F_1), ...,
Rep(F_k)].
e |If Fisanattribute - nodul e(Mbd) , then Rep(F) ={at t ri but e, LI NE, nodul e, Mbd}.

 If Fisanattribute- export ([Fun_1/A 1, ..., Fun_k/ A k]),thenRep(F) =
{attribute, LI NE, export,[{Fun_1,A 1}, ..., {Fun_k, A k}1}.

e |If Fisanattribute-i nport (Mod, [Fun_1/A 1, ..., Fun_k/ A k]),thenRep(F) =
{attribute, LINE, inport,{Md,[{Fun_1,A 1}, ..., {Fun_k, A k}]}}.

e If Fisanattribute- conpi | e(Opti ons) ,thenRep(F) ={attri bute, LI NE, conpi | e, Opti ons}.
« IfFisanattribute-file(File, Line),thenRep(F)={attribute, LINE file,{File,Line}}.

e |If Fisarecord declaration-record(Nane,{V_1, ..., V_k}),thenRep(F) =

{attribute, LINE, record, {Name, [Rep(V_1), ..., Rep(V_k)]}}.ForRep(V), seebelow.
 If Fisawildattribute- A(T) ,thenRep(F) ={attri bute, LI NE, A T}.
e |If FisafunctiondeclarationNane Fc_1 ; ... ; Nane Fc_k,whereeach Fc_i isafunction clause

with a pattern sequence of the same length Ari t y, then Rep(F) ={f uncti on, LI NE, Nan®e, Arity,
[Rep(Fc_1), ...,Rep(Fc_k)1}.

Record fields

Each field in arecord declaration may have an optional explicit default initializer expression

e IfVisAthenRep(V)={record_field, LINE Rep(A)}.

« IfVisA = E, thenRep(V)={record_field, LI NE Rep(A), Rep(E)}.

Representation of parse errors and end of file

In addition to the representations of forms, the list that represents a module declaration (as returned by functionsin
er|l _par se andepp) may containtuples{ err or , E} and{war ni ng, W, denoting syntactically incorrect forms
and warnings, and { eof , LI NE} , denoting an end of stream encountered before a complete form had been parsed.

1.4.2 Atomic literals

There are five kinds of atomic literals, which are represented in the same way in patterns, expressions and guards:

o If Lisaninteger or character literal, then Rep(L) ={i nt eger, LI NE, L}.

« IfLisafloat literal, then Rep(L) ={f | oat, LI NE, L}.

» If Lisastring literal consisting of the charactersC 1, ..., C_k, then Rep(L) ={ st ri ng, LI NE,
[C1, ..., CK]}.

e IfLisanatomliteral, then Rep(L) ={at om LI NE, L}.

Notethat negative integer and float literals do not occur as such; they are parsed as an application of the unary negation
operator.

1.4.3 Patterns

If Ps is asequence of patterns P_1, ..., P_k,then Rep(Ps) =[Rep(P_1), ..., Rep(P_k)]. Such
sequences occur asthelist of argumentsto a function or fun.

Individual patterns are represented as follows:

30 | Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS)

1.4 The Abstract Format

If Pisan atomic literal L, then Rep(P) = Rep(L).

If Pisacompound pattern P_1 = P_2, then Rep(P) ={ mat ch, LI NE, Rep(P_1), Rep(P_2)}.

If Pisavariable pattern V, then Rep(P) ={ var, LI NE, A}, where A is an atom with a printhame consisting of
the same charactersas V.

If Pisauniversal pattern _, then Rep(P) ={var, LINE," _'}.

If Pisatuplepattern{P_1, ..., P_k},thenRep(P)={tuple, LINE [Rep(P_1), ...,
Rep(P_k)1}.

If Pisanil pattern[], then Rep(P) ={ni | , LI NE}.

If Pisaconspattern[P_h | P_t],then Rep(P) ={cons, LI NE, Rep(P_h), Rep(P_t)}.

If Eisabinary pattern<<P_1: Size 1/TSL 1, ..., P_k: Size k/ TSL_k>>, then Rep(E)
={bin,LINE, [{bin_elenment, LINE, Rep(P_1), Rep(Size_1),Rep(TSL_1)}, ...,
{bin_elenent, LI NE, Rep(P_k), Rep(Si ze_k), Rep(TSL_k)}]}.For Rep(TSL), see below. An
omitted Si ze isrepresented by def aul t . An omitted TSL (type specifier list) isrepresented by def aul t .

If PisP_1 Op P_2,where Op isabinary operator (thisis either an occurrence of ++ applied to aliteral string
or character list, or an occurrence of an expression that can be evaluated to a number at compile time), then
Rep(P) ={ op, LI NE, Op, Rep(P_1), Rep(P_2) }.

If PisOp P_0, where Op isaunary operator (thisis an occurrence of an expression that can be evaluated to a
number at compile time), then Rep(P) ={ op, LI NE, Op, Rep(P_0)}.

If Pisarecord pattern #Nanme{ Fi el d_1=P_1, ..., Fi el d_k=P_k},then Rep(P) =

{record, LI NE, Nane, [{record field, LINE Rep(Field 1),Rep(P_ 1)}, ...,
{record _field,LINE Rep(Field k), Rep(P_k)}1}.

If Pis#Nane. Fi el d, then Rep(P) ={r ecord_i ndex, LI NE, Nane, Rep(Fi el d) }.

If Pis(P_0),then Rep(P) = Rep(P_0),i.e., patterns cannot be distinguished from their bodies.

Note that every pattern has the same source form as some expression, and is represented the same way as the
corresponding expression.

1.4.4 Expressions
A body B isasequence of expressionsE_1, ..., E k,andRep(B)=[Rep(E_1), ..., Rep(E_Kk)].

An expression E is one of the following alternatives:

If Pisan atomic litera L, then Rep(P) = Rep(L).

If EisP = E_O, then Rep(E) ={ mat ch, LI NE, Rep(P), Rep(E_0)}.

If EisavariableV, then Rep(E) ={ var, LI NE, A}, where A isan atom with a printname consisting of the
same charactersas V.

If Eisatupleskeleton{E_1, ..., E k},thenRep(E)={tuple, LINE, [Rep(E_1),
Rep(E_k)1}.

IfEis[],thenRep(E) ={ni |, LI NE}.

If Eisaconsskeleton[E_h | E_t],thenRep(E)={cons, LI NE, Rep(E_h), Rep(E_t)}.

If Eisabinary constructor <<V_1: Si ze_1/TSL_1, ..., V_k: Size_k/ TSL_k>>, then Rep(E)
={bin, LINE, [{bin_el ement, LI NE, Rep(V_1), Rep(Si ze_1), Rep(TSL_1)}, ...,

{bi n_el ement, LI NE, Rep(V_k), Rep(Si ze_k), Rep(TSL_k) }1}. For Rep(TSL), see below. An
omitted Si ze isrepresented by def aul t . An omitted TSL (type specifier list) isrepresented by def aul t .
IfEiIsE_ 1 Op E_2,where Qp isabinary operator, then Rep(E) =

{op, LINE, Op, Rep(E_1), Rep(E_2)}.

If EisOp E_O0, where Op isaunary operator, then Rep(E) ={ op, LI NE, Op, Rep(E_0) }.

Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS) | 31

1.4 The Abstract Format

e |IfEis#Nanme{Field 1=E 1, ..., Field k=E _k},then Rep(E) =
{record, LI NE, Nane, [{record field, LINE Rep(Field 1),Rep(E 1)}, ...,
{record field,LINE Rep(Field k), Rep(E_k)}1}.
e |IfEisE O#Nanme{Field_1=E 1, ..., Field_k=E_k},then Rep(E) =
{record, LI NE, Rep(E_0), Nane,
[{record field, LINE, Rep(Field 1), Rep(E_1)},
{record_field,LINE Rep(Field k), Rep(E_k)}1}.
« |IfEis#Nane. Fi el d,then Rep(E) ={record_i ndex, LI NE, Nane, Rep(Fi el d)}.
« |IfEisE_O#Nane. Fi el d, thenRep(E) ={record_fi el d, LI NE, Rep(E_0), Nane, Rep(Fi el d)}.
« |IfEiscatch E_O,thenRep(E)={"' catch', LI NE, Rep(E_0)}.

e IfEISE O(E 1, ..., E k),thenRep(E)={call,LINE Rep(E 0),[Rep(E_ 1), ...,
Rep(E_k)]1}.

 IfEISEEmEO(E 1, ..., E_k),thenRep(E)={call, LI NE,
{remote, LINE, Rep(E_m, Rep(E_0)},[Rep(E_1), ..., Rep(E_Kk)]}.

« |IfEisalistcomprehension[E O || W1, ..., WKk],whereeachW i isagenerator or afilter, then
Rep(E) ={l ¢, LINE, Rep(E_0),[Rep(W1), ..., Rep(WKk)]}.ForRep(W), seebelow.

e If Eisabinary comprehension<<E 0 || W1, ..., Wk>> whereeachW i isagenerator or afilter,
then Rep(E) ={ bc, LI NE, Rep(E_0), [Rep(W1), ..., Rep(Wk)]}.ForRep(W), seebelow.

 IfEisbegin B end, whereBisabody, then Rep(E) ={ bl ock, LI NE, Rep(B)}.

« |UfEisif Ic_1; ... ; lc_k end,whereeachlc_i isanif clausethenRep(E) ={"if"', LI NE,
[Rep(lc_1), ..., Rep(lc_Kk)]}.

e |IfEiscase E O of Cc_1; ... ; Cc_k end,whereE_0isanexpressonandeach Cc_i isacase
clausethen Rep(E) ={' case', LI NE, Rep(E_0),[Rep(Cc_1), ..., Rep(Cc_k)]}.

e |IfEistry B catch Tc_1 ; ... ; Tc_k end,whereBisabody and each Tc_i isacatch clause
thenRep(E) ={"'try',LINE, Rep(B),[],[Rep(Tc_1), ..., Rep(Tc_Kk)].,[]1}.

e |IfEistry Bof Cc_1; ... ; Cc_k catch Tc_1 ; ... ; Tc_n end,whereBisabody,
each Cc_i isacaseclauseand each Tc_j isacatch clausethenRep(E) ={'try', LI NE, Rep(B),
[Rep(Cc_1), ..., Rep(Cc_k)],[Rep(Tc_1), ..., Rep(Tc_n)],[1}-

e |IfEistry B after A end,whereBandAarebodiesthenRep(E)={"'try', LINE, Rep(B),[],
[]1.,Rep(A)}.

e |IfEistry Bof Cc_1; ... ; Cc_k after A end,whereBandA areabodiesand each
Cc_i isacaseclausethenRep(E) ={"'try', LI NE Rep(B),[Rep(Cc_1), ..., Rep(Cc_k)],
[].Rep(A)}.

« |IfEistry B catch Tc_1 ; ... ; Tc_k after A end,whereB and A arebodiesand

each Tc_i isacatchclausethen Rep(E) ={'try', LI NE, Rep(B),[],[Rep(Tc_1), ...,
Rep(Tc_k)], Rep(A)}.

e |IfEistry Bof Cc 1 ; ... ; Cc k catch Tc_1; ... ; Tc_n after A end,
where B and A are abodies, each Cc_i isacaseclauseand each Tc_j isacatch clause then Rep(E)
={"try',LINE, Rep(B),[Rep(Cc_1), ..., Rep(Cc_k)],[Rep(Tc_1), ...,
Rep(Tc_n)], Rep(A) }.

e |IfEisreceive Cc_1 ; ... ; Cc_k end,whereeach Cc_i isacaseclausethen Rep(E) =
{'receive' ,LINE,[Rep(Cc_1), ..., Rep(Cc_k)1}.

e |IfEisreceive Cc_1 ; ... ; Cc_k after EO -> B t end,whereeachCc_i isacaseclause,

E Oisanexpressionand B t isabody, then Rep(E) ={"' recei ve' ,LINE, [Rep(Cc_1), ...,
Rep(Cc_k)], Rep(E_0), Rep(B_t)}.
e IfEisfun Nanme / Arity,thenRep(E)={"'fun', LINE {function, Nane, Arity}}.

o IfEisfun Modul e: Nanme/ Arity,thenRep(E) ={' fun', LI NE,
{function, Mdul e, Nane, Arity}}.

32| Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS)

1.4 The Abstract Format

IfEisfun Fc_1 ; ... ; Fc_k endwhereeachFc_i isafunction clause then Rep(E) =
{'fun',LINE {clauses,[Rep(Fc_1), ..., Rep(Fc_k)]}}.

If Eisquery [E O || W1, ..., WKk] end,whereeachW i isagenerator or afilter, then Rep(E)
={"query',LINE {lc, LINE, Rep(E_0),[Rep(W1), ..., Rep(WKk)]}}.ForRep(W), see
below.

If EisE_O. Fi el d, aMnesiarecord accessinside a query, then Rep(E) =

{record field,LINE Rep(E_0), Rep(Field)}.

IfEis(E_O),thenRep(E) =Rep(E_0),i.e, parenthesized expressions cannot be distinguished from their
bodies.

Generators and filters

When W is a generator or afilter (in the body of alist or binary comprehension), then:

If Wisagenerator P <- E, where Pisapattern and E is an expression, then Rep(W) =
{generate, LI NE, Rep(P), Rep(E)}.

If Wisagenerator P <= E, where P isapattern and E is an expression, then Rep(W) =
{b_generate, LI NE, Rep(P), Rep(E) }.

If Wisafilter E, which is an expression, then Rep(W) = Rep(E) .

Binary element type specifiers

A type specifier list TSL for a binary element is a sequence of type specifiers TS 1 - ... - TS k. Rep(TSL)
=[Rep(TS_1), ..., Rep(TS k)].

When TSis atype specifier for abinary element, then:

If TSisanatom A, Rep(TS) = A
If TSisacouple A: Val ue where Aisan atom and Val ue isaninteger, Rep(TS) ={ A, Val ue}.

1.4.5 Clauses

There are function clauses, if clauses, case clauses and catch clauses.

A clause Cisone of the following alternatives:

If Cisafunctionclause(Ps) -> BwherePs isapattern sequence and B is a body, then Rep(C) =

{cl ause, LI NE, Rep(Ps),[], Rep(B)}.

If Cisafunctionclause(Ps) when Gs -> BwherePs isapattern sequence, Gs isaguard sequence
and B isabody, then Rep(C) ={ cl ause, LI NE, Rep(Ps), Rep(Gs), Rep(B)}.

If Cisanif clauseGs - > Bwhere Gs isaguard sequence and B is abody, then Rep(C) = { cl ause, LI NE,
[1.Rep(Gs),Rep(B)}.

If Cisacaseclause P - > Bwhere Pisapattern and B isabody, then Rep(C) ={ cl ause, LI NE,
[Rep(P)],[],Rep(B)}.

If CisacaseclauseP when Gs -> BwherePisapattern, Gs isaguard sequence and B is abody, then
Rep(C) ={cl ause, LI NE, [Rep(P)], Rep(Gs), Rep(B) }.

If Cisacatch clause P - > Bwhere Pisapattern and B isabody, then Rep(C) ={ cl ause, LI NE,
[Rep({throw, P, _})].[],Rep(B)}.

If Cisacatchclause X : P -> BwhereXisanatomic literal or avariable pattern, Pisapatternand Bisa
body, then Rep(C) ={ cl ause, LINE, [Rep({X, P, _})].[], Rep(B)}.

If Cisacatch clauseP when Gs -> BwherePisapattern, Gs isaguard sequence and B is a body, then
Rep(C) ={cl ause, LI NE, [Rep({throw, P, _})], Rep(Gs), Rep(B)}.

Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS) | 33

1.4 The Abstract Format

e |IfCisacachclauseX : P when Gs -> BwhereXisanatomic literal or avariable
pattern, P is apattern, Gs isaguard sequence and B is abody, then Rep(C) ={ cl ause, LI NE,
[Rep({X,P,_})],Rep(Gs), Rep(B)}.

1.4.6 Guards

A guard sequence Gsisasequenceof guardsG 1; ...; G k,andRep(Gs)=[Rep(G 1), ..., Rep(GKk)].
If the guard sequenceis empty, Rep(Gs) =[] .

A guard G is a nonempty sequence of guard tests & _1, ..., G _k,and Rep(G) =[Rep(&x _1), ...,
Rep(G _Kk)].

A guardtest & is one of the following alternatives:

e If Gtisan atomic literal L, then Rep(Gt) = Rep(L).

* If Gtisavariable pattern V, then Rep(Gt) = { var, LI NE, A}, where A is an atom with a printname consisting
of the same charactersas V.

e IfGtisatupleskeleton{ G _1, ..., & _k},thenRep(Gt)={tuple, LINE [Rep(& _1), ...,
Rep(& _k)1}.

o IfGtis[],thenRep(Gt)={ni |, LI NE}.

e |IfGtisaconsskeleton[& _h | G _t],then Rep(Gt) ={cons, LINE, Rep(&G _h), Rep(& _t)}.

e If Gtisabhinary constructor <<G _1: Size_1/TSL_1, ..., G _k: Size_k/ TSL_k>>, then Rep(Gt)
={bin,LINE, [{bin_el ement, LINE, Rep(& _1), Rep(Size_1),Rep(TSL_1)}, ...,
{bin_el enent, LI NE, Rep(& _k), Rep(Si ze_Kk), Rep(TSL_k) }]} . For Rep(TSL), see above. An
omitted Si ze isrepresented by def aul t . An omitted TSL (type specifier list) isrepresented by def aul t .

e IfGtis@_1 Op & _2,where Op isabinary operator, then Rep(Gt) =
{op, LINE, Op, Rep(& _1),Rep(&x _2)}.

e IfGtisQp & 0, where Op isaunary operator, then Rep(Gt) ={ op, LI NE, Op, Rep(& _0)}.

o IfGtis#Nane{Field_1=G _1, ..., Field_k=G&G_k},thenRep(E) =
{record, LI NE, Nare, [{record_field, LINE Rep(Field_1),Rep(&_1)}, ...,
{record_field, LINE Rep(Field_Kk), Rep(& _k)}1}.

e IfGtis#Nane. Fi el d, then Rep(Gt) ={recor d_i ndex, LI NE, Name, Rep(Fi el d)}.

« IfGtis@& _O0#Nane. Fi el d, then Rep(Gt) =
{record_field,LINE Rp(&_0), Nane, Rep(Field)}.

e IfGtisA(G_1, ..., & _k),whereAisanatom,then Rep(Gt) ={cal | , LI NE, Rep(A),
[Rep(&G_1), ..., Rep(&_Kk)]}.
e IfGtisAmA(G_1, ..., & _k),whereA mistheatomer| ang and Aisan atom or an operator,

then Rep(Gt) ={cal | , LI NE, {renot e, LI NE, Rep(A n), Rep(A },[Rep(& _1), ...,
Rep(& _k)1}.

o IfGtis{AMA(G_1, ..., G_Kk),whereA mistheatomer| ang and Aisan atom or an operator,
then Rep(Gt) ={cal |, LI NE, Rep({AmA}),[Rep(& _1), ..., Rep(&_k)1}.

e IfGtis(G _0),thenRep(Gt) = Rep(& _0), i.e., parenthesized guard tests cannot be distinguished from
their bodies.

Note that every guard test has the same source form as some expression, and is represented the same way as the
corresponding expression.
1.4.7 The abstract format after preprocessing

The compilation option debug_i nf o can be given to the compiler to have the abstract code stored in the
abst ract _code chunk inthe BEAM file (for debugging purposes).

In OTP R9C and later, theabst r act _code chunk will contain

34 | Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS)

1.5 tty - A command line interface

{raw _abstract _v1, Abstract Code}
where Abst r act Code isthe abstract code as described in this document.

Inreleases of OTP prior to RIC, the abstract code after some more processing was stored in the BEAM file. The first
element of the tuple would be either abst r act _v1 (R7B) or abst r act _v2 (R8B).

1.5 tty - A command line interface

t t y isasimple command line interface program where keystrokes are collected and interpreted. Completed lines are
sent to the shell for interpretation. There is a ssmple history mechanism, which saves previous lines. These can be
edited before sending them to the shell. t t y is started when Erlang is started with the command:

erl
t t y operatesin one of two modes:

« normal mode, in which lines of text can be edited and sent to the shell.

« shell break mode, which allows the user to kill the current shell, start multiple shells etc. Shell break mode is
started by typing Control G.

1.5.1 Normal Mode

In norma mode keystrokes from the user are collected and interpreted by tty. Most of the emacs line editing
commands are supported. The following isacomplete list of the supported line editing commands.

Note: The notation C- a means pressing the control key and the letter a simultaneously. M f means pressing the ESC
key followed by the letter f .

Key Sequence Function

C-a Beginning of line

C-b Backward character

M-b Backward word

C-d Delete character

M-d Delete word

C-e End of line

CH Forward character

M-f Forward word

C-g Enter shell break mode

C-k Kill line

CA Redraw line

C-n Fetch next line from the history buffer
Cp Fetch previous line from the history buffer

Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS) | 35

1.6 How to implement a driver

C-t Transpose characters

C-y Insert previoudly killed text

Table 5.1: tty text editing

1.5.2 Shell Break Mode

tty enters shell break mode when you type Control G. In this mode you can:

» Kill or suspend the current shell
* Connect to a suspended shell
e Start anew shell

1.6 How to implement a driver

Note:

Thisdocument waswritten along timeago. A lot of itisstill valid, but some things have changed sinceit wasfirst
written. Updates of this document are planned for the future. The reader is encouraged to also read the er|_driver,
and the driver_entry documentation.

1.6.1 Introduction
This chapter tells you how to build your own driver for erlang.

A driver in Erlang is alibrary written in C, that is linked to the Erlang emulator and called from erlang. Drivers can
be used when C is more suitable than Erlang, to speed things up, or to provide access to OS resources not directly
accessible from Erlang.

A driver can be dynamically loaded, as a shared library (known as a DLL on windows), or statically loaded, linked
with the emulator when it iscompiled and linked. Only dynamically loaded drivers are described here, statically linked
drivers are beyond the scope of this chapter.

When adriver isloaded it is executed in the context of the emulator, shares the same memory and the same thread.
Thismeansthat all operationsin the driver must be non-blocking, and that any crash in the driver will bring the whole
emulator down. In short: you have to be extremely careful!

1.6.2 Sample driver

Thisisasimple driver for accessing a postgres database using the libpg C client library. Postgresis used because it's
free and open source. For information on postgres, refer to the website www.postgres.org.

Thedriver issynchronous, it usesthe synchronous calls of theclient library. Thisisonly for simplicity, and isgenerally
not good, since it will halt the emulator while waiting for the database. This will be improved on below with an
asynchronous sample driver.

Thecodeisquite straight-forward: all communication between Erlang and thedriver isdonewithport _control / 3,
and the driver returns data back using ther buf .

An Erlang driver only exports one function: the driver entry function. Thisis defined with amacro, DRI VER | NI T,
and returns a pointer to a C st ruct containing the entry points that are called from the emulator. The st r uct

36 | Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS)

1.6 How to implement a driver

defines the entries that the emulator calls to call the driver, with a NULL pointer for entries that are not defined and
used by the driver.

Thest art entry is called when the driver is opened as a port with open_por t/ 2. Here we alocate memory for
auser data structure. This user datawill be passed every time the emulator calls us. First we store the driver handle,
because it is needed in subsequent calls. We allocate memory for the connection handle that is used by LibPQ. We
also set the port to return allocated driver binaries, by setting the flag PORT _CONTROL_FLAG BI NARY, calling
set _port_control flags. (Thisis because we don't know whether our data will fit in the result buffer of
cont r ol , which has adefault size set up by the emulator, currently 64 bytes.)

Thereisanentry i ni t which iscalled when the driver isloaded, but we don't use this, sinceit is executed only once,
and we want to have the possibility of several instances of the driver.

The st op entry is called when the port is closed.

The control entry is caled from the emulator when the Erlang code calls port _cont r ol / 3, to do the actual
work. We have defined a smple set of commands: connect to login to the database, di sconnect to log out
and sel ect to send a SQL-query and get the result. All results are returned through r buf . The library ei in
erl _i nterface isusedtoencodedatain binary term format. Theresult isreturned to the emulator as binary terms,
sobi nary_t o_t er miscaled in Erlang to convert the result to term form.

Thecodeisavailablein pg_sync. ¢ inthesanpl e directory of ert s.

The driver entry contains the functions that will be called by the emulator. In our simple example, we only provide
start,stopandcontrol.

/* Driver interface declarations */

static Erl DrvData start(Erl DrvPort port, char *command);

static void stop(ErlDrvData drv_data);

static int control (Erl DrvData drv_data, unsigned int conmand, char *buf,
int len, char **rbuf, int rlen);

static Erl DrvEntry pg_driver_entry = {

NULL, [* init */

start,

st op,

NULL, /* output */

NULL, /* ready_i nput */
NULL, /* ready_output */
"pg_sync", /* the name of the driver */
NULL, /* finish */

NULL, /* handle */
control,

NULL, /* timeout */
NULL, /* outputv */
NULL, /* ready_async */
NULL, [* flush */

NULL, [* call */

NULL /* event */

We have a structure to store state needed by the driver, in this case we only need to keep the database connection.

typedef struct our_data_s {
PGconn* conn;
} our_data_t;

Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS) | 37

1.6 How to implement a driver

These are control codes we have defined.

/* Keep the follow ng definitions in alignment with the
* defines in erl_pg_sync.erl

*/
#def i ne DRV_CONNECT 'C
#def i ne DRV_DI SCONNECT 'D
#defi ne DRV_SELECT 'S

This just returns the driver structure. The macro DRI VER_| NI T defines the only exported function. All the other
functions are static, and will not be exported from the library.

/* INI TI ALI ZATI ON AFTER LQADI NG */

/*

* This is the init function called after this driver has been | oaded.
* |t must *not* be declared static. Must return the address to

* the driver entry.

*/
DRI VER_I NI T(pg_dr v)
{
return &pq_driver_entry;
}

Herewe do someinitialization, st ar t iscalled fromopen_port . Thedatawill be passedtocont r ol andst op.

/* DRI VER | NTERFACE */
static ErlDrvData start(Erl DrvPort port, char *conmand)

{
our _data_t* data;
data = (our_data_t*)driver_alloc(sizeof(our_data_t));
dat a- >conn = NULL;
set _port_control _flags(port, PORT_CONTROL_FLAG BI NARY) ;
return (Erl DrvDat a)dat a;

}

We call disconnect to log out from the database. (This should have been done from Erlang, but just in case.)

static int do_disconnect(our_data t* data, ei_x_buff* x);

static void stop(ErlDrvData drv_data)

{
our _data t* data = (our_data_t*)drv_data;
do_di sconnect (data, NULL);
driver_free(data);

}

38| Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS)

1.6 How to implement a driver

We use the binary format only to return data to the emulator; input data is a string paramater for connect and
sel ect . Thereturned data consists of Erlang terms.

The functions get _s and ei _X_t o_new _bi nary are utilities that is used to make the code shorter. get _s
duplicates the string and zero-terminates it, since the postgres client library wants that. ei _x_t o_new _bi nary
takesanei _x_buf f buffer and allocates a binary and copiesthe datathere. Thisbhinary isreturnedin* r buf . (Note
that this binary is freed by the emulator, not by us.)

static char* get_s(const char* buf, int |len);
static int do_connect(const char *s, our_data t* data, ei_x_buff* x);
static int do_select(const char* s, our_data t* data, ei_x_buff* x);

/* Since we are operating in binary node, the return value from control

* is irrelevant, as long as it is not negative.

*/

static int control (Erl DrvData drv_data, unsigned int conmand, char *buf,
int len, char **rbuf, int rlen)

{ .
int r;
ei _x_buff x;
our_data_t* data = (our_data_t*)drv_data;
char* s = get_s(buf, len);
ei _x_new W th_versi on(&x);
switch (command) {
case DRV_CONNECT: r = do_connect (s, data, &x); break;
case DRV_DI SCONNECT: r = do_di sconnect (data, &x); break;
case DRV_SELECT: r = do_sel ect(s, data, &x); br eak;
defaul t: r = -1; br eak;
}
rbuf = (char)ei _x_to_new_binary(&x);
ei _x _free(&);
driver_free(s);
return r;
}

Indo_connect iswhereweloginto the database. If the connection was successful we store the connection handlein
our driver data, and return ok. Otherwise, we return the error message from postgres, and store NULL in the driver data.

static int do_connect(const char *s, our_data t* data, ei_x_buff* x)

{
PGconn* conn = PQconnect db(s);
if (PQstatus(conn) != CONNECTI ON_OK) {
encode_error(x, conn);
PO i ni sh(conn);
conn = NULL;
} else {
encode_ok(x) ;
}
dat a- >conn = conn;
return O;
}

If we are connected (if the connection handle is not NULL), we log out from the database. We need to check if awe
should encode an ok, since we might get here from the st op function, which doesn't return data to the emulator.

Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS) | 39

1.6 How to implement a driver

static int do_disconnect(our_data_ t* data, ei_x_buff* x)
{
if (data->conn == NULL)
return O;
PQ i ni sh(dat a- >conn) ;
dat a- >conn = NULL;
if (x !'= NULL)
encode_ok(x);
return O;

We execute a query and encodes the result. Encoding is done in another C module, pg_encode. ¢ which is aso
provided as sample code.

static int do_select(const char* s, our_data_t* data, ei_x_buff* x)

PG esult* res = PQexec(data->conn, s);
encode_result(x, res, data->conn);
PQcl ear (res);

return O;

Herewe simply checkstheresult from postgres, and if it'sdatawe encodeit aslists of listswith column data. Everything
from postgresis C strings, sowejust useei _x_encode_st ri ng to send the result as stringsto Erlang. (The head
of the list contains the column names.)

voi d encode result(ei _x_buff* x, PGesult* res, PGconn* conn)
{
int row, n_rows, col, n_cols;
switch (PQesultStatus(res)) {
case PCRES TUPLES OK:
n_rows = PQntupl es(res);
n_cols = PQnfields(res);
ei _x_encode_tupl e_header (x, 2);
encode_ok(x);
ei _x_encode_list_header(x, n_rows+1);
ei _x_encode_list_header(x, n_cols);
for (col = 0; col < n_cols; ++col) {
ei _x_encode_string(x, PQname(res, col));
}
ei _x_encode_enpty list(x);
for (row = 0; row < n_rows; ++row) {
ei _x_encode_list_header(x, n_cols);
for (col = 0; col < n_cols; ++col) {
ei _x_encode_string(x, PQgetvalue(res, row, col));

}

ei _x_encode_enpty list(x);
}
ei _x_encode_enpty list(x);
br eak;

case PGRES COMVAND_CX:
ei _x_encode_tupl e_header (x, 2);
encode_ok(x);
ei _x_encode_string(x, PQndTupl es(res));
br eak;

defaul t:
encode_error(x, conn);

40 | Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS)

1.6 How to implement a driver

br eak;

1.6.3 Compiling and linking the sample driver

The driver should be compiled and linked to a shared library (DLL on windows). With gcc this is done with the link
flags- shar ed and - f pi c. Since we usethe ei library we should include it too. There are severa versionsof ei ,
compiled for debug or non-debug and multi-threaded or single-threaded. In the makefile for the samples the obj
directory isused for theei library, meaning that we use the non-debug, single-threaded version.

1.6.4 Calling a driver as a port in Erlang

Before adriver can be called from Erlang, it must be loaded and opened. Loading isdoneusingtheer | _ddl | module
(theer | _ddl | driverthat loadsdynamicdriver, isactually adriver itself). If loading is ok the port can be opened with
open_port/ 2. The port name must match the name of the shared library and the name in the driver entry structure.

When the port has been opened, the driver can be called. Inthe pg_sync example, we don't have any data from the
port, only the return value fromthe port _control .

The following code is the Erlang part of the synchronous postgres driver, pg_sync. erl .

- modul e(pg_sync) .

- def i ne(DRV_CONNECT, 1).
- def i ne(DRV_DI SCONNECT, 2).
- def i ne(DRV_SELECT, 3).

-export ([connect/1, disconnect/1, select/2]).

connect (Connect Str) ->

case erl _ddl|:|oad_driver(".", "pg_sync") of
ok -> ok;
{error, already_| oaded} -> ok;
E -> exit({error, E})

end,

Port = open_port ({spawn, ?MODULE}, []),

case binary_to_term(port_control (Port, ?DRV_CONNECT, ConnectStr)) of
ok -> {ok, Port};
Error -> Error

end.

di sconnect (Port) ->
R = binary_to_tern(port_control (Port, ?DRV_DI SCONNECT, "")),
port_cl ose(Port),
R

sel ect (Port, Query) ->
binary_to_term(port_control (Port, ?DRV_SELECT, Query)).

The api is simple: connect / 1 loads the driver, opens it and logs on to the database, returning the Erlang port
if successful, sel ect/ 2 sends a query to the driver, and returns the result, di sconnect / 1 closes the database
connection and the driver. (It does not unload it, however.) The connection string should be a connection string for
postgres.

The driver isloaded with er| _ddl | : 1 oad_dri ver/ 2, and if thisis successful, or if it's already loaded, it is
opened. Thiswill call thest art function in the driver.

Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS) | 41

1.6 How to implement a driver

Weusetheport _contr ol / 3 functionfor al callsinto thedriver, theresult fromthedriver isreturned immediately,
and converted to terms by calling bi nary_t o_t er n1 1. (Wetrust that the terms returned from the driver are well-
formed, otherwisethe bi nary_t o_t er mcalls could be containedinacat ch.)

1.6.5 Sample asynchronous driver

Sometimes database queries can take long time to complete, in our pg_sync driver, the emulator halts while the
driver is doing its job. This is often not acceptable, since no other Erlang processes gets a chance to do anything. To
improve on our postgres driver, we reimplement it using the asynchronous callsin LibPQ.

The asynchronous version of the driver isin the samplefilespg_async. ¢ and pg_asyng. er | .

/* Driver interface declarations */

static ErlDrvData start(Erl DrvPort port, char *conmand);

static void stop(ErlDrvData drv_data);

static int control (Erl DrvData drv_data, unsigned int conmand, char *buf,
int len, char **rbuf, int rlen);

static void ready_i o(Erl DrvData drv_data, ErlDrvEvent event);

static Erl DrvEntry pqg_driver_entry = {

NULL, [* init */

start,

st op

NULL, /* output */
ready_i o, /* ready_i nput */
ready_i o, /* ready_out put */
"pg_async", /* the name of the driver */
NULL, [* finish */

NULL, /* handl e */
control

NULL, [* timeout */
NULL, /* outputv */
NULL, /* ready_async */
NULL, [* flush */

NULL, [* call */

NULL /* event */

}s

typedef struct our_data_ t {
PGconn* conn;
Erl DrvPort port;
int socket;
i nt connecting;
} our_data_t;

Here some things have changed from pg_sync. c: we use the entry ready_i o for ready_i nput and
r eady_out put whichwill becalled from the emulator only whenthereisinput to be read from the socket. (Actually,
the socketisusedinasel ect function inside the emulator, and when the socket is signalled, indicating there is data
toread, ther eady_i nput entry iscalled. More on this below.)

Our driver datais aso extended, we keep track of the socket used for communication with postgres, and also the port,
which is needed when we send datato the port with dr i ver _out put . Wehaveaflagconnect i ng totell whether
the driver is waiting for a connection or waiting for the result of a query. (Thisis needed since the entry r eady _i o
will be called both when connecting and when there is query result.)

static int do_connect(const char *s, our_data_ t* data)

{

42 | Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS)

1.6 How to implement a driver

PGconn* conn = PQconnect Start(s);
if (PQstatus(conn) == CONNECTI ON_BAD) {
ei _x_buff x;
ei _x_new_wi th_versi on(&x) ;
encode_error (&, conn);
PQ i ni sh(conn);
conn = NULL;
driver_out put (dat a- >port, x.buff, x.index);
ei _x_free(&x);
}
PQconnect Pol | (conn) ;
int socket = PQsocket (conn);
dat a- >socket = socket;
driver_sel ect (data->port, (ErlDrvEvent)socket, DO READ, 1);
driver_sel ect (data->port, (ErlDrvEvent)socket, DO WRI TE, 1);
dat a- >conn = conn;
dat a- >connecting = 1;
return O;

Theconnect function looks a bit different too. We connect using the asynchronous PQconnect St art function.
After the connection is started, we retrieve the socket for the connection with PQsocket . This socket is used with the
dri ver_sel ect functionto wait for connection. When the socket is ready for input or for output, ther eady_i o
function will be called.

Note that we only return data (with dr i ver _out put) if thereisan error here, otherwise we wait for the connection
to be completed, in which case our r eady_i o function will be called.

static int do_sel ect(const char* s, our_data_t* data)

{

dat a- >connecting = 0;
PGconn* conn = dat a- >conn;
/* if there's an error return it now */
if (PQendQuery(conn, s) == 0) {
ei _x_buff x;
ei _x_new_with_version(&x);
encode_error (&, conn);
driver_out put (dat a- >port, x.buff, x.index);
ei _x_free(&);
}
/* else wait for ready_output to get results */
return O;

Thedo_sel ect functioninitiatesaselect, and returnsif thereisnoimmediate error. The actual result will bereturned
whenr eady_i oiscalled.

static void ready_i o(Erl DrvData drv_data, ErlDrvEvent event)

{

PGresult* res = NULL;
our_data_t* data = (our_data_t*)drv_data;
PCconn* conn = dat a- >conn;
ei _x_buff x;
ei _x_new W th_versi on(&x);
i f (data->connecting) {
ConnsSt at usType st at us;
PQconnect Pol | (conn) ;

Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS) | 43

1.6 How to implement a driver

status = PQstatus(conn);
if (status == CONNECTI ON_CK)
encode_ok(&x) ;
else if (status == CONNECTI ON_BAD)
encode_error (&, conn);
} else {
PQconsunel nput (conn) ;
i f (PQ sBusy(conn))
return;
res = PQget Resul t (conn);
encode_result (&, res, conn);
PQcl ear (res);
for (55) {
res = PQget Resul t (conn);
if (res == NULL)
br eak;
PQcl ear (res);
}

}
if (x.index > 1) {
driver_out put (dat a- >port, x.buff, x.index);
i f (data->connecti ng)
driver_sel ect (data->port, (ErlDrvEvent)data->socket, DO WRI TE, 0);

}
ei _x_free(&);

Ther eady_i o functionwill be called when the socket we got from postgresisready for input or output. Herewefirst
check if we are connecting to the database. In that case we check connection status and return ok if the connection is
successful, or error if it'snot. If the connectionisnot yet established, wesimply return; r eady_i o will becalled again.

If we have result from a connect, indicated that we have data in the x buffer, we no longer need to select on output
(ready_out put), soweremovethisby calingdri ver _sel ect.

If were not connecting, we're waiting for results from a PQsendQuer y, so we get the result and return it. The
encoding is done with the same functions asin the earlier example.

We should add error handling here, for instance checking that the socket is still open, but thisisjust asimple example.
The Erlang part of the asynchronous driver consists of the samplefilepg_async. erl .

- modul e(pg_async) .

- def i ne(DRV_CONNECT, $C).
- def i ne(DRV_DI SCONNECT, $D).
-def i ne(DRV_SELECT, $S).

-export ([connect/1, disconnect/1, select/2]).

connect (Connect Str) ->
case erl _ddll:load driver(".", "pg_async") of
ok -> ok;
{error, already_ | oaded} -> ok;
_ ->exit({error, could_not | oad driver})
end,
Port = open_port ({spawn, ?MODULE}, [binary]),
port _control (Port, ?DRV_CONNECT, ConnectStr),
case return_port_data(Port) of

ok ->
{ok, Port};
Error ->

44 | Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS)

1.6 How to implement a driver

Error
end.

di sconnect (Port) ->
port_control (Port, ?DRV_DI SCONNECT, ""),
R = return_port_data(Port),
port_cl ose(Port),
R

sel ect (Port, Query) ->
port _control (Port, ?DRV_SELECT, Query),
return_port_data(Port).

return_port_data(Port) ->
receive
{Port, {data, Data}} ->
bi nary_t o_t er m(Dat a)
end.

The Erlang code is dightly different, thisis because we don't return the result synchronously fromport _control ,
instead we get it fromdri ver _out put asdatain the message queue. The functionr et ur n_port _dat a above
receives data from the port. Since the dataisin binary format, weusebi nary_t o_t er nf 1 to convert it to Erlang
term. Note that the driver isopened in binary mode, open_port/ 2 iscaled withtheoption[bi nar y] . Thismeans
that data sent from the driver to the emulator is sent as binaries. Without the bi nar y option, they would have been
lists of integers.

1.6.6 An asynchronous driver using driver_async

Asafinal example we demonstrate the use of dr i ver _async. We aso use the driver term interface. The driver is
written in C++. This enables us to use an algorithm from STL. We will use the next _per nrut at i on agorithm to
get the next permutation of alist of integers. For large lists (more than 100000 elements), this will take some time,
so we will perform this as an asynchronous task.

The asynchronous api for drivers are quite complicated. First of all, the work must be prepared. In our example we do
thisinout put . Wecould haveused cont r ol just aswell, but wewant somevariation in our examples. In our driver,
we allocate a structure that contains all needed for the asynchronous task to do the work. This is done in the main
emulator thread. Then the asynchronousfunctioniscalled from adriver thread, separate from the main emul ator thread.
Note that the driver- functions are not reentrant, so they shouldn't be used. Finally, after the function is completed, the
driver callback r eady_async is called from the main emulator thread, this is where we return the result to Erlang.
(We can't return the result from within the asynchronous function, since we can't call the driver-functions.)

The code below is from the samplefilenext _perm cc.
The driver entry looks like before, but also contains the call-back r eady _async.

static Erl DrvEntry next_permdriver_entry = {

NULL, [* init */

start,

NULL, /* stop */

out put,

NULL, /* ready_i nput */
NULL, /* ready_out put */
"next _pernt, /* the name of the driver */
NULL, /* finish */

NULL, /* handle */

NULL, /* control */
NULL, /* timeout */
NULL, /* outputv */

Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS) | 45

1.6 How to implement a driver

ready_async,

NULL, [* flush */
NULL, /[* call */
NULL /* event */

The out put function allocates the work-area of the asynchronous function. Since we use C++, we use a struct, and
stuff the datain it. We have to copy the original data, it isnot valid after we have returned from the out put function,
and the do_per mfunction will be called later, and from another thread. We return no data here, instead it will be
sent later fromther eady_async call-back.

The async_dat a will be passed to the do_per mfunction. We do not use a async_fr ee function (the last
argumenttodr i ver _async, it'sonly used if the task is cancelled programmatically.

struct our_async_data {
bool prev;
vect or <i nt > dat a;
our _async_data(Erl DrvPort p, int command, const char* buf, int |en);

}s

our _async_dat a: : our _async_dat a(Erl DrvPort p, int comrand,
const char* buf, int |en)
prev(command == 2),
data((int*)buf, (int*)buf + len / sizeof(int))
{
}

static void do_permnvoi d* async_data);

static void output(ErlDrvData drv_data, char *buf, int |en)

{
if (*buf <1 || *buf > 2) return;
Erl DrvPort port = reinterpret_cast<Erl DrvPort>(drv_data);
voi d* async_data = new our_async_data(port, *buf, buf+l, |en);
driver_async(port, NULL, do_perm async_data, do_free);
}

Inthedo_per mwe simply do the work, operating on the structure that was allocated in out put .

static void do_pern(voi d* async_dat a)

{
our _async_data* d = reinterpret_cast<our_async_dat a*>(async_dat a) ;
if (d->prev)
prev_permut ati on(d->dat a. begi n(), d->data.end());
el se
next _permut ati on(d->dat a. begi n(), d->data.end());
}

In the r eady_async function, the output is sent back to the emulator. We use the driver term format instead
of ei . This is the only way to send Erlang terms directly to a driver, without having the Erlang code to call
bi nary_to_terni 1. Inour simple example this works well, and we don't need to use ei to handle the binary
term format.

When the datais returned we deallocate our data.

46 | Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS)

1.6 How to implement a driver

static void ready_async(Erl DrvData drv_data, ErlDrvThreadData async_dat a)

Erl DrvPort port = reinterpret_cast<Erl DrvPort>(drv_data);
our _async_data* d = reinterpret_cast<our_async_dat a*>(async_dat a) ;
int n = d->data.size(), result_n = n*2 + 3;
Erl DrvTernData* result = new Erl DrvTernData[result_n], * rp = result;
for (vector<int>: :iterator i = d->data.begin();
i = d->data.end(); ++i) {
*rp++ = ERL_DRV_I NT;

*rp++ = *i;
}
*rp++ = ERL_DRV_NIL;
*rp++ = ERL_DRV_LI ST;
*rp++ = n+l;

driver_output_ternm(port, result, result_n);
delete[] result;
del ete d;

This driver is caled like the others from Erlang, however, sincewe use dri ver _out put _t er m there is no need
to call binary_to_term. The Erlang codeisin the samplefilenext _permerl .

The input is changed into alist of integers and sent to the driver.

- modul e(next _pernj.
-export ([next_perm 1, prev_perm 1, load/0, all_pernm1]).
| oad() ->

case wherei s(next_perm of
undefined ->

case erl _ddll:load_driver(".", "next_perni) of
ok -> ok;
{error, already_| oaded} -> ok;
E -> exit(E)

end,

Port = open_port ({spawn, "next_pernm'}, []),
regi ster(next_perm Port);

->
ok

end.

list_to_integer_binaries(L) ->
[<<I:32/integer-native>> || | <- LJ.

next _perm(L) ->
next _perm(L, 1).

prev_permL) ->
next _perm(L, 2).

next _perm(L, Nxt) ->

| oad(),
B =1list_to_integer_binaries(L),
port _control (next_perm Nxt, B),
receive
Result ->
Resul t
end.

Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS) | 47

1.7 Inet configuration

al |l _perm(L) ->
New = prev_pern(L),
al | _perm(New, L, [Newj).

all _perm(L, L, Acc) ->
Acc;
all _permL, Oig, Acc) ->
New = prev_pern(L),
al |l _perm(New, Orig, [New | Acc]).

1.7 Inet configuration

1.7.1 Introduction

Thischapter tellsyou how the Erlang runtime systemis configured for | Pcommunication. It also explainshow you may
configure it for your own particular needs by means of a configuration file. The information here is mainly intended
for users with special configuration needs or problems. There should normally be no need for specific settings for
Erlang to function properly on a correctly IP configured platform.

When Erlang startsup it will read the kernel variablei net r ¢ which, if defined, should specify the location and name
of auser configuration file. Example:

% erl -kernel inetrc .Icfg files/erl _inetrc

Note that the usage of a. i net r ¢ file, which was supported in earlier Erlang versions, is now obsolete.

A second way to specify the configuration file is to set the environment variable ERL_| NETRC to the full name of
the file. Example (bash):

% export ERL_INETRC=./cfg_files/erl_inetrc
Note that the kernel variablei net r ¢ overrides this environment variable.

If no user configuration file is specified and Erlang is started in non-distributed or short name distributed mode,
Erlang will use default configuration settings and a native lookup method that should work correctly under most
circumstances. Erlang will not read any information from system inet configuration files (like /etc/host.conf, /etc/
nsswitch.conf, etc) in these modes, except for /etc/resolv.conf and /etc/hosts that is read and monitored for changes
on Unix platforms for the internal DNS client inet_res.

If Erlang is started in long name distributed mode, it needs to get the domain hame from somewhere and will read
system inet configuration files for this information. Any hosts and resolver information found then is also recorded,
but not used aslong as Erlang is configured for native lookups. (The information becomes useful if the lookup method
ischangedto' fil e or'dns', seebelow).

Native lookup (system calls) is always the default resolver method. Thisistruefor al platforms except VxWorks and
OSE Deltawhere' fil e' or' dns' isused (inthat order of priority).

On Windows platforms, Erlang will search the system registry rather than look for configuration files when started
in long name distributed mode.

1.7.2 Configuration Data
Erlang records the following datain alocal databaseif found in system inet configuration files (or system registry):

¢ Host names and addresses
e Domain name

¢ Nameservers

e Search domains

48 | Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS)

1.7 Inet configuration

e Lookup method

This data may also be specified explicitly in the user configuration file. The configuration file should contain lines
of configuration parameters (each terminated with a full stop). Some parameters add data to the configuration (e.g.
host and nameserver), others overwrite any previous settings (e.g. domain and lookup). The user configuration fileis
always examined last in the configuration process, making it possible for the user to override any default values or
previously made settings. Call i net : get _rc() toview the state of the inet configuration database.

These are the valid configuration parameters:
{file, Format, File}.

Format = atom()
File = string()
Specify a system file that Erlang should read configuration data from. For mat tells the parser how
the file should be interpreted: r esol v (Unix resolv.conf), host _conf _freebsd (FreeBSD host.conf),

host _conf_bsdos (BSDOS host.conf), host _conf _I i nux (Linux host.conf), nsswi t ch_conf (Unix
nsswitch.conf) or host s (Unix hosts). Fi | e should specify the name of the file with full path.

{resolv_conf, File}.
File = string()
Specify a system file that Erlang should read resolver configuration from for the internal DNS client inet_res,

and monitor for changes, even if it does not exist. The path must be absolute.

This may override the configuration parameters naneser ver and sear ch depending on the contents of the
specified file. They may also change any time in the future reflecting the file contents.

If the file is specified as an empty string ", no file is read nor monitored in the future. This emulates the old
behaviour of not configuring the DNS client when the node is started in short name distributed mode.

If this parameter is not specified it defaults to / et c/ resol v. conf unless the environment variable

ERL | NET_ETC DI Risset which definesthe directory for this file to some maybe other than/ et c.
{hosts_file, File}.

File = string()

Specify a system file that Erlang should read resolver configuration from for the internal hosts file resolver and

monitor for changes, even if it does not exist. The path must be absolute.

These host entries are searched after al added with {fil e, hosts, File} aboveor{host, IP,
Al i ases} below when the lookup optionfi | e isused.

If the file is specified as an empty string ", no file is read nor monitored in the future. This emulates the old
behaviour of not configuring the DNS client when the node is started in short name distributed mode.

If this parameter is not specified it defaults to /etc/hosts unless the environment variable
ERL_| NET_ETC DI Ris set which defines the directory for this file to some maybe other than/ et c.

{registry, Type}.
Type = atom()

Specify a system registry that Erlang should read configuration data from. Currently, wi n32 is the only valid
option.

Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS) | 49

1.7 Inet configuration

{host, IP, Aliases}.

IP = tuple()
Aliases = [string()]

Add host entry to the hosts table.
{donai n, Donai n}.

Domai n = string()

Set domain name.
{naneserver, |P [,Port]}.

IP = tuple()
Port = integer()

Add address (and port, if other than default) of primary nameserver to use for inet_res.
{al t_nameserver, IP [,Port]}.

I P = tuple()
Port = integer()

Add address (and port, if other than default) of secondary nameserver for inet_res.
{search, Domai ns}.

Domai ns = [string()]

Add search domains for inet_res.
{l ookup, Methods}.

Met hods = [atom()]

Specify lookup methods and in which order to try them. The valid methods are: nat i ve (use system cals),
fil e (usehost dataretrieved from system configuration files and/or the user configuration file) or dns (usethe
Erlang DNSclient inet_res for nameserver queries).

The lookup method st ri ng tries to parse the hostname as a IPv4 or IPv6 string and return the resulting IP
address. It isautomatically tried first when nat i ve isnotinthe Met hods list. To skip it in this case the pseudo
lookup method nost ri ng can beinserted anywhere in the Met hods list.

{cache_si ze, Size}.

Size = integer()

Set size of resolver cache. Default is 100 DNS records.
{cache_refresh, Tine}.

Time = integer()

50 | Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS)

1.7 Inet configuration

Set how often (in millisec) the resolver cache for inet_res. is refreshed (i.e. expired DNS records are del eted).
Defaultis1 h.

{tinmeout, Tine}.

Time = integer()

Set the time to wait until retry (in millisec) for DNS queries made by inet_res. Default is 2 sec.
{retry, N}.

N = integer()

Set the number of DNS queriesinet_reswill try before giving up. Default is 3.
{inet6, Bool}.

Bool = true | false

Tellsthe DNSclient inet_resto look up IPv6 addresses. Default isfalse.
{usevc, Bool}.

Bool = true | false

Tellsthe DNSclient inet_resto use TCP (Virtual Circuit) instead of UDP. Default is false.
{edns, Version}.

Version = false | O

Sets the EDNS version that inet_res will use. The only allowed is zero. Default is false which means to not use
EDNS.

{udp_payl oad_si ze, Size}.
N = integer()

Sets the allowed UDP payload size inet_res will advertise in EDNS queries. Also sets the limit when the DNS
query will be deemed too large for UDP forcing a TCP query instead, which is not entirely correct since the
advertised UDP payload size of the individual nameserver is what should be used, but this simple strategy will
do until amore intelligent (probing, caching) algorithm need be implemented. The default is 1280 which stems
from the standard Ethernet MTU size.

{udp, Mbdul e}.

Modul e = atom()

Tell Erlang to use other primitive UDP module than inet_udp.
{tcp, Modul e}.

Modul e = atom()

Tell Erlang to use other primitive TCP module than inet_tcp.

Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS) | 51

1.8 External Term Format

cl ear _hosts.

Clear the hosts table.
cl ear _ns.

Clear the list of recorded nameservers (primary and secondary).
cl ear _search.

Clear the list of search domains.

1.7.3 User Configuration Example

Here follows a user configuration example.

Assumeauser does not want Erlang to use the native lookup method, but wants Erlang to read all information necessary
from start and use that for resolving names and addresses. In case lookup fails, Erlang should request the data from
anameserver (using the Erlang DNS client, set to use EDNS allowing larger responses). The resolver configuration
will be updated when its configuration file changes, furthermore, DNS records should never be cached. The user
configuration file (in this example named er | _i net r c, stored in directory . / cf g_f i | es) could then look like
this (Unix):

9% - - ERLANG | NET CONFI GURATI ON FI LE - -
%Whoread the hosts file

{file, hosts, "/etc/hosts"}.

%6 add a particul ar host

{host, {134,138,177,105}, ["finwe"]}.

%b do not nonitor the hosts file
{hosts_file, ""}.

%6 read and nonitor naneserver config from here
{resolv_conf, "/usr/local/etc/resolv.conf"}.
%% enabl e EDNS

{edns, 0}.

%% di sabl e caching

{cache_si ze, 0}.

%% speci fy | ookup net hod

{l ookup, [file, dns]}.

And Erlang could, for example, be started like this:

%erl -sname nmy_node -kernel inetrc '"./cfg files/erl _inetrc

1.8 External Term Format

1.8.1 Introduction

The external term format is mainly used in the distribution mechanism of Erlang.

Since Erlang has afixed number of types, there is no need for a programmer to define a specification for the externa
format used within some application. All Erlang terms has an external representation and the interpretation of the
different terms are application specific.

InErlangtheBIFterm to_binary/1,2 isused to convert aterminto the external format. To convert binary dataencoding
atermthe BIF binary to ternvl isused.

The distribution does this implicitly when sending messages across node boundaries.

52 | Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS)

1.8 External Term Format

The overall format of the term format is:

131 Tag Dat a

Table 8.1:

Note:

When messages are passed between connected nodes and a distribution header is used, the first byte containing
the version number (131) is omitted from the terms that follow the distribution header. This since the version
number isimplied by the version number in the distribution header.

A compressed term looks like this:

1 1 4 N

131 80 UncompressedSize Zlib-compressedData

Table 8.2:

Uncompressed Size (unsigned 32 bit integer in big-endian byte order) isthe size of the data before it was compressed.
The compressed data has the following format when it has been expanded:

1 Uncompressed Size

Tag Data

Table 8.3:

1.8.2 Distribution header

As of erts version 5.7.2 the old atom cache protocol was dropped and a new one was introduced. This atom cache
protocol introduced the distribution header. Nodeswith erts versions earlier than 5.7.2 can still communi cate with new
nodes, but no distribution header and no atom cache will be used.

The distribution header currently only contains an atom cache reference section, but could in the future contain more
information. The distribution header precedes one or more Erlang terms on the external format. For more information
see the documentation of the protocol between connected nodes in the distribution protocol documentation.

ATOM_CACHE_REF entrieswith corresponding At onCacheRef er encel ndex interms encoded on the external
format following a distribution header refers to the atom cache references made in the distribution header. The range
is0 <= At onCacheRef er encel ndex <255, i.e., at most 255 different atom cache references from the following
terms can be made.

The distribution header format is:

Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS) | 53

1.8 External Term Format

1 1 1 NumberOfAtozn()CacheRefs 2+1 N|O
131 68 Nurtber Of At onCacheRefs Fl ags At onCacheRef s

Table 8.4:

Fl ags consists of Nunmber OF At omCacheRef s/ 2+1 bytes, unless Number Of At onCacheRef s is 0. If
Number O At onCacheRef s is 0, FI ags and At onCacheRef s are omitted. Each atom cache reference have
a haf byte flag field. Flags corresponding to a specific At omCacheRef er encel ndex, are located in flag byte
number At onmCacheRef er encel ndex/ 2. Flag byte O is the first byte after the Nunber OF At onCacheRef s
byte. Flagsfor an even At onCacheRef er encel ndex arelocated in the least significant half byte and flags for an
odd At onCacheRef er encel ndex are located in the most significant half byte.

The flag field of an atom cache reference has the following format:

1 bit 3 bits

NewCacheEnt r yFl ag Segrent | ndex

Table 8.5:

The most significant bit is the NewCacheEnt r yFl ag. If set, the corresponding cache reference is new. The three
least significant bits are the Segrent | ndex of the corresponding atom cache entry. An atom cache consists of 8
segments each of size 256, i.e., an atom cache can contain 2048 entries.

After flag fields for atom cache references, another half byte flag field is located which has the following format:

3 hits 1 bit

Current | yUnused LongAt ons

Table 8.6:

Theleast significant bit in that half byteisthe LongAt ons flag. If it isset, 2 bytes are used for atom lengths instead
of 1 byte in the distribution header. However, the current emulator cannot handle long atoms, so it will currently
alwaysbeO.

After the Fl ags field follow the At omCacheRef s. The first At onCacheRef is the one corresponding to
At ontCacheRef er encel ndex 0. Higher indices follows in sequence up to index Nunber Of At omCacheRef s
- 1.

If the NewCacheEnt r yFI ag for the next At onCacheRef hasbeen set, aNewAt omCacheRef onthefollowing
format will follow:

1 1|2 Length

I nt er nal Segnent | ndex Length At onTText

Table 8.7:

54 | Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS)

1.8 External Term Format

I nt er nal Segnent | ndex together with the Segnent | ndex completely identify the location of an atom cache
entry in the atom cache. Lengt h is number of one byte characters that the atom text consists of. Length isatwo byte
big endian integer if the LongAt ons flag has been set, otherwise aone byte integer. Subsequent CachedAt onRef s
with the same Segnent | ndex and | nt er nal Segnment | ndex as this NewAt onCacheRef will refer to this
atom until anew NewAt omCacheRef with the same Segnent | ndex and | nt er nal Segnent | ndex appear.

If the NewCacheEnt r yFl ag for the next At onCacheRef hasnot been set, aCachedAt onRef onthefollowing
format will follow:

1

I nt er nal Segment | ndex

Table 8.8:

I nt er nal Segnent | ndex together with the Segrment | ndex identify the location of the atom cache entry in the
atom cache. The atom corresponding to this CachedAt onRef is the latest NewAt onTCacheRef preceding this
CachedAt onRef in another previously passed distribution header.

1.8.3 ATOM_CACHE_REF

1 1

82 At onCacheRef er encel ndex

Table 8.9:

Refersto the atom with At onCacheRef er encel ndex in the distribution header.

1.8.4 SMALL_INTEGER_EXT

97 Int

Table 8.10:

Unsigned 8 hit integer.
1.8.5 INTEGER_EXT

98 Int

Table 8.11:

Signed 32 bit integer in big-endian format (i.e. MSB first)

Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS) | 55

1.8 External Term Format

1.8.6 FLOAT_EXT

1 31

99 Float String

Table 8.12:

A float isstored in string format. the format used in sprintf to format thefloat is"%.20€e" (there are more bytes allocated
than necessary). To unpack the float use sscanf with format "%l f".

Thisterm isused in minor version 0 of the external format; it has been superseded by NEW_FLOAT _EXT .

1.8.7 ATOM_EXT

100 Len At omNane

Table 8.13:

An atomis stored with a2 byte unsigned length in big-endian order, followed by Len numbers of 8 bit characters that
formsthe At onNane. Note: The maximum allowed value for Len is 255.

1.8.8 REFERENCE_EXT

1 N 4 1

101 Node ID Creation

Table 8.14:

Encode a reference object (an object generated with make r ef / 0). The Node term is an encoded atom, i.e.
ATOM_EXT, SMALL_ATOM_EXT or ATOM_CACHE_REF. Thel Dfield contains abig-endian unsigned integer, but
should be regarded as uninterpreted data since this field is node specific. Cr eat i on is a byte containing a node
serial number that makes it possible to separate old (crashed) nodes from a new one.

In | D, only 18 bits are significant; the rest should be 0. In Cr eat i on, only 2 bits are significant; the rest should be
0. See NEW_REFERENCE_EXT.

1.8.9 PORT_EXT

1 N 4 1

102 Node ID Creation

Table 8.15:

56 | Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS)

1.8 External Term Format

Encode a port object (obtained form open_port/ 2). The | D is a node specific identifier for a local port. Port
operations are not allowed across node boundaries. The Cr eat i on worksjust like in REFERENCE_EXT.

1.8.10 PID_EXT

1 N 4 4 1

103 Node 1D Seri al Creation

Table 8.16:

Encode a process identifier object (obtained from spawn/ 3 or friends). The | D and Cr eat i on fields works just
likein REFERENCE_EXT, whilethe Ser i al fieldisused toimprove safety. In| D, only 15 bits are significant; the
rest should be 0.

1.8.11 SMALL_TUPLE_EXT

1 1 N

104 Arity Elements

Table 8.17:

SMALL_TUPLE EXT encodesatuple. The Ari t y field is an unsigned byte that determines how many element that
followsinthe El ement s section.

1.8.12 LARGE_TUPLE_EXT

105 Arity Elements

Table 8.18:

Same as SMALL_TUPLE_EXT with the exception that Ar i t y isan unsigned 4 byte integer in big endian format.

1.8.13 NIL_EXT

106

Table 8.19:

The representation for an empty list, i.e. the Erlang syntax [] .

Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS) | 57

1.8 External Term Format

1.8.14 STRING_EXT

107 Length Characters

Table 8.20:

String does NOT have a corresponding Erlang representation, but is an optimization for sending lists of bytes (integer
in the range 0-255) more efficiently over the distribution. Since the Lengt h field is an unsigned 2 byte integer (big
endian), implementations must make sure that lists longer than 65535 elements are encoded as LIST_EXT.

1.8.15 LIST_EXT

108 Length Elements Tall

Table 8.21:

Lengt h is the number of elements that follows in the El ement s section. Tai | is the fina tail of the ligt; it is
NIL_EXT for a proper list, but may be anything type if thelist isimproper (for instance[a| b]).

1.8.16 BINARY_EXT

109 Len Data

Table 8.22:

Binaries are generated with bit syntax expression or with list_to_binary/1, term_to_binary/1, or asinput from binary
ports. The Len length field is an unsigned 4 byte integer (big endian).

1.8.17 SMALL_BIG_EXT

1 1 1 n

110 n Sign d(0) ... d(n-1)

Table 8.23:

Bignums are stored in unary form with a Si gn byte that is 0 if the binum is positive and 1 if is negative. The digits
are stored with the L SB byte stored first. To calculate the integer the following formula can be used:

B =256

(do*B™0 + d1*B~1 + d2*B”2 + ... d(N-1)* B~ (n-1))

58 | Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS)

1.8 External Term Format

1.8.18 LARGE_BIG_EXT

1 4 1 n

111 n Sign d(0) ... d(n-1)

Table 8.24:

Same as SMALL_BIG_EXT with the difference that the length field is an unsigned 4 byte integer.

1.8.19 NEW_REFERENCE_EXT

1 2 N 1 N'

114 Len Node Creation ID ...

Table 8.25:

Node and Creation are asin REFERENCE_EXT.

I D contains a sequence of big-endian unsigned integers (4 byteseach, soN' isamultiple of 4), but should be regarded
as uninterpreted data.

N =4* Len.

In the first word (four bytes) of | D, only 18 bits are significant, the rest should be 0. In Cr eat i on, only 2 bits are
significant, the rest should be 0.

NEW_REFERENCE_EXT was introduced with distribution version 4. In version 4, N should be at most 12.
See REFERENCE_EXT).

1.8.20 SMALL_ATOM_EXT

115 Len At onNane

Table 8.26:

An atom is stored with a 1 byte unsigned length, followed by Len numbers of 8 bit characters that forms the
At omNane. Longer atoms can be represented by ATOM_EXT. Note the SMALL _ATOM EXT was introduced in erts
version 5.7.2 and require a small atom distribution flag exchanged in the distribution handshake.

1.8.21 FUN_EXT

1 4 N1 N2 N3 N4 N5
117 NumFree Pid Module Index Uniq Freevars...
Table 8.27:

Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS) | 59

1.8 External Term Format

Pid
isaprocessidentifier asin PID_EXT. It represents the process in which the fun was created.

Modul e
isan encoded as an atom, using ATOM_EXT, SMALL_ATOM_EXT or ATOM_CACHE_REF. Thisisthe
module that the funisimplemented in.

| ndex
isan integer encoded using SMALL_INTEGER _EXT or INTEGER _EXT. It istypically asmall index into the
module's fun table.

Uni g
isan integer encoded using SMALL_INTEGER _EXT or INTEGER EXT. Uni q isthe hash value of the parse
for the fun.

Free vars
is Nuntr ee number of terms, each one encoded according to its type.

1.8.22 NEW_FUN_EXT

1 4 1 16 4 4 N1 N2 N3 N4 N5

Free

112 Size Arity Uniq Index |NumFree| Module |Oldindex| OldUniq Pid Vars

Table 8.28:

Thisisthe new encoding of internal funs: fun F/ Aandfun(Argl,..) -> ... end.

Si ze
isthe total number of bytes, including the Si ze field.
Arity
isthe arity of the function implementing the fun.
Uni g
isthe 16 bytes MD5 of the significant parts of the Beam file.
| ndex
isan index number. Each fun within amodule has an unique index. | ndex is stored in big-endian byte order.
Nuntr ee
is the number of free variables.
Modul e
isan encoded as an atom, using ATOM_EXT, SMALL_ATOM_EXT or ATOM_CACHE_REF. Thisisthe
module that the funisimplemented in.
a dl ndex
isan integer encoded using SMALL_INTEGER _EXT or INTEGER _EXT. It istypically asmall index into the
module's fun table.
a duni q
isan integer encoded using SMALL_INTEGER _EXT or INTEGER EXT. Uni q isthe hash value of the parse
tree for the fun.
Pid
isaprocessidentifier asin PID_EXT. It represents the process in which the fun was created.
Free vars
is Nuntr ee number of terms, each one encoded according to its type.

60 | Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS)

1.9 Distribution Protocol

1.8.23 EXPORT_EXT

1 N1 N2 N3

113 Module Function Arity

Table 8.29:

Thisterm is the encoding for external funs. f un M F/ A.
Modul e and Funct i on are atoms (encoded using ATOM_EXT, SMALL_ATOM_EXT or ATOM_CACHE_REF).
Ari ty isaninteger encoded using SMALL_INTEGER _EXT.

1.8.24 BIT_BINARY_EXT

77 Len Bits Data

Table 8.30:

This term represents a bitstring whose length in bits is not a multiple of 8 (created using the bit syntax in R12B and
later). The Len field isan unsigned 4 byte integer (big endian). The Bi t s field is the number of bitsthat are used in
the last byte in the data field, counting from the most significant bit towards the least significant.

1.8.25 NEW_FLOAT_EXT

1 8

70 | EEE float

Table 8.31:

A float is stored as 8 bytes in big-endian |EEE format.
Thisterm is used in minor version 1 of the external format.

1.9 Distribution Protocol

The description here is far from complete and will therefore be further refined in upcoming releases. The protocols
both from Erlang nodes towards EPMD (Erlang Port Mapper Daemon) and between Erlang nodes, however, are stable
since many years.

The distribution protocol can be divided into four (4) parts:

e 1. Low level socket connection.

e 2. Handshake, interchange node name and authenticate.
* 3. Authentication (done by net_kernel).

e 4. Connected.

Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS) | 61

1.9 Distribution Protocol

A node fetches the Port number of another node through the EPMD (at the other host) in order to initiate a connection
request.

For each host where a distributed Erlang node is running there should also be an EPMD running. The EPMD can be
started explicitly or automatically as aresult of the Erlang node startup.

By default EPMD listens on port 43609.

3 and 4 are performed at the same level but the net_kernel disconnects the other node if it communicates using an
invalid cookie (after one (1) second).

Theintegersin al multi-byte fields are in big-endian order.

1.9.1 EPMD Protocol
The requests served by the EPMD (Erlang Port Mapper Daemon) are summarized in the figure below.

Client (or Nodel EFMD

| ALIYEZ_REQ
}4 ALIVEZ RESE e
[ALIYE_CLOSE_REN >|
PORT_PLEASEZ_REQ >

PORTZ_RESP
‘ __
NAMES_REQ »

NAMES_RESP
.‘ ..
DUMP_REQ >

DUMP_RESP
‘ __
KILL_REQ »

KILL_RESF
.‘ ..
STOP_REQ >

STOP_OK_RESP
‘ __
STOP_NOTOK_RESP

.‘ ..

Figure 9.1: Summary of EPMD requests.

Each request * _REQis preceded by a two-byte length field. Thus, the overall request format is:

Length Request

Table 9.1:

62 | Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS)

1.9 Distribution Protocol

Register a node in the EPMD

When a distributed node is started it registers itself in EPMD. The message ALIVE2_REQ described below is sent
from the node towards EPMD. The response from EPMD is ALIVE2_RESP.

1 2 1 1 2 2 2 Nlen 2 Elen

120 PortNo |NodeType| ProtocolH ghestVerﬂiJweetVersicfn Nlen [NodeNamg Elen Extra

Table 9.2 ALIVE2_REQ (120)

Por t No
The port number on which the node accept connection requests.
NodeType
77 = normal Erlang node, 72 = hidden node (C-node),...
Pr ot ocol
0 =teplip-v4, ...
Hi ghest Ver si on
The highest distribution version that this node can handle. The valuein R6B and later is 5.
Lowest Ver si on
The lowest distribution version that this node can handle. The valuein R6B and later is 5.
Nl en
The length of the NodeNarne.
NodeNarne
The NodeName as a string of length NIl en.
El en
The length of the Ext r a field.
Extra
Extrafield of El en bytes.

The connection created to the EPMD must be kept as long as the node is a distributed node. When the connection is
closed the node is automatically unregistered from the EPMD.

The response message ALIVE2_RESP is described below.

1 1 2

121 Result Creation

Table 9.3: ALIVE2_RESP (121)

Result = 0 -> ok, Result > 0 -> error

Unregister a node from the EPMD

A node unregisters itself from the EPMD by simply closing the TCP connection towards EPMD established when
the node was registered.

Get the distribution port of another node

When one node wants to connect to another node it starts with a PORT_PLEASE2 REQ request towards EPMD on
the host where the node resides in order to get the distribution port that the node listens to.

Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS) | 63

1.9 Distribution Protocol

1 N

122 NodeName

Table 9.4: PORT_PLEASE2_REQ (122)

whereN = Length - 1

1 1

119 Result

Table 9.5: PORT2_RESP (119) response indicating error, Result > 0.

Or

1 1 2 1 1 2 2 2 Nlen 2 Elen

119 Result | PortNo [NodeTypg Protocchigh&stVeLs’rwnﬂVersi on Nlen \lodeNamT Elen Extra

Table 9.6: PORT2_RESP when Result = 0.

If Result > 0, the packet only consists of [119, Result].
EPMD will close the socket as soon as it has sent the information.

Get all registered names from EPMD

This request is used via the Erlang function net _adm nanes/ 1, 2. A TCP connection is opened towards EPMD
and this request is sent.

1
110
Table 9.7: NAMES_REQ (110)
The response for aNAVES REQIooks like this:
4
EPMDPortNo Nodelnfo*

Table 9.8: NAMES_RESP

Nodelnfo is a string written for each active node. When all Nodelnfo has been written the connection is closed by
EPMD.

Nodelnfo is, as expressed in Erlang:

64 | Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS)

1.9 Distribution Protocol

io:format ("nane ~s at port ~p~n", [NodeNane, Port]).

Dump all data from EPMD
Thisreguest is not really used, it should be regarded as a debug feature.

1
100
Table 9.9: DUMP_REQ
The response for a DUMP_REQIooks like this:
4
EPMDPortNo Nodelnfo*

Table 9.10: DUMP_RESP

Nodelnfo isastring written for each node kept in EPMD. When all Nodel nfo has been written the connection is closed
by EPMD.

Nodelnfo is, as expressed in Erlang:

io:format("active nanme ~s at port ~p, fd = ~p ~n",
[NodeNane, Port, Fd]).

or
i o:format ("ol d/ unused nane ~s at port ~p, fd = ~p~n",
[NodeNane, Port, Fd]).
Kill the EPMD

This request will kill the running EPMD. It is almost never used.

107

Table 9.11: KILL_REQ

Theresponsefo aKl LL_REQIlooks like this:

Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS) | 65

1.9 Distribution Protocol

2
OKString
Table 9.12: KILL_RESP
where OKSt ri ng is"OK".
STOP_REQ (Not Used)
1 n
115 NodeName

Table 9.13: STOP_REQ

wheren = Length - 1
The current implementation of Erlang does not care if the connection to the EPMD is broken.
The response for a STOP_REQIooks like this.

.
OKString
Table 9.14: STOP_RESP
where OKString is"STOPPED".
A negative response can look like this.
-
NOKString

Table 9.15: STOP_NOTOK_RESP

where NOK String is "NOEXIST".

1.9.2 Handshake
The handshake is discussed in detail in the internal documentation for the kernel (Erlang) application.

1.9.3 Protocol between connected nodes

As of ertsversion 5.7.2 the runtime system passes a distribution flag in the handshake stage that enables the use of a
distribution header on all messages passed. M essages passed between nodes are in this case on the following format:

66 | Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS)

1.9 Distribution Protocol

4

d

n

Lengt h

Di stri buti onHeader

Cont r ol Message

Message

Table 9.16:

where:
Lengthisequa tod+n+m
Cont r ol Message isatuple passed using the external format of Erlang.

Message is the message sent to another node using the " (in external format). Note that Message is only passed
in combination with aCont r ol Message encoding asend ('!").

Also note that the version number is omitted from the terms that follow a distribution header.

Nodes with an erts version less than 5.7.2 does not pass the distribution flag that enables the distribution header.
M essages passed between nodes are in this case on the following format:

4 1 n m

Length Type Cont r ol Message Message

Table 9.17:

where:

Lengthisequatol+n+m

Typeis: 112 (pass through)

Cont r ol Message isatuple passed using the externa format of Erlang.

Message is the message sent to another node using the '!" (in external format). Note that Message is only passed
in combination with a Cont r ol Message encoding asend ('!").

The Cont r ol Message isatuple, where the first element indicates which distributed operation it encodes.
LI NK

{1, FronPid, ToPid}
SEND

{2, Cookie, ToPid}

Note followed by Message

EXIT

{3, FronPid, ToPid, Reason}
UNLI NK

{4, FronPid, ToPid}
NCDE_LI NK

{5}

Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS) | 67

1.9 Distribution Protocol

REG_SEND
{6, FronPid, Cookie, ToNane}
Note followed by Message
GROUP_LEADER
{7, FronPid, ToPid}
EXI T2
{8, FronPid, ToPid, Reason}

1.9.4 New Ctrimessages for distrvsn = 1 (OTP R4)
SEND_TT
{12, Cookie, ToPid, TraceToken}
Note followed by Message
EXIT_TT
{13, FronPid, ToPid, TraceToken, Reason}
REG SEND TT
{16, FronPid, Cookie, ToNanme, TraceToken}
Note followed by Message
EXI T2_TT
{18, FronPid, ToPid, TraceToken, Reason}

1.9.5 New Ctrlmessages for distrvsn = 2

distrvsn 2 was never used.

1.9.6 New Ctrlmessages for distrvsn = 3 (OTP R5C)

None, but the version number was increased anyway .

1.9.7 New Ctrimessages for distrvsn = 4 (OTP R6)
These are only recognized by Erlang nodes, not by hidden nodes.
MONI TOR_P

{19, FronPid, ToProc, Ref} FronPi d = monitoring process ToPr oc = monitored process pid or
name (atom)

DEMONI TOR_P

{20, FronPid, ToProc, Ref} Weincludethe FromPid justin case we want to trace this. Fr onPi d =
monitoring process ToPr oc = monitored process pid or name (atom)

MONI TOR P_EXI T

{21, FronProc, ToPid, Ref, Reason} FronProc =monitored process pid or name (atom) ToPi d
= monitoring process Reason = exit reason for the monitored process

68 | Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS)

1.9 Distribution Protocol

2 Reference Manual

The Erlang Runtime System Application ERTS.

Note:

By default, the er t s is only guaranteed to be compatible with other Erlang/OTP components from the same
release asthe er t s itself. See the documentation of the system flag +R on how to communicate with Erlang/
OTP components from earlier rel eases.

Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS) | 69

erl_prim_loader

erl_prim_loader

Erlang module

erl _priml oader isusedtoload al Erlang modules into the system. The start script is also fetched with this
low level loader.

erl _prim.| oader knows about the environment and how to fetch modules. The loader could, for example, fetch
files using the file system (with absolute file names as input), or a database (where the binary format of a module
is stored).

The -1 oader Loader command line flag can be used to choose the method used by theer | _pri m_| oader.
Two Loader methods are supported by the Erlang runtime system: ef i | e andi net . If another loader is required,
then it hasto be implemented by the user. The Loader provided by the user must fulfill the protocol defined below,
and it isstarted withtheer | _pri m_| oader by evaluating open_port ({spawn, Loader}, [bi nary]).

Warning:

The support for loading of code from archive files is experimental. The sole purpose of releasing it before
it is ready is to obtain early feedback. The file format, semantics, interfaces etc. may be changed in a future
release. Thefunctionsl i st _dir/1andread fil e i nfo/1laswell astheflag-| oader debug areaso
experimental

Exports

start(ld, Loader, Hosts) -> {ok, Pid} | {error, Wat}

Types:
Id =term()
Loader = atom() | string()
Hosts=[Host]
Host = atom()
Pid = pid()
What =term()

Startsthe Erlang low level loader. Thisfunctioniscalled by thei ni t process (and module). Thei ni t processreads
the command lineflags-i d 1d, -1 oader Loader, and-hosts Hosts. These are the arguments supplied
tothest art/ 3 function.

If - | oader isnot given, the default loader isef i | e which tells the system to read from the file system.

If -1 oader isinet,the-id 1d,-hosts Hosts, and-set cooki e Cooki e flags must also be supplied.
Host s identifies hosts which this node can contact in order to load modules. One Erlang runtime system with a
erl _boot _server process must be started on each of hosts given in Host s in order to answer the requests. See
erl_boot_server(3).

If - | oader issomething else, the given port program is started. The port program is supposed to follow the protocol
specified below.

get file(Filename) -> {ok, Bin, FullNane} | error
Types.

70 | Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS)

erl_prim_loader

Filename = string()

Bin = binary()

FullName = string()
This function fetches afile using the low level loader. Fi | enarme is either an absolute file name or just the name of
thefile, for example" | i st s. beant . If aninternal pathis set to the loader, this path is used to find thefile. If auser

supplied loader is used, the path can be stripped off if it is obsolete, and the loader does not use a path. Ful | Nare is
the complete name of the fetched file. Bi n isthe contents of the file as a binary.

The Fi |l enanme can also be a file in an archive. For example /ot p/root/|i b/ mesia-4.4.7.ez/
mmesi a- 4. 4. 7/ ebi n/ mesi a_backup. beamSee code(3) about archivefiles.

get _path() -> {ok, Path}

Types:
Path = [Dir]
Dir = string()

This function gets the path set in the loader. The path is set by thei ni t process according to information found in
the start script.

list_dir(Dr) -> {ok, Filenames} | error
Types.
Dir = name()
Filenames = [Filename]
Filename = string()
Listsall thefilesinadirectory. Returns{ ok, Fi | enames} if successful. Otherwise, itreturnser r or .Fi | enames
isalist of the names of all the filesin the directory. The names are not sorted.

The Dir can aso be a directory in an archive. For example /otp/root/lib/ mesia-4.4.7.ez/
mmesi a- 4. 4. 7/ ebi n See code(3) about archivefiles.

read file_ info(Filename) -> {ok, Filelnfo} | error
Types:
Filename = name()
Filelnfo = #file_info{}
Retrieves information about a file. Returns { ok, Fi | el nf o} if successful, otherwiseerror. Fil el nfoisa

record f i | e_i nf o, defined in the Kernel include file fi | e. hr | . Include the following directive in the module
from which the function is called:

-include_lib("kernel/include/file.hrl").

Seefile(3) for moreinfo about therecordfi | e_i nf o.

The Fil enane can aso be a file in an archive. For example /ot p/root/1i b/ mesia-4.4.7.ez/
mesi a- 4. 4. 7/ ebi n/ mesi a_backup. beamSee code(3) about archive files.

set _path(Path) -> ok

Types.
Path = [Dir]

Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS) | 71

erl_prim_loader

Dir = string()
This function sets the path of the loader if i ni t interpretsapat h command in the start script.

Protocol

The following protocol must be followed if a user provided loader port program is used. The Loader port program
is started with the command open_port ({ spawn, Loader}, [bi nary]) . The protocol is as follows:

Functi on Send Recei ve

get _file [102 | Fil eNane] [121 | BinaryFile] (on success)
[122] (failure)

st op eof term nate

Command Line Flags
Theer | _pri m| oader moduleinterprets the following command line flags:
-1 oader Loader

Specifies the name of the loader used by er| _pri m | oader. Loader can be efil e (use the locd file
system), or i net (load using the boot _ser ver on another Erlang node). If Loader is user defined, the
defined Loader port program is started.

If the- | oader flagisomitted, it defaultstoefi | e.
- | oader _debug

Makestheef i | e loader write some debug information, such as the reason for failures, while it handlesfiles.
-hosts Hosts

Specifieswhich other Erlang nodesthei net loader can use. Thisflagismandatory if the- | oader i net flag
is present. On each host, there must be on Erlang node with theer | _boot _ser ver which handles the load
requests. Host s isalist of 1P addresses (hostnames are not acceptable).

-id Id

Specifiestheidentity of the Erlang runtime system. If the system runs as adistributed node, | d must beidentical
to the name supplied with the - snare or - nane distribution flags.

- set cooki e Cooki e
Specifiesthe cookie of the Erlang runtime system. Thisflag ismandatory if the- | oader i net flagispresent.

SEE ALSO

init(3), erl_boot_server(3)

72 | Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS)

erlang

erlang

Erlang module

By convention, most built-in functions (BIFs) are seen as being in the module erl ang. A number of
the BIFs are viewed more or less as part of the Erlang programming language and are auto-imported.
Thus, it is not necessary to specify the module name and both the calls atomto |ist(Erlang) and
erlang:atomto |ist(Erlang) areidentical.

In the text, auto-imported Bl Fs are listed without module prefix. BIFslisted with module prefix are not auto-imported.

BIFs may fail for a variety of reasons. All BIFs fail with reason badar g if they are called with arguments of an
incorrect type. The other reasons that may make BIFs fail are described in connection with the description of each
individual BIF.

Some BIFs may be used in guard tests, these are marked with "Allowed in guard tests'.

DATA TYPES

ext _binary()
a binary data object,
structured according to the Erlang external term format

iodata() = iolist() | binary()

iolist() = [char() | binary() | iolist()]
a binary is allowed as the tail of the list

Exports

abs(Nunber) ->int() | float()
Types:
Number = number ()
Returns an integer or float which is the arithmetical absolute value of Nurrber .

> abs(-3.33).
3.33

> abs(-3).

3

Allowed in guard tests.

erlang: adl er32(Data) -> int()
Types:
Data = iodata()
Computes and returns the adler32 checksum for Dat a.

erl ang: adl er32(d dAdl er, Data) -> int()
Types.

Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS) | 73

erlang

OldAdler =int()
Data = iodata()

Continue computing the adler32 checksum by combining the previous checksum, O dAdlI er , with the checksum of
Dat a.

The following code:

erl ang: adl er 32(Dat al),
erl ang: adl er 32(X, Dat a2) .

- would assign the same valueto Y as this would:

Y = erl ang: adl er 32([Dat al, Dat a2]).

erl ang: adl er 32_conbi ne(Fi rst Adl er, SecondAdl er, SecondSize) -> int()
Types:
FirstAdler = SecondAdler =int()
SecondSize = int()
Combines two previously computed adler32 checksums. This computation requires the size of the data object for the
second checksum to be known.

The following code:

erl ang: adl er32(Dat al),
erl ang: adl er 32(Y, Dat a2) .

- would assign the same value to Z as this would:

erl ang: adl er 32(Dat al),
erl ang: adl er 32(Dat a2),
erl ang: adl er 32_conbi ne(X, Y,iolist_size(Data2)).

N < X
I n

erl ang: append_el enent (Tupl el, Tern) -> Tuple2
Types:

Tuplel = Tuple2 = tuple()

Term =term()

Returns a new tuple which has one element more than Tupl el, and contains the elements in Tupl el followed
by Ter mas the last element. Semantically equivalent to | i st _to_tuple(tuple_to list(Tuple) ++
[Term), but much faster.

> erl ang: append_el enent ({one, two}, three).

74 | Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS)

erlang

{one, two, t hr ee}

appl y(Fun, Args) -> tern() | enpty()
Types:

Fun =fun()

Args=[term()]
Call afun, passing the elementsin Ar gs as arguments.

Note: If the number of elementsin the arguments are known at compile-time, the call is better writtenas Fun(Ar g1,
Arg2, ... ArgN).

Warning:

Earlier, Fun could also be given as{ Modul e, Functi on}, equivalenttoappl y(Modul e, Functi on,
Ar gs) . Thisusage is deprecated and will stop working in a future release of Erlang/OTP.

app! y(Mdul e, Function, Args) ->term() | enpty()
Types:

M odule = Function = atom()

Args=[term()]

Returnstheresult of applying Funct i on inMbdul e to Ar gs. Theapplied function must be exported from Modul e.
The arity of the function isthe length of Ar gs.

> apply(lists, reverse, [[a, b, c]]).
[c, b, a]

app! y can be used to evaluate BIFs by using the module name er | ang.

> apply(erlang, atomto_list, ['Erlang']).
"Erl ang"

Note: If the number of arguments are known at compiletime, the cal is better written as
Modul e: Function(Argl, Arg2, ..., ArgN).

Failure: er r or _handl er: undefi ned_f uncti on/ 3 iscalledif theapplied function is not exported. The error
handler can be redefined (see process flag/2). If theer r or _handl er isundefined, or if the user has redefined the
default er r or _handl er so the replacement module is undefined, an error with the reason undef is generated.

atom to_bi nary(Atom Encoding) -> binary()
Types:
Atom = atom()
Encoding = latinl | utf8 | unicode
Returns a binary which corresponds to the text representation of At om If Encodi ng isl at i n1, there will be one

byte for each character in the text representation. If Encodi ng isut f 8 or uni code, the characters will encoded
using UTF-8 (meaning that characters from 16480 up to OxFF will be encode in two bytes).

Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS) | 75

erlang

Note:
Currently,at om t o_bi nar y(At om

| ati nl) cannever fal becausethetext representation of an atom can

only contain characters from 0 to 16#FF. In afuture release, the text representation of atoms might be allowed to
contain any Unicode character and at om t 0_bi nary(Atom | ati nl) will fail if the text representation
for the At omcontains a Unicode character greater than 16#FF.

> atomto_binary('Erlang', l|atinl)
<<"FErl ang">>

atomto_list(Atom -> string()

Types:
Atom = atom()

Returns a string which corresponds to the text representation of At om

> atomto_list('Erlang').
"Erl ang"

bi nary_part (Subj ect, PoslLen)
Types:

Subject = binary()

PosLen = {Start,L ength}

Start = int()

Length =int()

-> binary()

Extracts the part of the binary described by PosLen.

Negative length can be used to extract bytes at the end of abinary:

1> Bin = <<1,2,3,4,5,6,7,8,9, 10>>

2> binary_part(Bin,{byte_size(Bin),

<<6,7,8,9, 10>>

-5)).

If PosLen in any way references outside the binary, abadar g exception is raised.

St art iszero-based, i.e:

1> Bin = <<1, 2, 3>>
2> binary _part(Bin,{0,2}).
<<1, 2>>

See the STDLIB module bi nar y for details about the PosLen semantics.

Allowed in guard tests.

76 | Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS)

erlang

bi nary_part (Subject, Start, Length) -> binary()

Types:
Subject = binary()
Start =int()
Length =int()

Thesameasbi nary_part (Subj ect, {Pos, Len}).
Allowed in guard tests.

bi nary_to_at om Bi nary, Encoding) -> aton()
Types:
Binary = binary()
Encoding = latin1 | utf8 | unicode
Returnsthe atom whosetext representationisBi nar y. If Encodi ngisl at i n1, notrandation of bytesinthebinary

is done. If Encodi ng isut f 8 or uni code, the binary must contain valid UTF-8 sequences; furthermore, only
Unicode characters up to OxFF are allowed.

Note:

bi nary_to_at on(Bi nary, utf8) will fail if the binary contains Unicode characters greater than 164#FF.
In afuture release, such Unicode characters might be allowed and bi nary_t o_at om(Bi nary, utf8) will
not fail in that case.

> binary_to_atom(<<"Erlang">> |atinl).
' Erl ang'
> binary_to_atonm(<<1024/utf8>>, utf8).
** exception error: bad argunent
in function binary_to_atom 2
called as binary_to_aton(<<208, 128>>, ut f 8)

bi nary_to_exi sting_atonm(Bi nary, Encoding) -> aton()
Types:

Binary = binary()

Encoding = latinl | utf8 | unicode
Workslike binary _to_atom/2, but the atom must already exist.

Failure: badar g if the atom does not already exist.

binary to list(Binary) -> [char()]
Types:
Binary = binary()
Returns alist of integers which correspond to the bytes of Bi nary.

binary to list(Binary, Start, Stop) -> [char()]
Types:

Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS) | 77

erlang

Binary = binary()
Start = Stop = 1..byte size(Binary)

Asbinary_to_list/1,butreturnsalist of integers corresponding to the bytes from position St art to position
St op in Bi nary. Positionsin the binary are numbered starting from 1.

Note:

This function's indexing style of using one-based indices for binaries is deprecated. New code should use
the functions in the STDLIB module bi nary instead. They consequently use the same (zero-based) style of
indexing.

bitstring_to_list(Bitstring) -> [char()|bitstring()]
Types.
Bitstring = bitstring()

Returns a list of integers which correspond to the bytes of Bi t st ri ng. If the number of bits in the binary is not
divisible by 8, the last element of the list will be a bitstring containing the remaining bits (1 up to 7 bits).

binary to termBinary) -> term)
Types:
Binary = ext_binary()

Returns an Erlang term which is the result of decoding the binary object Bi nar y, which must be encoded according
to the Erlang external term format.

Warning:

When decoding binaries from untrusted sources, consider using bi nary to_t erni 2 to prevent denia of
service attacks.

See dso term to_binary/1 and binary_to_ternv2.

binary to termBinary, Opts) -> term)
Types.
Opts = [safe]
Binary = ext_binary()
Asbinary_to_term 1, but takes options that affect decoding of the binary.
safe
Use this option when receiving binaries from an untrusted source.

When enabled, it prevents decoding data that may be used to attack the Erlang system. In the event of receiving
unsafe data, decoding fails with abadarg error.

Currently, this prevents creation of new atoms directly, creation of new atoms indirectly (as they are embedded
in certain structures like pids, refs, funs, etc.), and creation of new external function references. None of those
resources are currently garbage collected, so unchecked creation of them can exhaust available memory.

78 | Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS)

erlang

Failure: badar g if saf e is specified and unsafe data is decoded.
See also term to_binary/1, binary to term/1, and list to_existing_atonv1.

bit_size(Bitstring) -> int()
Types:
Bitstring = bitstring()
Returns an integer which isthe sizein bitsof Bi t st ri ng.

> bit_size(<<433: 16, 3: 3>>)
19

> bit_size(<<1, 2, 3>>)

24

Allowed in guard tests.

erl ang: bunp_reducti ons(Reductions) -> void()
Types:
Reductions = int()
This implementation-dependent function increments the reduction counter for the calling process. In the Beam

emulator, the reduction counter is normally incremented by one for each function and BIF call, and a context switch
is forced when the counter reaches the maximum number of reductions for a process (2000 reductionsin R12B).

Warning:

This BIF might be removed in a future version of the Beam machine without prior warning. It is unlikely to be
implemented in other Erlang implementations.

byte size(Bitstring) -> int()
Types:
Bitstring = bitstring()

Returns an integer which is the number of bytes needed to contain Bi t st ri ng. (That is, if the number of bitsin
Bi t stri ngisnot divisible by 8, the resulting number of bytes will be rounded up.)

> byt e_si ze(<<433: 16, 3: 3>>).
3

> byte_size(<<1,2,3>>).

3

Allowed in guard tests.

erl ang: cancel _timer(TinerRef) -> Tinme | fal se

Types:
Timer Ref = reference()
Time=int()

Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS) | 79

erlang

Cancelsatimer, where Ti mer Ref wasreturned by either erlang:send_after/3 or erlang: start_timer/3. If thetimer is
there to be removed, the function returns the time in milliseconds left until the timer would have expired, otherwise
f al se (which means that Ti mer Ref was never atimer, that it has already been cancelled, or that it has already
delivered its message).

See also erlang: send_after/3, erlang: start_timer/3, and erlang:read_timer/1.
Note: Cancelling atimer does not guarantee that the message has not aready been delivered to the message queue.

check_process_code(Pid, Mdule) -> bool ()
Types:

Pid = pid()

Module = atom()

Returnst r ue if theprocess Pi d isexecuting old codefor Mbdul e. That is, if the current call of the process executes
old code for this module, or if the process has references to old code for this module, or if the process contains funs
that references old code for this module. Otherwise, it returnsf al se.

> check_process_code(Pid, lists).
fal se

See also code(3).

concat _bi nary(Li st Of Bi nari es)
Do not use; use list_to_hinary/1 instead.

erlang: crc32(Data) -> int()
Types:
Data = iodata()
Computes and returns the crc32 (IEEE 802.3 style) checksum for Dat a.

erlang: crc32(A dCrc, Data) -> int()
Types:

OldCrc=int()

Data = iodata()

Continue computing the crc32 checksum by combining the previous checksum, Q dCr c, with the checksum of Dat a.

The following code:

erl ang: crc32(Datal),
erl ang: crc32(X, Dat a2).

- would assign the same value to Y as this would:

Y = erlang: crc32([Dat al, Dat a2]).

80 | Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS)

erlang

erl ang: crc32_conbi ne(FirstCrc, SecondCrc, SecondSize) -> int()
Types:

FirstCrc = SecondCrc = int()

SecondSize = int()

Combines two previously computed crc32 checksums. This computation requires the size of the data object for the
second checksum to be known.

The following code:

erl ang: crc32(Datal),
erl ang: crc32(Y, Dat a2) .

- would assign the same value to Z as this would:

erl ang: crc32(Datal),
erl ang: crc32(Dat a2),
erl ang: crc32_conbi ne(X, Y,iolist_size(Data2)).

N < X
Innn

date() -> {Year, Mnth, Day}
Types:
Year = Month = Day = int()
Returnsthe current date as{ Year, Mont h, Day}.
The time zone and daylight saving time correction depend on the underlying OS.

> date().
{1995, 2, 19}

erl ang: decode_packet (Type, Bi n, Opti ons) -> {ok, Packet,Rest} | {nore, Length} |
{error, Reason}

Types:
Bin = binary()
Options = [Opt]
Packet = binary() | HttpPacket
Rest = binary()
Length =int() | undefined
Reason =term()

Type, Opt -- see below

HttpPacket = HttpRequest | HttpResponse | HttpHeader | http_eoh | HttpError
HttpRequest = {http_request, HttpM ethod, HttpUri, HttpVersion}
HttpResponse = {http_response, HttpVersion, integer (), HttpString}

HttpHeader = {http_header, int(), HttpField, Reserved=term(), Value=HttpString}
HttpError = {http_error, HttpString}

Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS) | 81

erlang

HttpMethod = HttpM ethodAtom | HttpString

HttpMethodAtom ='OPTIONS |'GET' |'HEAD' |'POST' |'PUT' |'DELETE' |'TRACE'

HttpUri ="*' | {absoluteURI, http|https, Host=HttpString, Port=int()|undefined, Path=HttpString} |

{scheme, Scheme=HttpString, HttpString} | {abs path, HttpString} | HttpString

HttpVersion = {Major=int(), Minor=int()}

HttpString = string() | binary()

HttpField = HttpFieldAtom | HttpString

HttpFieldAtom ='Cache-Control' | 'Connection’ | 'Date' |'Pragma’ | 'Transfer-Encoding' |'Upgrade'

|'Via' | 'Accept’ |'Accept-Charset' | 'Accept-Encoding' | 'Accept-Language' | 'Authorization' | 'From'

['Host' | 'If-Modified-Since' | '[f-Match' | 'If-None-Match' | 'If-Range’ | 'If-Unmodified-Since' | 'Max-

Forwards' | 'Proxy-Authorization' | 'Range’ | 'Referer' | 'User-Agent' | 'Age' | 'Location' | 'Proxy-

Authenticate' | 'Public' |'Retry-After' | 'Server' |'Vary' | 'Warning' | "Www-Authenticate' | 'Allow’ |

'Content-Base' | 'Content-Encoding' | 'Content-Language' | 'Content-Length' | 'Content-L ocation' |

'Content-Md5' | 'Content-Range' | 'Content-Type' | 'Etag' | 'Expires |'Last-Modified' | 'Accept-Ranges' |

'Set-Cookie' | 'Set-Cookie2' | ' X-Forwarded-For' | 'Cooki€e' | 'Keep-Alive' | 'Proxy-Connection’
Decodesthe binary Bi n according to the packet protocol specified by Type. Very similar to the packet handling done
by sockets with the option { packet, Type} .

If an entire packet is contained in Bi n it is returned together with the remainder of the binary as
{ok, Packet , Rest }.

If Bi n does not contain the entire packet, { mor e, Lengt h} isreturned. Lengt h is either the expected total size
of the packet or undef i ned if the expected packet size is not known. decode_packet can then be called again
with more data added.

If the packet does not conform to the protocol format { er r or , Reason} isreturned.
The following values of Type arevalid:
raw | O
No packet handling is done. Entire binary isreturned unlessit is empty.
1] 2| 4

Packets consist of a header specifying the number of bytes in the packet, followed by that number of bytes. The
length of header can be one, two, or four bytes; the order of the bytesis big-endian. The header will be stripped
off when the packet is returned.

i ne

A packet is a line terminated with newline. The newline character is included in the returned packet unless the
line was truncated according to the option | i ne_| engt h.

asnl | cdr | sunrm| fcgi | tpkt
The header is not stripped off.
The meanings of the packet types are as follows:

asnl - ASN.1BER

sunr m- Sun's RPC encoding
cdr - CORBA (GIOP 1.1)

fcgi - Fast CGI

t pkt - TPKT format [RFC1006]

82 | Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS)

erlang

http | httph | http_bin | httph_bin

The Hypertext Transfer Protocol. The packets are returned with the format according to Ht t pPacket described
above. A packet is either arequest, aresponse, a header or an end of header mark. Invalid lines are returned as
H t pError.

Recognized request methods and header fields are returned as atoms. Others are returned as strings.

The protocol type ht t p should only be used for the first linewhen aHt t pRequest or aHt t pResponse is
expected. Thefollowing calls should use ht t ph to get Ht t pHeader 'suntil ht t p_eoh isreturned that marks
the end of the headers and the beginning of any following message body.

Thevariantsht t p_bi nand ht t ph_bi n will return strings (Ht t pSt r i ng) as binariesinstead of lists.
The following options are available:
{packet size, int()}

Setsthe max allowed size of the packet body. If the packet header indicates that the length of the packet islonger
than the max allowed length, the packet is considered invalid. Default is 0 which means no size limit.

{line_length, int()}

Applies only to line oriented protocols (I i ne, ht t p). Lineslonger than thiswill be truncated.

> erl ang: decode_packet (1, <<3, "abcd">>,[]).
{ ok, <<"abc">>, <<"d" >>}

> erl ang: decode_packet (1, <<5, "abcd">>,[]).
{nore, 6}

del et e_nodul e(Mbdul €) -> true | undefined
Types:
Module = atom()

Makesthe current code for Modul e become old code, and deletes all references for this module from the export table.
Returnsundef i ned if the module does not exist, otherwiset r ue.

Warning:
This BIF isintended for the code server (see code(3)) and should not be used elsewhere.

Failure: badar g if thereis already an old version of Mbdul e.

denoni tor (MonitorRef) -> true
Types:
Monitor Ref = reference()

If Moni t or Ref isareference which the calling process obtained by calling monitor/2, this monitoring is turned off.
If the monitoring is aready turned off, nothing happens.

Oncedenoni t or (Moni t or Ref) hasreturneditisguaranteedthatno{' DOWN' , MonitorRef, _, _, _}
message due to the monitor will be placed in the callers message queue in the future. A{ DOAN , Moni t or Ref,
_, _, _} message might have been placedmthecallersmessagequeueprlor to the call, though. Therefore, in most

cases, it is advisable to remove such a' DOAN' message from the message queue after monitoring has been stopped.
demonitor(Monitor Ref, [flush]) can be used instead of denoni t or (Moni t or Ref) if this cleanup is wanted.

Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS) | 83

erlang

Note:

Prior to OTPrelease R11B (ertsversion 5.5) denoni t or / 1 behaved completely asynchronous, i.e., the monitor
was active until the "demonitor signal" reached the monitored entity. This had one undesirable effect, though.
Y ou could never know when you were guaranteed not to receive a DOWN message due to the monitor.

Current behavior can be viewed as two combined operations: asynchronously send a "demonitor signa" to the
monitored entity and ignore any future results of the monitor.

Failure: Itisan error if Moni t or Ref refersto amonitoring started by another process. Not all such cases are cheap
to check; if checking is cheap, the call failswith badar g (for exampleif Moni t or Ref isaremote reference).

denoni tor (Moni tor Ref, OptionList) -> true|false
Types:

Monitor Ref = reference()

OptionList = [Option]

Option = flush

Option =info
Thereturned valueist r ue unlessi nf o ispart of Opt i onLi st .
dernoni t or (Moni tor Ref, []) isequivaent to demonitor(MonitorRef).
Currently the following Opt i onsare valid:
flush

Remove(one){ , MonitorRef, , , _} message, if thereisone, from the callers message queue after
monitoring has been stopped.

Calingdenoni t or (Moni tor Ref, [flush]) isequivalent to thefollowing, but more efficient:

denoni t or (Moni t or Ref) ,
receive
{_, MonitorRef, _, _, _} ->
true
after 0 ->
true
end

info
The returned value is one of the following:
true

The monitor was found and removed. In this case no ' DOAN message due to this monitor have been nor will
be placed in the message queue of the caller.

fal se

The monitor was not found and could not be removed. This probably because someone aready has placed a
' DOWN' message corresponding to this monitor in the callers message queue.

If thei nf o optioniscombined withthef | ush option, f al se will bereturned if aflush was needed; otherwise,
true.

84 | Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS)

erlang

Note:
More options may be added in the future.

Failure: badar g if Opt i onLi st isnotalist, orif Opt i onisnotavalidoption, or thesamefailureasfor demonitor/1

di sconnect _node(Node) -> bool () | ignored
Types:
Node = atom()

Forces the disconnection of a node. This will appear to the node Node as if the local node has crashed. This BIF
is mainly used in the Erlang network authentication protocols. Returnst r ue if disconnection succeeds, otherwise
f al se. If thelocal nodeis not alive, the function returnsi gnor ed.

erl ang: di splay(Term) -> true
Types:
Term =term()
Prints atext representation of Ter mon the standard outpuit.

Warning:
This BIF isintended for debugging only.

el ement (N, Tuple) -> term)

Types:
N = 1..tuple _size(Tuple)
Tuple=tuple)

Returns the Nth element (numbering from 1) of Tupl e.

> element (2, {a, b, c}).
b

Allowed in guard tests.

erase() -> [{Key, Val}]
Types:
Key =Val =term()

Returns the process dictionary and deletesiit.

> put (keyl, {1, 2, 3}),

put (key2, [a, b, c]),

erase().

[{keyl,{1,2,63}},{key2 [a,b,c]}]

Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS) | 85

erlang

erase(Key) -> Val | undefined
Types:
Key =Val =term()

Returns the value Val associated with Key and deletes it from the process dictionary. Returns undef i ned if no
valueis associated with Key.

> put (keyl, {rmerry, |anbs, are, playing}),
X = erase(keyl),

{X, erase(keyl)}.

{{merry, | anbs, are, pl ayi ng}, undef i ned}

error (Reason)
Types:
Reason =term()
Stops the execution of the calling process with the reason Reason, where Reason isany term. The actual exit reason

will be{ Reason, Wher e}, where\Wher e isalist of the functions most recently called (the current function first).
Since evaluating this function causes the process to terminate, it has no return value.

> catch error(foobar).

{"EXIT ,{foobar,[{erl _eval,do_apply, 5},
{erl _eval, expr, 5},
{shel | , exprs, 6},
{shel | , eval _exprs, 6},
{shel |, eval | oop, 3}]1}}

error (Reason, Args)
Types:

Reason = term()

Args=[term()]
Stops the execution of the calling process with the reason Reason, where Reason isany term. The actual exit reason
will be{ Reason, Wher e}, where\Wher e isalist of the functions most recently called (the current function first).
Ar gs is expected to be the list of arguments for the current function; in Beam it will be used to provide the actua

arguments for the current function in the Wher e term. Since evaluating this function causes the process to terminate,
it has no return value.

exi t (Reason)
Types:
Reason =term()

Stops the execution of the calling process with the exit reason Reason, where Reason isany term. Since evaluating
this function causes the process to terminate, it has no return value.

> exit(foobar).

** exception exit: foobar
> catch exit(foobar).
{"EXIT , foobar}

86 | Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS)

erlang

exit(Pid, Reason) -> true
Types:
Pid = pid()
Reason = term()
Sends an exit signal with exit reason Reason to the process Pi d.
The following behavior apply if Reason isany term except nor mal orkil | :

If Pi disnot trapping exits, Pi d itself will exit with exit reason Reason. If Pi d istrapping exits, the exit signal is
transformed intoamessage{' EXI T', From Reason} and delivered to the message queue of Pi d. Fr omisthe
pid of the process which sent the exit signal. See also process flag/2.

If Reason istheatomnor nmal , Pi d will not exit. If it istrapping exits, the exit signal istransformed into a message
{"EXIT", From normal} and delivered to its message queue.

If Reason istheatomki I | ,thatisifexit (Pid, kill) iscaled, anuntrappableexitsignal issenttoPi d which
will unconditionally exit with exit reason ki | | ed.

float (Nunber) -> float()
Types:
Number = number ()
Returns afloat by converting Nunber to afloat.

> f| oat (55).
55.0

Allowed in guard tests.

Note:

Note that if used on the top-level in a guard, it will test whether the argument is a floating point number; for
clarity, useis float/1 instead.

When f | oat / 1 isused in an expression in aguard, such as'f | oat (A) == 4. 0/, it converts a number as
described above.

float _to_list(Float) -> string()
Types:
Float = float()
Returns a string which corresponds to the text representation of Fl oat .

> float_to_list(7.0).
"7.00000000000000000000e+00"

erlang: fun_info(Fun) -> [{ltem Info}]
Types.

Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS) | 87

erlang

Fun =fun()
Item, Info -- see below

Returns alist containing information about the fun Fun. Each element of the list isatuple. The order of thetuplesis
not defined, and more tuples may be added in afuture release.

Warning:

This BIF ismainly intended for debugging, but it can occasionally be useful in library functions that might need
to verify, for instance, the arity of afun.

There are two types of funswith dightly different semantics:

A fun created by f un M F/ Aiscalled an external fun. Calling it will aways call the function F with arity Ain the
|atest code for module M Note that module Mdoes not even need to be loaded when thefunf un M F/ Aiscreated.

All other funs are called local. When alocal fun is called, the same version of the code that created the fun will be
called (even if newer version of the module has been |oaded).

The following elements will always be present in the list for both local and external funs:
{type, Type}
Type iseither | ocal orexternal .
{nodul e, Modul e}
Modul e (an atom) isthe module name.
If Fun isalocal fun, Modul e isthe module in which the fun is defined.
If Fun isan external fun, Modul e isthe module that the fun refers to.
{nane, Nane}
Nane (an atom) is a function name.

If Fun isaloca fun, Nane isthe name of the local function that implements the fun. (This name was generated
by the compiler, and is generally only of informational use. Asitisalocal function, it is not possible to call it
directly.) If no codeis currently loaded for the fun, [] will be returned instead of an atom.

If Fun isan externa fun, Name isthe name of the exported function that the fun refersto.
{arity, Arity}

Ar ity isthe number of arguments that the fun should be called with.
{env, Env}

Env (alist) isthe environment or free variables for the fun. (For external funs, the returned list is always empty.)
The following elements will only be present in thelist if Fun islocal:
{pid, Pid}

Pi d isthe pid of the process that originally created the fun.
{i ndex, I|ndex}

I ndex (aninteger) is an index into the modul€'s fun table.
{new_i ndex, | ndex}

I ndex (aninteger) is an index into the modul€e's fun table.

88 | Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS)

erlang

{new _uni q, Uniq}
Uni q (abinary) isaunique value for this fun.

{uni g, Uniq}
Uni g (an integer) isaunique value for this fun.

erlang: fun_info(Fun, Item -> {Item Info}
Types:

Fun =fun()

Item, Info -- see below

Returns information about Fun as specified by | t em intheform{I tem | nf o} .
For any fun, | t emcan be any of the atoms nodul e, nane, arity, orenv.

For aloca fun, I t emcan aso be any of the atoms i ndex, new_i ndex, new_uni g, uni g, and pi d. For an
external fun, the value of any of theseitemsis alwaysthe atom undef i ned.

See erlang:fun_info/1.

erlang: fun_to_list(Fun) -> string()
Types:
Fun =fun()
Returns a string which corresponds to the text representation of Fun.

erl ang: functi on_exported(Mdul e, Function, Arity) -> bool ()

Types:
M odule = Function = atom()
Arity =int()

Returnst r ue if the module Mbdul e is loaded and contains an exported function Funct i on/ Ari ty; otherwise
fal se.

Returnsf al se for any BIF (functions implemented in C rather than in Erlang).

garbage_collect() -> true

Forces an immediate garbage collection of the currently executing process. The function should not be used, unlessit
has been noticed -- or there are good reasons to suspect -- that the spontaneous garbage collection will occur too late
or not at al. Improper use may seriously degrade system performance.

Compatibility note: In versions of OTP prior to R7, the garbage collection took place at the next context switch, not
immediately. To force a context switch after acall to er | ang: gar bage_col | ect (), it was sufficient to make
any function call.

gar bage_col l ect (Pid) -> bool ()
Types:
Pid = pid()
Workslike er | ang: gar bage_col | ect () but on any process. The same caveats apply. Returnsf al se if Pi d
refersto adead process; t r ue otherwise.

Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS) | 89

erlang

get() -> [{Key, Val}]
Types:
Key =Val =term()
Returns the process dictionary asalist of { Key, Val} tuples.

> put (keyl, nerry),

put (key2, |anbs),

put (key3, {are, playing}),

get ().

[{keyl, merry}, {key2, | anbs}, {key3, {are, pl ayi ng}}]

get (Key) -> Val | undefined
Types.
Key =Val =term()

Returns the value Val associated with Key in the process dictionary, or undef i ned if Key does not exist.

> put (keyl, nerry),

put (key2, | anbs),

put ({any, [valid, term}, {are, playing}),
get({any, [valid, terni}).

{are, pl ayi ng}

erl ang: get _cooki e() -> Cookie | nocookie
Types:
Cookie = atom()

Returns the magic cookie of the local node, if the nodeis alive; otherwise the atom nocooki e.

get _keys(Val) -> [Key]
Types:
Val =Key =term()

Returns alist of keys which are associated with the value Val in the process dictionary.

> put (mary, {1, 2}),
put (had, {1, 2}),

put (a, {1, 2}),
put(little, {1, 2}),

put (dog, {1, 3}),
put (I amb, {1, 2}),
get _keys({1, 2}).
[mary, had, a,little, | anb]

erl ang: get _stacktrace() -> [{Mdule, Function, Arity | Args}]
Types:

M odule = Function = atom()

Arity =int()

90 | Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS)

erlang

Args=[term()]

Get the cal stack back-trace (stacktrace) of the last exception in the caling process as a list of
{Modul e, Function, Arity} tuples. TheAri ty field inthefirst tuple may be the argument list of that function
call instead of an arity integer, depending on the exception.

If there has not been any exceptionsin a process, the stacktraceis[]. After acode change for the process, the stacktrace
may also bereset to [].

The stacktrace is the same data as the cat ch operator returns, for example:
{'EXIT ,{badarg, Stacktrace}} = catch abs(x)
See dso erlang:error/1 and erlang:error/2.

group_|l eader() -> G ouplLeader
Types:
GroupL eader = pid()
Returns the pid of the group leader for the process which evaluates the function.

Every process is a member of some process group and all groups have a group leader. All 10 from the group is
channeled to the group leader. When anew processis spawned, it gets the same group leader as the spawning process.
Initially, at system start-up, i ni t isboth its own group leader and the group leader of all processes.

group_| eader (GroupLeader, Pid) -> true
Types:
GroupL eader = Pid = pid()

Setsthe group leader of Pi d to G- oupLeader . Typically, thisis used when a processes started from a certain shell
should have another group leader thani ni t .

See also group_leader/0.

hal t ()
Halts the Erlang runtime system and indicates normal exit to the calling environment. Has no return value.

> halt().
0s_pronpt %

hal t (St at us)
Types:
Status = int()>=0 | string()

St at us must be anon-negative integer, or astring. Halts the Erlang runtime system. Hasno return value. If St at us
isan integer, it is returned as an exit status of Erlang to the calling environment. If St at us isastring, produces an
Erlang crash dump with St r i ng as logan, and then exits with a non-zero status code.

Note that on many platforms, only the status codes 0-255 are supported by the operating system.

erl ang: hash(Term Range) -> Hash
Returns a hash value for Ter mwithintherange 1. . Range. The allowed rangeis 1..2"27-1.

Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS) | 91

erlang

Warning:

This BIF is deprecated as the hash value may differ on different architectures. Also the hash values for integer
terms larger than 227 as well as large binaries are very poor. The BIF is retained for backward compatibility
reasons (it may have been used to hash records into a file), but all new code should use one of the BIFs
er |l ang: phash/ 2 or er | ang: phash2/ 1, 2 instead.

hd(List) -> tern()
Types:
List = [term()]
Returnsthe head of Li st , that is, the first element.

> hd([1,2,3, 4,5]).
1

Allowed in guard tests.
Failure: badar g if Li st isthe empty list [].

erl ang: hi ber nat e(Modul e, Function, Args)
Types:
M odule = Function = atom()
Args=[term()]
Puts the calling process into await state where its memory allocation has been reduced as much as possible, which is
useful if the process does not expect to receive any messages in the near future.

The process will be awaken when amessage is sent to it, and control will resume in Mbdul e: Funct i on with the
arguments given by Ar gs with the call stack emptied, meaning that the process will terminate when that function
returns. Thuser | ang: hi ber nat e/ 3 will never return to its caller.

If the process has any message in its message queue, the process will be awaken immediately in the same way as
described above.

Inmoretechnical terms, whater | ang: hi ber nat e/ 3 doesisthefollowing. It discardsthecall stack for the process.
Then it garbage collects the process. After the garbage collection, all live dataisin one continuous heap. The heap is
then shrunken to the exact same size as the live data which it holds (even if that size is less than the minimum heap
size for the process).

If the size of the live datain the processis|ess than the minimum heap size, the first garbage collection occurring after
the process has been awaken will ensurethat the heap sizeis changed to asize not smaller than the minimum heap size.

Note that emptying the call stack means that any surrounding cat ch is removed and has to be re-inserted after
hibernation. One effect of this is that processes started using pr oc_| i b (also indirectly, such as gen_ser ver
processes), should use proc_lib: hibernate/3 instead to ensure that the exception handler continues to work when the
process wakes up.

integer_to_list(lnteger) -> string()
Types:
Integer =int()
Returns a string which corresponds to the text representation of | nt eger .

92 | Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS)

erlang

> integer_to_list(77)
ngn

integer_to_list(lnteger, Base) -> string()

Types:
Integer =int()
Base=2..36

Returns a string which corresponds to the text representation of | nt eger in base Base.

> integer _to |list(1023, 16).
Y=

iolist to binary(loListOBinary) -> binary()
Types:
loListOrBinary =iolist() | binary()
Returns a binary which is made from the integers and binariesin | oLi st Or Bi nary.

> Binl = <<1, 2, 3>>

<<1, 2, 3>>

> Bin2 = <<4,5>>

<<4, 5>>

> Bin3 = <<6>>

<<6>>

> ijolist_to_binary([Binil,1,[2,3,Bin2],4|Bin3]).
<<1,2,3,1,2,3,4,5,4,6>>

iolist _size(lten) -> int()
Types:
Item =iolist() | binary()
Returns an integer which isthe sizein bytes of the binary that would betheresult of i ol i st _t o_bi nary(lten).

> jolist_size([1,2]<<3,4>>]).
4

is_alive() -> bool ()

Returnst r ue if the local node is alive; that is, if the node can be part of a distributed system. Otherwise, it returns
fal se.

is_atom(Term) -> bool ()
Types.
Term =term()
Returnst r ue if Ter misan atom; otherwisereturnsf al se.

Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS) | 93

erlang

Allowed in guard tests.

is_binary(Term -> bool ()
Types:
Term =term()
Returnst r ue if Ter misabinary; otherwisereturnsf al se.
A binary always contains a complete number of bytes.

Allowed in guard tests.

is _bitstring(Term -> bool ()
Types:
Term =term()
Returnst r ue if Ter misabitstring (including a binary); otherwisereturnsf al se.

Allowed in guard tests.

i s_bool ean(Term -> bool ()
Types:
Term =term()
Returnst r ue if Ter miseither theatomt r ue or theatom f al se (i.e. aboolean); otherwisereturnsf al se.

Allowed in guard tests.

erlang:is_builtin(Mdule, Function, Arity) -> bool ()

Types.
M odule = Function = atom()
Arity =int()

Returnst r ue if Modul e: Functi on/ Ari ty isaBIF implemented in C; otherwise returns f al se. ThisBIF is
useful for builders of cross reference tools.

is float(Term -> bool ()
Types:
Term =term()
Returnst r ue if Ter misafloating point number; otherwisereturnsf al se.

Allowed in guard tests.

is_function(Tern) -> bool ()
Types.
Term =term()
Returnst r ue if Ter misafun; otherwisereturnsf al se.

Allowed in guard tests.

is_function(Term Arity) -> bool ()
Types:

94 | Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS)

erlang

Term =term()

Arity =int()
Returnst r ue if Ter misafun that can be applied with Ar i t y number of arguments; otherwisereturnsf al se.
Allowed in guard tests.

Warning:

Currently, i s_functi on/ 2 will also returnt r ue if the first argument is a tuple fun (a tuple containing two
atoms). In afuture release, tuple funs will no longer be supported andi s_f unct i on/ 2 will returnf al se if
given atuple fun.

is_integer(Term -> bool ()
Types.
Term =term()
Returnst r ue if Ter misan integer; otherwisereturnsf al se.

Allowed in guard tests.

is list(Term -> bool ()
Types.
Term =term()
Returnst r ue if Ter misalist with zero or more elements; otherwise returnsf al se.

Allowed in guard tests.

i s_nunber(Term -> bool ()
Types:
Term =term()
Returnst r ue if Ter miseither an integer or afloating point number; otherwise returnsf al se.

Allowed in guard tests.

is_pid(Tern) -> bool ()
Types:
Term =term()
Returnst r ue if Ter misapid (processidentifier); otherwise returnsf al se.

Allowed in guard tests.

is _port(Term) -> bool ()
Types:
Term =term()
Returnst r ue if Ter misaport identifier; otherwisereturnsf al se.

Allowed in guard tests.

Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS) | 95

erlang

i s_process_alive(Pid) -> bool ()
Types:
Pid = pid()
Pi d must refer to a process at the local node. Returnst r ue if the process exists and is dive, that is, is not exiting
and has not exited. Otherwise, returnsf al se.

is_record(Term RecordTag) -> bool ()
Types:

Term =term()

RecordTag = atom()

Returnst r ue if Ter misatuple and itsfirst element isRecor dTag. Otherwise, returnsf al se.

Note:

Normally the compiler treatscallstoi s_r ecor d/ 2 speciadly. It emits code to verify that Ter misatuple, that
itsfirst element is Recor dTag, and that the size is correct. However, if the Recor dTag isnot aliteral atom,
thei s_recor d/ 2 BIF will be caled instead and the size of the tuple will not be verified.

Allowed in guard tests, if Recor dTag isaliteral atom.

is_record(Term RecordTag, Size) -> bool ()
Types:

Term =term()

RecordTag = atom()

Size=int()

Recor dTag must be an atom. Returnst r ue if Ter mis atuple, its first element is Recor dTag, and its size is
Si ze. Otherwise, returnsf al se.

Allowed in guard tests, provided that Recor dTag isaliteral atom and Si ze isaliteral integer.

Note:

This BIF is documented for completeness. In most casesi s_r ecor d/ 2 should be used.

is_reference(Term -> bool ()
Types:
Term =term()
Returnst r ue if Ter misareference; otherwise returnsf al se.

Allowed in guard tests.
is_tuple(Term -> bool ()

Types:
Term =term()

96 | Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS)

erlang

Returnst r ue if Ter misatuple; otherwise returnsf al se.
Allowed in guard tests.

I ength(List) -> int()
Types:

List = [term()]
Returnsthe length of Li st .

> length([1,2,3,4,5,6,7,8,9]).
9

Allowed in guard tests.

link(Pid) -> true
Types:
Pid = pid() | port()
Creates a link between the calling process and another process (or port) Pi d, if thereis not such alink aready. If a
process attempts to create alink to itself, nothing is done. Returnst r ue.
If Pi d does not exist, the behavior of the BIF depends on if the calling process is trapping exits or not (see
process flag/2):
« If thecalling processis not trapping exits, and checking Pi d ischeap -- that is, if Pi d islocal -- | i nk/ 1 fails
with reason nopr oc.

« Otherwise, if the calling processis trapping exits, and/or Pi d isremote, | i nk/ 1 returnst r ue, but an exit
signal with reason nopr oc is sent to the calling process.

list to atom(String) -> atom()
Types.
String = string()
Returns the atom whose text representationis St r i ng.

> |list_to_atom("Erlang").
' Erl ang'

list to binary(loList) -> binary()
Types:
loList =iolist()
Returns a binary which is made from the integers and binariesin | oLi st .

> Binl = <<1, 2, 3>>.
<<1, 2, 3>>

> Bin2 = <<4, 5>>.
<<4, 5>>

> Bin3 = <<6>>.
<<6>>

Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS) | 97

erlang

> |ist_to_binary([Binl, 1,[2,3,Bin2],4|Bin3]).
<<1,2,3,1,2,3,4,5,4, 6>

list_to bitstring(BitstringList) -> bitstring()
Types:
BitstringList = [BitstringList | bitstring() | char ()]

Returns a bhitstring which is made from the integers and bitstrings in Bi t stringLi st. (The last tail in
Bi t stringLi st isallowed to be abitstring.)

> Binl = <<1, 2, 3>>

<<1, 2, 3>>

> Bin2 = <<4,5>>.

<<4, 5>>

> Bin3 = <<6, 7: 4, >>.

<<6>>

> |list_to_binary([Binil, 1,[2,3,Bin2],4|Bin3]).
<<1,2,3,1,2,3,4,5,4,6, 7: 46>>

list to_existing aton(String) -> aton()
Types:
String = string()
Returns the atom whose text representation is St r i ng, but only if there already exists such atom.
Failure: badar g if there does not aready exist an atom whose text representation isSt r i ng.

list to float(String) -> float()
Types:
String = string()
Returns the float whose text representationis St r i ng.

> list_to float("2. 2017764e+0").
2.2017764

Failure: badar g if St ri ng contains a bad representation of afloat.
list to integer(String) -> int()
Types:

String = string()
Returns an integer whose text representationis St r i ng.

> |ist_to_integer("123").

123

Failure: badar g if St ri ng contains a bad representation of an integer.

98 | Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS)

erlang

list_to_integer(String, Base) -> int()

Types:
String = string()
Base=2..36

Returns an integer whose text representation in base Base isSt ri ng.

> |ist_to_integer("3FF", 16).
1023

Failure: badar g if St ri ng contains a bad representation of an integer.

list_to_pid(String) -> pid()
Types:
String = string()
Returns a pid whose text representationis St ri ng.

Warning:

ThisBIF isintended for debugging and for use in the Erlang operating system. It should not be used in application
programs.

> list_to_pid("<0.4.1>").
<0.4.1>

Failure: badar g if St ri ng contains a bad representation of a pid.

list_to_tuple(List) -> tuple()
Types.
List = [term()]
Returns atuple which correspondsto Li st . Li st can contain any Erlang terms.

> |list _to tuple([share, ['Ericsson_B', 163]]).
{share, ['Ericsson_B', 163]}

| oad_nodul e(Modul e, Binary) -> {nodule, Mdule} | {error, Reason}
Types.

Module = atom()

Binary = binary()

Reason = badfile | not_purged | badfile

If Bi nary contains the object code for the module Mbdul e, this BIF loads that object code. Also, if the code for
the module Modul e already exists, al export references are replaced so they point to the newly loaded code. The

Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS) | 99

erlang

previously loaded code iskept in the system as old code, asthere may still be processes which are executing that code.
It returns either { rodul e, Mbdul e}, or{error, Reason} if loading fails. Reason isone of the following:

badfile

The object code in Bi nar y has an incorrect format.
not _pur ged

Bi nar y contains a module which cannot be loaded because old code for this module already exists.
badfil e

The object code contains code for another module than Modul e

Warning:
This BIF isintended for the code server (see code(3)) and should not be used elsewhere.

erlang:load_nif(Path, Loadlnfo) -> ok | {error, {Reason, Text}}
Types:

Path = string()

Loadlnfo =term()

Reason = load_failed | bad_lib | load | reload | upgrade | old_code

Text = string()

Note:

In releases older than OTP R14B, NIFs were an experimental feature. Versions of OTP older than R14B might
have different and possibly incompatible NIF semantics and interfaces. For example, in R13B03 the return value
onfaillurewas{error, Reason, Text}.

Loads and links a dynamic library containing native implemented functions (NIFs) for amodule. Pat h isafile path
to the sharabl e object/dynamic library file minus the OS-dependent file extension (.so for Unix and .dll for Windows).
See erl_nif on how to implement aNIF library.

LoadlI nf o can beany term. It will be passed on to thelibrary aspart of theinitialization. A good practiceisto include
amodule version number to support future code upgrade scenarios.

Thecall tol oad_ni f/ 2 must be made directly from the Erlang code of the module that the NIF library belongs to.

Itreturnseither ok,or{ error, { Reason, Text } } if loadingfails. Reason isoneof theatomsbelow, while Text
is a human readable string that may give some more information about the failure.

| oad failed

The OSfailed to load the NIF library.
bad_Iib

The library did not fulfil the requirements as a NIF library of the calling module.
load | reload | upgrade

The corresponding library callback was not successful.

100 | Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS)

erlang

ol d_code
Thecadl tol oad_ni f/ 2 was made from the old code of amodule that has been upgraded. Thisis not allowed.

erl ang: | oaded() -> [Modul €]
Types:
Module = atom()
Returns alist of all loaded Erlang modules (current and/or old code), including preloaded modules.

See also code(3).

erlang:localtinme() -> {Date, Tine}
Types:
Date = {Year, Month, Day}
Time={Hour, Minute, Second}
Year = Month = Day = Hour = Minute = Second = int()
Returnsthe current local dateandtime{{ Year, Month, Day}, {Hour, M nute, Second}}.
The time zone and daylight saving time correction depend on the underlying OS.

> erlang:localtime().
{{1996, 11, 6}, {14, 45, 17}}

erlang:localtine_to universaltime({Datel, Tinmel}) -> {Date2, Tine2}
Types.
Datel = Date? = {Year, Month, Day}
Timel = Time2 = {Hour, Minute, Second}
Year = Month = Day = Hour = Minute = Second = int()
Converts local date and time to Universal Time Coordinated (UTC), if this is supported by the underlying OS.
Otherwise, no conversionisdoneand { Dat el, Ti nel} isreturned.

> erlang:localtine_to_universaltinme({{1996, 11, 6}, {14, 45, 17}}).
{{1996, 11, 6}, {13, 45, 17}}

Failure: badar g if Dat el or Ti mel do not denote avalid date or time.

erlang:localtine_to _universaltime({Datel, Tinel}, |sDst) -> {Date2, Tinme2}
Types:

Datel = Date2 = {Year, Month, Day}

Timel = Time2 = {Hour, Minute, Second}

Year = Month = Day = Hour = Minute = Second = int()

IsDst =true | false | undefined

Converts locad date and time to Universdl Time Coordinated (UTC) just like
erlang:local tine_to_universaltime/1,butthecaller decidesif daylight saving timeis active or not.

Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS) | 101

erlang

If IsDst == true the {Datel, Tinmel} is during daylight saving time, if 1 sDst == false
it is not, and if 1 sDst == wundefi ned the underlying OS may guess, which is the same as calling
erlang:localtine_to universaltinme({Datel, Tinel}).

> erlang:localtine_to_universaltinme({{1996, 11, 6}, {14, 45,17}}, true).
{{1996, 11, 6}, {12, 45, 17} }

> erlang:localtine_to_universaltinme({{1996, 11, 6}, {14, 45,17}}, false).
{{1996, 11, 6}, {13, 45, 17}}

> erlang:localtine_to_universaltinme({{1996, 11, 6}, {14, 45,17}}, undefi ned).
{{1996, 11, 6}, {13, 45, 17}}

Failure: badar g if Dat el or Ti me1 do not denote avalid date or time.

make ref () -> reference()
Returns an almost unique reference.
Thereturned referencewill re-occur after approximately 2482 calls; thereforeit isunique enough for practical purposes.

> make_ref ().
#Ref <0. 0. 0. 135>

erl ang: make_tuple(Arity, Initial Value) -> tuple()
Types:
Arity =int()
InitialValue = term()
Returns a new tuple of the given Ari t y, where al elementsarel ni ti al Val ue.

> erl ang: meke_tuple(4, []).

{1, 01, 01, 11}

erl ang: nake tuple(Arity, Default, InitList) -> tuple()
Types.
Arity = int()
Default = term()
InitList = [{Position,term()}]
Position = integer()
erl ang: make_t upl e first createsatuple of size Ari t y where each element hasthe value Def aul t . It thenfills
invaluesfrom| ni t Li st . Eachlist elementin| ni t Li st must be atwo-tuple where the first element is a position

in the newly created tuple and the second element is any term. If a position occurs more than oncein the list, the term
corresponding to last occurrence will be used.

> erl ang: make_tupl e(5, [], [{2,ignored},{5,zz},{2,aa}]).
{{l1.,aa,[].[1,2z}

102 | Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS)

erlang

max(Ternl, TernR) -> Maximum
Types:
Terml=Term2 = Maximum =term()
Return the largest of Ter nil and Ter n®; if the terms compares equal, Ter nil will be returned.

erl ang: nd5(Data) -> D gest
Types:

Data = iodata()

Digest = binary()

Computes an MD5 message digest from Dat a, where the length of the digest is 128 bits (16 bytes). Dat a isabinary
or alist of small integers and binaries.

See The MD5 Message Digest Algorithm (RFC 1321) for more information about MD5.

Warning:
The MD5 Message Digest Algorithm is not considered safe for code-signing or software integrity purposes.

erl ang: md5_final (Context) -> Digest
Types:
Context = Digest = binary()
Finishes the update of an MD5 Cont ext and returns the computed MD5 message digest.

erlang: nd5_init() -> Context
Types:
Context = binary()
Creates an MD5 context, to be used in subsequent callsto nd5_updat e/ 2.

erl ang: nd5_updat e(Cont ext, Data) -> NewCont ext
Types:

Data = iodata()

Context = NewContext = binary()

Updates an MD5 Cont ext with Dat a, and returns a NewCont ext .

erl ang: nenory() -> [{Type, Size}]
Types.
Type, Size -- see below

Returns alist containing information about memory dynamically allocated by the Erlang emulator. Each element of
thelistisatuple{ Type, Si ze}. Thefirst element Typeisan atom describing memory type. The second element
Si zeismemory sizein bytes. A description of each memory type follows:

t ot al

Thetotal amount of memory currently allocated, which is the same as the sum of memory sizefor pr ocesses
andsystem

Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS) | 103

erlang

processes
Thetotal amount of memory currently allocated by the Erlang processes.
processes_used
Thetotal amount of memory currently used by the Erlang processes.
This memory is part of the memory presented as pr ocesses memory.
system
Thetotal amount of memory currently allocated by the emulator that is not directly related to any Erlang process.
Memory presented as pr ocesses isnot included in this memory.
atom
Thetotal amount of memory currently allocated for atoms.
This memory is part of the memory presented as sy st emmemory.
at om used
The total amount of memory currently used for atoms.
This memory is part of the memory presented as at ommemory.
bi nary
The total amount of memory currently allocated for binaries.
This memory is part of the memory presented as syst emmemory.
code
Thetotal amount of memory currently allocated for Erlang code.
This memory is part of the memory presented as sy st emmemory.
ets
Thetotal amount of memory currently allocated for ets tables.
This memory is part of the memory presented as sy st emmemory.
maxi mum
The maximum total amount of memory allocated since the emulator was started.
Thistupleisonly present when the emulator is run with instrumentation.
For information on how to run the emulator with instrumentation see instrument(3) and/or erl(1).

104 | Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS)

erlang

Note:

The syst emvalue is not complete. Some allocated memory that should be part of the syst emvalue are not.

When the emulator isrun with instrumentation, thesy st emvalueismore accurate, but memory directly allocated
by mal | oc (and friends) are still not part of the syst emvalue. Direct calls to mal | oc are only done from
OS specific runtime libraries and perhaps from user implemented Erlang drivers that do not use the memory
allocation functions in the driver interface.

Since the t ot al value is the sum of processes and syst emthe error in syst emwill propagate to the
tot al value

The different amounts of memory that are summed are not gathered atomically which also introduce an error
in the result.

The different values has the following relation to each other. Values beginning with an uppercase letter is not part
of the result.

total = processes + system

processes = processes_used + ProcessesNot Used
system = atom + binary + code + ets + O her System
atom = atom used + AtonNot Used

Real Total = processes + Real System
Real System = system + M ssedSystem

More tuplesin the returned list may be added in the future.

Note:

Thet ot al valueis supposed to be the total amount of memory dynamically allocated by the emulator. Shared
libraries, the code of the emulator itself, and the emulator stack(s) are not supposed to be included. That is, the
t ot al value is not supposed to be equal to the total size of all pages mapped to the emulator. Furthermore,
due to fragmentation and pre-reservation of memory areas, the size of the memory segments which contain the
dynamically allocated memory blocks can be substantially larger than the total size of the dynamically allocated
memory blocks.

Note:

Since erts version 5.6.4 er | ang: menor y/ 0 requires that al erts alloc(3) alocators are enabled (default
behaviour).

Failure:

not sup
If an erts_alloc(3) alocator has been disabled.

erl ang: nenory(Type | [Type]) -> Size | [{Type, Size}]
Types:

Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS) | 105

erlang

Type, Size -- see below

Returns the memory size in bytes allocated for memory of type Type. The argument can also be given as alist of
Type atoms, in which case a corresponding list of { Type, Si ze} tuplesisreturned.

Note:

Since erts version 5.6.4 er | ang: menory/ 1 requires that al erts alloc(3) alocators are enabled (default
behaviour).

Failures:

badar g

If Type isnot one of the memory types listed in the documentation of erlang: memory/0.
badar g

If maxi mumis passed as Type and the emulator is not run in instrumented mode.
not sup

If an erts_alloc(3) alocator has been disabled.

See also erlang: memory/O.

mn(Ternl, TernR) -> M ninmum
Types:
Terml=Term2 = Minimum =term()
Return the smallest of Ter ml and Ter n2; if the terms compare equal, Ter mlL will be returned.

nodul e_| oaded(Modul e) -> bool ()
Types:
Module = atom()
Returnst r ue if the module Modul e isloaded, otherwisereturnsf al se. It does not attempt to load the module.

Warning:
This BIF isintended for the code server (see code(3)) and should not be used elsewhere.

nmoni tor (Type, lItem -> Monitor Ref
Types.
Type = process
Item = pid() | {RegName, Node} | RegName
RegName = atom()
Node = node&()
Monitor Ref = reference()

The calling process starts monitoring | t emwhich is an object of type Type.

Currently only processes can be monitored, i.e. the only allowed Type ispr ocess, but other types may be alowed
in the future.

106 | Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS)

erlang

| t emcan be:
pi d()

The pid of the process to monitor.
{ RegNane, Node}

A tuple consisting of a registered name of a process and a node name. The process residing on the node Node
with the registered name RegNane will be monitored.

RegNane
The process locally registered as RegNane will be monitored.

Note:

When a process is monitored by registered name, the process that has the registered name at the time when
nmoni t or/ 2 iscaled will be monitored. The monitor will not be effected, if the registered nameis unregistered.

A' DOANN message will be sent to the monitoring processif | t emdies, if | t emdoes not exist, or if the connection
islost to the nodewhich | t emresideson. A' DOAN message has the following pattern:

{' DOMN , MonitorRef, Type, Object, |nfo}

where Moni t or Ref and Type are the same as described above, and:
bj ect
A reference to the monitored object:
e thepid of the monitored process, if | t emwas specified as apid.
« {RegNanme, Node},ifltemwasspecified as{ RegNanme, Node}.

« {RegNane, Node},if |t emwas specified as RegNane. Node will in this case be the name of the
local node (node()).

Info

Either the exit reason of the process, nopr oc (non-existing process), or noconnect i on (no connection to
Node).

Note:

If/when moni t or / 2 is extended (e.g. to handle other item types than pr ocess), other possible values for
oj ect,and | nf o inthe' DOAN message will be introduced.

The monitoring is turned off either when the' DOAN' message is sent, or when demonitor/1 is called.

If an attempt is made to monitor a process on an older node (where remote process monitoring is not implemented or
one where remote process monitoring by registered name is not implemented), the call failswith badar g.

Making several callstononi t or / 2 for thesamel t emisnot an error; it resultsin as many, completely independent,
monitorings.

Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS) | 107

erlang

Note:

The format of the' DOWN' message changed in the 5.2 version of the emulator (OTP release R9B) for monitor
by registered name. The Obj ect element of the' DOWN' message could in earlier versions sometimes be the
pid of the monitored process and sometimes be the registered name. Now the Obj ect element isawaysatuple
consisting of theregistered name and the node name. Processes on new nodes (emulator version 5.2 or greater) will
always get' DOAN' messages on the new format even if they are monitoring processes on old nodes. Processes
on old nodes will always get' DOAN messages on the old format.

nmoni t or _node(Node, Flag) -> true

Types:
Node = node()
Flag = bool()

Monitors the status of the node Node. If Fl ag ist r ue, monitoring is turned on; if Fl ag isf al se, monitoring
isturned off.

Making several callsto noni t or _node(Node, true) for the same Node isnot an error; it results in as many,
completely independent, monitorings.

If Node fails or does not exist, the message { nodedown, Node} isdelivered to the process. If aprocess has made
two callstononi t or _node(Node, true) and Node terminates, two nodedown messages are delivered to the
process. If there is no connection to Node, there will be an attempt to create one. If thisfails, anodedown message
isdelivered.

Nodes connected through hidden connections can be monitored as any other node.
Failure: badar gif thelocal node isnot alive.

erl ang: noni t or_node(Node, Flag, Options) -> true

Types:
Node = node()
Flag = bool()

Options = [Option]

Option = allow_passive _connect
Behaves as nonitor_node/2 except that it alows an extra option to be given, namely
al | ow_passi ve_connect . Theoption alowsthe BIF towait the normal net connection timeout for the monitored
node to connect itself, even if it cannot be actively connected from this node (i.e. it is blocked). The state where this

might be useful can only be achieved by using thekernel optiondi st _aut o_connect once. If that kernel option
isnot used, theal | ow_passi ve_connect option has no effect.

Note:
The al | ow_passi ve_connect option is used internally and is seldom needed in applications where the
network topology and the kernel optionsin effect is known in advance.

Failure: badar g if thelocal nodeis not aive or the option list is malformed.

108 | Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS)

erlang

erlang: ni f _error (Reason)
Types:
Reason =term()

Works exactly like erlang:error/1, but Dialyzer thinks that this BIF will return an arbitrary term. When used in a
stub function for a NIF to generate an exception when the NIF library is not loaded, Dialyzer will not generate false
warnings.

erlang: nif _error (Reason, Args)
Types:
Reason =term()
Args=[term()]
Works exactly like erlang:error/2, but Dialyzer thinks that this BIF will return an arbitrary term. When used in a

stub function for a NIF to generate an exception when the NIF library is not loaded, Dialyzer will not generate false
warnings.

node() -> Node
Types:
Node = node()
Returns the name of the local node. If the node is not alive, nonode@ohost isreturned instead.

Allowed in guard tests.

node(Arg) -> Node

Types:
Arg = pid() | port() | reference()
Node = node()

Returns the node where Ar g is located. Ar g can be a pid, a reference, or a port. If the local node is not alive,
nonode@ohost isreturned.

Allowed in guard tests.

nodes() -> Nodes
Types:
Nodes = [node()]
Returnsalist of all visible nodesin the system, excluding the local node. Same asnodes(vi si bl e) .

nodes(Arg | [Arg]) -> Nodes

Types:
Arg = visible | hidden | connected | this| known
Nodes = [node()]

Returnsalist of nodes according to argument given. The result returned when the argument isalist, isthelist of nodes
satisfying the disjunction(s) of the list elements.

Ar g can be any of the following:
vi si bl e

Nodes connected to this node through normal connections.

Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS) | 109

erlang

hi dden
Nodes connected to this node through hidden connections.
connect ed
All nodes connected to this node.
this
This node.
known
Nodes which are known to this node, i.e., connected, previously connected, etc.

Some equalities: [node()] = nodes(this),nodes(connected) = nodes([visible, hidden]),
and nodes() = nodes(vi sible).

If thelocal nodeisnot alive, nodes(t hi s) == nodes(known) == [nonode@ohost], for any other Ar g
the empty list [] isreturned.

now() -> {MegaSecs, Secs, M croSecs}
Types:

M egaSecs = Secs = MicroSecs = int()
Returnsthetuple{ MegaSecs, Secs, M croSecs} whichistheelapsedtimesince00:00 GMT, January 1, 1970
(zero hour) on the assumption that the underlying OS supports this. Otherwise, some other point in time is chosen.
It is aso guaranteed that subsequent calls to this BIF returns continuously increasing values. Hence, the return value

fromnow() can be used to generate unique time-stamps, and if it is called in atight loop on a fast machine the time
of the node can become skewed.

It can only be used to check the local time of day if the time-zone info of the underlying operating system is properly
configured.

open_port (PortName, PortSettings) -> port()
Types:
PortName = {spawn, Command} | {spawn_driver, Command} | {spawn_executable, FileName} | {fd, In,
Out}
Command = string()
FileName = [FileNameChar] | binary()
FileNameChar =int() (1..255 or any Unicode codepoint, see description)
In=0ut =int()
PortSettings = [Opt]
Opt = {packet, N} | stream | {ling, L} | {cd, Dir} | {env, Env} | {args, [ArgString]} | {arg0, ArgString} |
exit_status| use_stdio | nouse_stdio | stderr_to_stdout | in | out | binary | eof

N=1|2]4
L =int()
Dir = string()

ArgString = [FileNameChar] | binary()
Env = [{Name, Val}]

Name = string()

Val = string() | false

110 | Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS)

erlang

Returns a port identifier as the result of opening a new Erlang port. A port can be seen as an external Erlang process.
Por t Name is one of the following:

{spawn, Comand}

Starts an external program. Conmand is the name of the external program which will be run. Commrand runs
outside the Erlang work space unless an Erlang driver with the name Cormand isfound. If found, that driver will
be started. A driver runsin the Erlang workspace, which means that it is linked with the Erlang runtime system.

When starting external programson Solaris, thesystemcall vf or k isusedin preferencetof or k for performance
reasons, athough it has a history of being less robust. If there are problems with using vf or k, setting the
environment variable ERL_NO_VFORK to any value will cause f or k to be used instead.

For external programs, the PATH is searched (or an equivalent method is used to find programs, depending on
operating system). This is done by invoking the shell och certain platforms. The first space separated token of
the command will be considered as the name of the executable (or driver). This (among other things) makes
this option unsuitable for running programs having spaces in file or directory names. Use { spawn_executable,
Command} instead if spacesin executable file namesis desired.

{spawn_dri ver, Comrand}
Workslike{ spawn, Conmand}, but demandsthefirst (space separated) token of the command to be the name
of aloaded driver. If no driver with that name isloaded, abadar g error israised.

{spawn_execut abl e, Comand}

Works like { spawn, Commrand}, but only runs external executables. The Comrand in its whole is used
as the name of the executable, including any spaces. If arguments are to be passed, the ar gs and ar g0
Port Setti ngs can be used.

The shell is not usually invoked to start the program, it's executed directly. Neither is the PATH (or equivalent)
searched. To find a program in the PATH to execute, use os:find_executable/1.

Only if ashell script or . bat fileis executed, the appropriate command interpreter will implicitly be invoked,
but there will still be no command argument expansion or implicit PATH search.

The name of the executable as well as the arguments given in ar gs and ar g0 is subject to Unicode file
name trandation if the system is running in Unicode file name mode. To avoid trandation or force i.e.
UTF-8, supply the executable and/or arguments as a binary in the correct encoding. See the file module, the
file:native_name_encoding/0 function and the stdlib users guide for details.

Note:
The charactersin the name (if given as alist) can only be > 255 if the Erlang VM is started in Unicodefile
name tranglation mode, otherwise the name of the executable is limited to the |SO-latin-1 character set.

If the Conmrand cannot be run, an error exception, with the posix error code as the reason, is raised. The error
reason may differ between operating systems. Typically the error enoent is raised when one tries to run a
program that is not found and eaccess israised when the given fileis not executable.

{fd, In, oQut}

Allows an Erlang process to access any currently opened file descriptors used by Erlang. The file descriptor | n
can be used for standard input, and the file descriptor Qut for standard output. It isonly used for various servers
in the Erlang operating system (shel | and user). Hence, itsuse is very limited.

Port Set ti ngs isalist of settings for the port. Valid settings are:

Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS) | 111

erlang

{packet, N}

Messages are preceded by their length, sent in N bytes, with the most significant byte first. Valid values for N
arel, 2, or 4.

stream

Output messages are sent without packet lengths. A user-defined protocol must be used between the Erlang
process and the external object.

{line, L}

Messages are delivered on a per line basis. Each line (delimited by the OS-dependent newline sequence) is
delivered in one single message. The message data format is{ Fl ag, Li ne}, where Fl ag is either eol or
noeol andLi ne isthe actual data delivered (without the newline sequence).

L specifies the maximum line length in bytes. Lineslonger than thiswill be delivered in more than one message,
with the Fl ag set to noeol for al but the last message. If end of file is encountered anywhere else than
immediately following a newline sequence, the last line will also be delivered with the FI ag set to noeol . In
all other cases, lines are delivered with Fl ag setto eol .

The{packet, N} and{line, L} settingsare mutualy exclusive.
{cd, Dir}

Thisisonly validfor { spawn, Command} and{ spawn_execut abl e, Conmand} . Theexternal program
startsusing Di r asitsworking directory. Di r must be astring. Not available on VxWorks.

{env, Env}

Thisisonly valid for { spawn, Comrand} and{spawn_execut abl e, Comrand} . The environment of
the started process is extended using the environment specificationsin Env.

Env should be alist of tuples{ Nane, Val }, where Nane is the name of an environment variable, and Val
isthe valueit isto have in the spawned port process. Both Name and Val must be strings. The one exception
isVal beingtheatomf al se (inanaogy withos: get env/ 1), which removes the environment variable. Not
available on VxWorks.

{args, [string()]}

Thisoptionisonly valid for { spawn_execut abl e, Conmand} and specifies arguments to the executable.
Each argument is given as aseparate string and (on Unix) eventually ends up as one element each in the argument
vector. On other platforms, similar behavior is mimicked.

Thearguments are not expanded by the shell prior to being supplied to the executabl e, most notably thismeansthat
file wildcard expansion will not happen. Use filelib:wildcard/1 to expand wildcards for the arguments. Note that
even if the program is a Unix shell script, meaning that the shell will ultimately be invoked, wildcard expansion
will not happen and the script will be provided with the untouched arguments. On Windows®, wildcard expansion
is always up to the program itself, why thisisn't an issue.

Note also that the actual executable name (a.k.a. ar gv[0]) should not begiveninthislist. The proper executable
name will automatically be used as argv[0] where applicable.

When the Erlang VM is running in Unicode file name mode, the arguments can contain any Unicode characters
and will be trandlated into whatever is appropriate on the underlying OS, which means UTF-8 for al platforms
except Windows, which has other (more transparent) ways of dealing with Unicode arguments to programs.
To avoid Unicode tranglation of arguments, they can be supplied as binaries in whatever encoding is deemed

appropriate.

112 | Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS)

erlang

Note:

The charactersin the arguments (if given asalist of characters) can only be > 255 if the Erlang VM is started
in Unicode file name mode, otherwise the arguments are limited to the | SO-latin-1 character set.

If one, for any reason, wants to explicitly set the program name in the argument vector, the ar g0 option can
be used.

{arg0, string()}

Thisoptionisonly valid for { spawn_execut abl e, Conmand} and explicitly specifies the program name
argument when running an executable. This might in some circumstances, on some operating systems, be
desirable. How the program responds to this is highly system dependent and no specific effect is guaranteed.

The unicode file name trand ation rules of the ar gs option apply to this option as well.

exit_status

This is only valid for {spawn, Conmmand} where Commrand refers to an external program, and for
{spawn_execut abl e, Conmand}.

When the external process connected to the port exits, a message of the form {Port,
{exit_status, Status}} issenttothe connected process, where St at us isthe exit status of the external
process. If the program aborts, on Unix the same convention is used as the shellsdo (i.e., 128+signal).

If the eof option has been given as well, the eof message and the exi t _st at us message appear in an
unspecified order.

If the port program closes its stdout without exiting, theexi t _st at us option will not work.

use_stdio

Thisisonly validfor { spawn, Commrand} and{spawn_execut abl e, Comrand} . It alowsthe standard
input and output (file descriptors 0 and 1) of the spawned (UNIX) process for communication with Erlang.

nouse_stdio

The opposite of use_st di 0. Usesfile descriptors 3 and 4 for communication with Erlang.

stderr_t o_stdout

Affects ports to external programs. The executed program gets its standard error file redirected to its standard
output file. st derr _t o_st dout and nouse_st di o are mutually exclusive.

over |l apped_io

out

Affects ports to external programs on Windows® only. The standard input and standard output handles of the
port program will, if this option is supplied, be opened with the flag FILE_ FLAG_OVERLAPPED, so that the
port program can (and has to) do overlapped I/O on its standard handles. Thisis not normally the case for smple
port programs, but an option of value for the experienced Windows programmer. On all other platforms, this
option is silently discarded.

The port can only be used for input.

The port can only be used for output.

bi nary

All 10 from the port are binary data objects as opposed to lists of bytes.

Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS) | 113

erlang

eof

The port will not be closed at the end of the file and produce an exit signal. Instead, it will remain open and a
{Port, eof} messagewill be sent to the process holding the port.

hi de

When running on Windows, suppress creation of a new console window when spawning the port program. (This
option has no effect on other platforms.)

The default isst r eamfor al types of port and use_st di o for spawned ports.

Failure: If the port cannot be opened, the exit reason is badar g, system | i m t, or the Posix error code which
most closely describesthe error, or ei nval if no Posix code is appropriate:

badar g
Bad input argumentsto open_port.
systemlinit
All available portsin the Erlang emulator arein use.
enomem
There was not enough memory to create the port.
eagain
There are no more available operating system processes.
enanet ool ong
The external command given was too long.
enfile
There are no more available file descriptors (for the operating system process that the Erlang emulator runsin).
enfile
Thefiletableisfull (for the entire operating system).
eacces
The Command givenin{spawn_execut abl e, Command} doesnot point out an executablefile.
enoent
The Command givenin{spawn_execut abl e, Conmand} doesnot point out an existing file.

During use of a port opened using { spawn, Nane}, {spawn_dri ver, Nane} or { spawn_execut abl e,
Nane}, errors arising when sending messages to it are reported to the owning process using signals of the form
{"EXIT, Port, PosixCode}.Seefil e(3) forpossiblevauesof Posi xCode.

The maximum number of ports that can be open at the same time is 1024 by default, but can be configured by the
environment variable ERL_ MAX PORTS.

erl ang: phash(Term Range) -> Hash

Types.
Term =term()
Range=1..2"32
Hash = 1..Range

114 | Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS)

erlang

Portable hash function that will give the same hash for the same Erlang term regardless of machine architecture and
ERTS version (the BIF was introduced in ERTS 4.9.1.1). Range can be between 1 and 232, the function returns a
hash value for Ter mwithintherange 1. . Range.

ThisBIF could be used instead of the old deprecated er | ang: hash/ 2 BIF, asit calculates better hashesfor all data-
types, but consider using phash2/ 1, 2 instead.

erl ang: phash2(Term [, Range]) -> Hash

Types:
Term =term()
Range=1..2"32

Hash = 0..Range-1

Portable hash function that will give the same hash for the same Erlang term regardless of machine architecture and
ERTS version (the BIF was introduced in ERTS 5.2). Range can be between 1 and 232, the function returns a hash
value for Ter mwithin the range 0. . Range- 1. When called without the Range argument, a value in the range
0..2727- 1 isreturned.

This BIF should aways be used for hashing terms. It distributes small integers better than phash/ 2, and it is faster
for bignums and binaries.

Note that the range 0. . Range- 1 isdifferent from the range of phash/ 2 (1. . Range).

pid_to_ list(Pid) -> string()
Types:
Pid = pid()
Returns a string which corresponds to the text representation of Pi d.

Warning:

ThisBIF isintended for debugging and for usein the Erlang operating system. It should not be used in application
programs.

port_cl ose(Port) -> true
Types:
Port = port() | atom()
Closesan open port. Roughly thesameasPort ! {sel f(), cl ose} exceptfortheerror behaviour (see below),

and that the port does not reply with { Port, cl osed} . Any process may close aport with port _cl ose/ 1, not
only the port owner (the connected process).

For comparison: Port ! {self(), close} failswithbadarg if Port cannot be sentto (i.e., Port refers
neither to a port nor to a process). If Por t isaclosed port nothing happens. If Por t isan open port and the calling
processis the port owner, the port replieswith { Port, cl osed} when all buffers have been flushed and the port
really closes, but if the calling processis not the port owner the port owner failswith badsi g.

Notethat any processcan closeaportusingPort ! {Port Omer, cl ose} justasifititself wasthe port owner,
but the reply always goes to the port owner.

Inshort: port _cl ose(Port) hasacleaner and morelogical behaviour thanPort ! {self(), close}.
Failure: badar g if Por t isnot an open port or the registered name of an open port.

Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS) | 115

erlang

port_command(Port, Data) -> true
Types:

Port = port() | atom()

Data = iodata()

Sendsdatatoaport. SameasPort ! {sel f(), {command, Dat a}} exceptfortheerror behaviour (seebelow).
Any process may send datato a port with port _conmand/ 2, not only the port owner (the connected process).

For comparison: Port ! {self(), {command, Data}} failswithbadar g if Port cannot be sentto (i.e,
Por t refersneither to aport nor to aprocess). If Por t isaclosed port the data message disappears without a sound.
If Por t isopen and the calling processis not the port owner, the port owner failswith badsi g. The port owner fails
with badsi g alsoif Dat aisnot avalid IO list.

Note that any process can sendto aport usingPort ! {Port Owner, {comand, Data}} justasifititself
was the port owner.

In short: port _conmand(Port, Data) hasa cleaner and more logical behaviour than Port ! {sel f (),
{comrand, Data}}.

If the port is busy, the calling process will be suspended until the port is not busy anymore.
Failures:

badar g

If Port isnot an open port or the registered name of an open port.
badar g

If Dat aisnot avalidiolist.

port _comand(Port, Data, OptionList) -> true|fal se
Types:

Port = port() | atom()

Data = iodata()

OptionList = [Option]

Option =force

Option = nosuspend
Sendsdatato aport. port _command(Port, Data, []) equalsport comand(Port, Data).
If the port command is aborted f al se isreturned; otherwise, t r ue isreturned.
If the port is busy, the calling process will be suspended until the port is not busy anymore.
Currently the following Opt i onsare valid:

force
The calling process will not be suspended if the port is busy; instead, the port command is forced through. The
call will fail with anot sup exception if the driver of the port does not support this. For more information see
the ERL_DRV_FLAG_SOFT_BUSY driver flag.

nosuspend
The calling process will not be suspended if the port is busy; instead, the port command is aborted and f al se
isreturned.

Note:
More options may be added in the future.

116 | Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS)

erlang

Failures:

badar g
If Port isnot an open port or the registered name of an open port.
badar g
If Dat aisnotavaidio list.
badar g
If Opti onLi st isnotavalid option list.
not sup
If thef or ce option has been passed, but the driver of the port does not allow forcing through a busy port.

port _connect(Port, Pid) -> true

Types.
Port = port() | atom()
Pid = pid()

Sets the port owner (the connected port) to Pi d. Roughly thesameasPort ! {self(), {connect, Pid}}
except for the following:

» Theerror behavior differs, see below.

e The port does not reply with { Por t , connect ed} .

¢ Thenew port owner gets linked to the port.

The old port owner stays linked to the port and haveto call unl i nk(Port) if thisisnot desired. Any process may
set the port owner to be any processwith port _connect/ 2.

For comparison: Port ! {self(), {connect, Pid}} failswithbadarg if Port cannot be sent to (i.e.,
Port refersneither to aport nor to a process). If Por t isaclosed port nothing happens. If Por t isan open port and
the calling process is the port owner, the port replieswith{ Port, connect ed} tothe old port owner. Note that
the old port owner is still linked to the port, and that the new is not. If Por t isan open port and the calling process
is not the port owner, the port owner fails with badsi g. The port owner fails with badsi g alsoif Pi d ishot an
existing local pid.

Note that any process can set the port owner usingPort | {Port Omer, {connect, Pid}} justasifititself
was the port owner, but the reply always goes to the port owner.

In short: port _connect (Port, Pid) hasacleaner and more logical behaviour than Port ! {sel f(),
{connect, Pi d}}.

Failure: badar g if Port is not an open port or the registered name of an open port, or if Pi d is not an existing
local pid.

port_control (Port, Operation, Data) -> Res
Types:
Port = port() | atom()
Operation = int()
Data = Res = iodata()
Performs a synchronous control operation on a port. The meaning of Oper at i on and Dat a depends on the port,
i.e., onthe port driver. Not al port drivers support this control feature.

Returns: alist of integers in the range O through 255, or a binary, depending on the port driver. The meaning of the
returned data also depends on the port driver.

Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS) | 117

erlang

Failure: badar g if Port isnot an open port or the registered name of an open port, if Oper at i on cannot fitina
32-hit integer, if the port driver does not support synchronous control operations, or if the port driver so decides for
any reason (probably something wrong with Qper at i on or Dat a).

erlang: port_call (Port, QOperation, Data) -> tern()
Types.

Port = port() | atom()

Operation =int()

Data =term()

Performs a synchronous call to a port. The meaning of Oper at i on and Dat a depends on the port, i.e., on the port
driver. Not all port drivers support this feature.

Port isaport identifier, referring to adriver.

Oper at i on isaninteger, which is passed on to the driver.

Dat a isany Erlang term. This datais converted to binary term format and sent to the port.
Returns: aterm from the driver. The meaning of the returned data also depends on the port driver.

Failure: badar g if Port isnot an open port or the registered name of an open port, if Oper at i on cannot fitin a
32-hit integer, if the port driver does not support synchronous control operations, or if the port driver so decides for
any reason (probably something wrong with Oper at i on or Dat a).

erlang: port _info(Port) -> [{lItem Info}] | undefined
Types:

Port = port() | atom()

Item, Info -- see below

Returns alist containing tuples with information about the Por t , or undef i ned if the port is not open. The order
of the tuplesis not defined, nor are all the tuples mandatory.

{regi stered_nane, RegNane}

RegNane (an atom) isthe registered name of the port. If the port has no registered name, thistuple is not present
inthelist.

{id, Index}

I ndex (aninteger) isthe internal index of the port. Thisindex may be used to separate ports.
{connect ed, Pid}

Pi d isthe process connected to the port.
{l'i nks, Pids}

Pi ds isalist of pidsto which processes the port is linked.
{nane, String}

St ri ng isthe command name set by open_port .
{input, Bytes}

Byt es isthetotal number of bytes read from the port.
{out put, Bytes}

Byt es isthetotal number of bytes written to the port.

Failure: badar g if Port isnot alocal port.

118 | Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS)

erlang

erlang: port _info(Port, Item) -> {ltem Info} | undefined | []
Types:

Port = port() | atom()

Item, Info -- see below

Returns information about Por t as specified by |1 t em or undef i ned if the port is hot open. Also, if | t em ==
regi st er ed_nane and the port has no registered name, [] is returned.

For valid values of | t em and corresponding values of | nf o, see erlang: port_info/1.
Failure: badar g if Port isnot alocal port.

erlang: port_to_list(Port) -> string()
Types:
Port = port()
Returns a string which corresponds to the text representation of the port identifier Por t .

Warning:

ThisBIF isintended for debugging and for usein the Erlang operating system. It should not be used in application
programs.

erlang: ports() -> [port()]
Returns alist of all ports on the local node.

pre_|l oaded() -> [Modul €]
Types:
M odule = atom()

Returns alist of Erlang modules which are pre-loaded in the system. As all loading of code is done through the file
system, the file system must have been loaded previously. Hence, at least the module i ni t must be pre-loaded.

erl ang: process_di spl ay(Pi d, Type) -> void()
Types:
Pid = pid()
Type = backtrace
Writes information about the local process Pi d on standard error. The currently allowed value for the atom Ty pe is

backt r ace, which shows the contents of the call stack, including information about the call chain, with the current
function printed first. The format of the output is not further defined.

process_flag(Flag, Value) -> A dVal ue
Types:
Flag, Value, OldValue -- see below
Sets certain flags for the process which calls this function. Returns the old value of the flag.

Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS) | 119

erlang

process_flag(trap_exit, Bool ean)

Whentrap exit issettotrue, exit signas arriving to a process are converted to {' EXIT', From

Reason} messages, which can be received as ordinary messages. If t rap_exi t issettof al se, the process
exits if it receives an exit signal other than nor mal and the exit signal is propagated to its linked processes.
Application processes should normally not trap exits.

See also exit/2.
process_flag(error_handl er, Mdule)

This is used by a process to redefine the error handler for undefined function calls and undefined registered
processes. Inexperienced users should not use this flag since code auto-loading is dependent on the correct
operation of the error handling module.

process_fl ag(m n_heap_size, M nHeapSi ze)

This changes the minimum heap size for the calling process.
process_flag(m n_bin_vheap_size, M nBi nVHeapSi ze)

This changes the minimum binary virtual heap size for the calling process.
process_flag(priority, Level)

This sets the process priority. Level isanatom. There are currently four priority levels: | ow, nor mal , hi gh,
and max. The default priority level isnor mal . NOTE: The max priority level isreserved for internal usein the
Erlang runtime system, and should not be used by others.

Internally in each priority level processes are scheduled in around robin fashion.

Execution of processes on priority nor mal and priority | owwill be interleaved. Processes on priority | owwill
be selected for execution less frequently than processes on priority nor nal .

When there are runnable processes on priority hi gh no processes on priority | ow, or nor mal will be selected
for execution. Note, however, that this does not mean that no processes on priority | ow, or nor mal will be able
to run when there are processes on priority hi gh running. On the runtime system with SMP support there might
be more processes running in parallel than processes on priority hi gh, i.e., al ow, and ahi gh priority process
might execute at the same time.

When there are runnable processes on priority max no processes on priority | ow, nor mal , or hi gh will be
selected for execution. As with the hi gh priority, processes on lower priorities might execute in parallel with
processes on priority max.

Scheduling is preemptive. Regardless of priority, a process is preempted when it has consumed more than a
certain amount of reductions since the last time it was selected for execution.

NOTE: You should not depend on the scheduling to remain exactly as it is today. Scheduling, at least on the
runtime system with SMP support, is very likely to be modified in the future in order to better utilize available
processor cores.

Thereiscurrently no automatic mechanism for avoiding priority inversion, such as priority inheritance, or priority
ceilings. When using priorities you have to take this into account and handle such scenarios by yourself.

Making callsfromahi gh priority processinto codethat you don't have control over may causethehi gh priority
process to wait for a processes with lower priority, i.e., effectively decreasing the priority of the hi gh priority
process during the call. Even if thisisn't the case with one version of the code that you don't have under your
control, it might be the case in afuture version of it. This might, for example, happen if ahi gh priority process
triggers code loading, since the code server runs on priority nor nal .

Other prioritiesthan nor mal are normally not needed. When other priorities are used, they need to be used with
care, especialy the hi gh priority must be used with care. A processon hi gh priority should only perform work

120 | Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS)

erlang

for short periods of time. Busy looping for long periods of timeinahi gh priority processwill most likely cause
problems, since there are important serversin OTP running on priority nor mal .

process_flag(save calls, N

When there are runnable processes on priority max no processes on priority | ow, nor mal , or hi gh will be
selected for execution. As with the hi gh priority, processes on lower priorities might execute in parallel with
processes on priority max.

N must be an integer in the interval 0..10000. If N> 0, call saving is made active for the process, which means
that information about the N most recent global function cals, BIF calls, sends and receives made by the process
are saved in alist, which can be retrieved with process_i nfo(Pi d, |ast_calls).A global function
cal is one in which the module of the function is explicitly mentioned. Only a fixed amount of information is
saved: atuple{ Modul e, Function, Arity} forfunction cals, and the mere atomssend,' r ecei ve'
andti meout for sendsand receives(' recei ve' when amessageisreceived andt i meout when areceive
times out). If N =0, call saving is disabled for the process, which is the default. Whenever the size of the call
saving list is set, its contents are reset.

process_fl ag(sensitive, Bool ean)

Set or clear thesensi t i ve flag for the current process. When a process has been marked as sensitive by calling
process_flag(sensitive, true), featuresin the run-time system that can be used for examining the
data and/or inner working of the process are silently disabled.

Features that are disabled include (but are not limited to) the following:

Tracing: Trace flags can still be set for the process, but no trace messages of any kind will be generated. (If the
sensi ti ve flagisturned off, trace messages will again be generated if there are any trace flags set.)

Sequential tracing: The sequentia trace token will be propagated as usual, but no sequential trace messages will
be generated.

process_i nfo/ 1, 2 cannot be used to read out the message queue or the process dictionary (both will be
returned as empty lists).

Stack back-traces cannot be displayed for the process.
In crash dumps, the stack, messages, and the process dictionary will be omitted.

If {save_cal | s, N} has been set for the process, no function calls will be saved to the call saving list. (The
call saving list will not be cleared; furthermore, send, receive, and timeout events will still be added to thelist.)

process _flag(Pid, Flag, Value) -> A dVal ue
Types.

Pid = pid()

Flag, Value, OldValue -- see below

Sets certain flags for the process Pi d, in the same manner as process_flag/2. Returns the old value of the flag. The
allowed values for FI ag are only a subset of those allowed in pr ocess_f | ag/ 2, namely: save_cal | s.

Failure: badar g if Pi d isnot alocal process.

process_info(Pid) -> InfoResult
Types:

Pid = pid()

Item = atom()

Info=term()

InfoTuple = {Item, Info}

Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS) | 121

erlang

InfoTupleList =[InfoTuple]
InfoResult = InfoTupleList | undefined

Returns a list containing | nf oTupl es with miscellaneous information about the process identified by Pi d, or
undef i ned if the processis not alive.

The order of the | nf oTupl es is not defined, nor are al the | nf oTupl es mandatory. The | nf oTupl es
part of the result may be changed without prior notice. Currently | nf oTupl es with the following | t ens are
part of the result: current _function, initial _call, status, nessage_queue_| en, nessages,
links,dictionary,trap_exit,error_handler,priority,group | eader,total heap_size,
heap_si ze,stack_si ze,reducti ons,andgar bage_col | ecti on. If the processidentified by Pi d hasa
registered namealsoan | nf oTupl e withlt em == regi st er ed_nane will appear.

See process_info/2 for information about specific | nf oTupl es.

Warning:
This BIF isintended for debugging only, use process info/2 for al other purposes.

Failure: badar g if Pi d isnot alocal process.

process_info(Pid, ItenSpec) -> InfoResult
Types:

Pid = pid()

Item = atom()

Info=term()

ItemList = [Item]

[temSpec = Item | ItemList

InfoTuple={ltem, Info}

InfoTupleList =[InfoTuple]

InfoResult = InfoTuple | InfoTupleList | undefined | []

Returnsinformation about the processidentified by Pi d asspecified by thel t enSpec, orundef i ned if the process
isnot aive.

If the processisaiveand | t enSpec isasinglel t em the returned value is the corresponding | nf oTupl e unless
I tenSpec == registered_nane and the process has no registered name. In thiscase [] isreturned. This
strange behavior is due to historical reasons, and is kept for backward compatibility.

If ItenBpec isanltenlist,theresultisan| nfoTupl eLi st. Thel nf oTupl esinthel nf oTupl eLi st
will appear with the corresponding | t ensin the same order asthel t ensappearedinthel t enlLi st. ValidI t ens
may appear multipletimesinthel t enli st .

Note:

If registered_nane is pat of an Itenlist and the process has no name registered a
{regi stered_name, []} | nfoTupl e will appear in the resulting | nf oTupl eLi st . This behavior is
different thanwhen | t enSpec == r egi st er ed_nan®e, and than when pr ocess_i nf o/ 1 is used.

Currently the following | nf oTupl eswith corresponding | t ens are valid:

122 | Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS)

erlang

{backtrace, Bin}

The binary Bi n contains the same information as the output from er | ang: process_di spl ay(Pi d,
backtrace).Usebinary_to_|i st/ 1 toobtainthestring of characters from the binary.

{bi nary, Binlnfo}

Bi nl nf o isalist containing miscellaneousinformation about binaries currently being referred to by this process.
This| nf oTupl e may be changed or removed without prior notice.

{catchl evel, CatchLevel}

Cat chLevel isthe number of currently active catches in this process. This| nf oTupl e may be changed or
removed without prior notice.

{current _function, {Mdule, Function, Args}}
Modul e, Funct i on, Ar gs isthe current function call of the process.
{dictionary, Dictionary}
Di cti onary isthedictionary of the process.
{error_handl er, Mdul e}
Modul e isthe error handler module used by the process (for undefined function calls, for example).
{garbage _col |l ecti on, GClnfo}

GCl nf o isalist which contains miscellaneousinformation about garbage collection for this process. The content
of GCI nf o may be changed without prior notice.

{group_| eader, G ouplLeader}
G oupLeader isgroup leader for the 1O of the process.
{heap_si ze, Size}

Si ze isthesizeinwordsof youngest heap generation of the process. Thisgeneration currently includethe stack of
the process. Thisinformation is highly implementation dependent, and may changeif the implementation change.

{initial _call, {Mdule, Function, Arity}}

Modul e, Function, Ari ty istheinitia function call with which the process was spawned.
{l'i nks, Pids}

Pi ds isalist of pids, with processes to which the process has alink.
{last _calls, false|Calls}

Thevaueisf al se if call savingis not active for the process (see process flag/3). If call saving is active, alist
isreturned, in which the last element is the most recent called.

{menory, Size}
Si ze isthe sizein bytes of the process. Thisincludes call stack, heap and internal structures.
{message_bi nary, Binlnfo}

Bi nl nf o isalist containing miscellaneousinformation about binaries currently being referred to by the message
area. This | nf oTupl e is only valid on an emulator using the hybrid heap type. This | nf oTupl e may be
changed or removed without prior notice.

{message_queue_l en, MessageQueuelen}

MessageQueuelen isthe number of messages currently in the message queue of the process. Thisisthelength
of thelist MessageQueue returned astheinfo item messages (see below).

Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS) | 123

erlang

{messages, MessageQueue}
MessageQueue isalist of the messages to the process, which have not yet been processed.
{m n_heap_si ze, M nHeapSi ze}
M nHeapSi ze isthe minimum heap size for the process.
{mM n_bi n_vheap_si ze, M nBi nVHeapSi ze}
M nBi nVHeapSi ze isthe minimum binary virtual heap size for the process.
{noni tored_by, Pids}
A list of pidsthat are monitoring the process (with noni t or / 2).
{noni tors, Monitors}

A list of monitors (started by moni t or / 2) that are active for the process. For alocal process monitor or aremote
process monitor by pid, thelistitemis{ pr ocess, Pi d}, and for aremote process monitor by name, the list
itemis{ process, {RegNane, Node}}.

{priority, Level}

Level isthecurrent priority level for the process. For more information on priorities see process_flag(priority,
Level).

{reductions, Nunber}
Nunber isthe number of reductions executed by the process.
{regi stered_name, Aton}

At omis the registered name of the process. If the process has no registered name, this tuple is not present in
thelist.

{sequential _trace_token, [] | Sequential TraceToken}

Sequent i al Tr aceToken the sequential trace token for the process. This| nf oTupl e may be changed or
removed without prior notice.

{stack_size, Size}
Si ze isthe stack size of the processin words.
{status, Status}

St at us is the status of the process. St at us is exi ti ng, gar bage_col | ecti ng, wai ti ng (for a
message), r unni ng, r unnabl e (ready to run, but another processis running), or suspended (suspended on
a"busy" port or by theer | ang: suspend_process/[1, 2] BIF).

{suspendi ng, SuspendeelLi st}

Suspendeeli st is a list of { Suspendee, Act i veSuspendCount ,

CQut st andi ngSuspendCount } tuples. Suspendee is the pid of a process that have been or is
to be suspended by the process identified by Pid via the erlang:suspend process2 BIF, or the
erlang: suspend_processy/1 BIF. Act i veSuspendCount is the number of times the Suspendee has been
suspended by Pi d. Qut st andi ngSuspendCount isthe number of not yet completed suspend requests sent
by Pi d. Thatis, if Acti veSuspendCount /= 0, Suspendee is currently in the suspended state, and if
CQut st andi ngSuspendCount /= 0 theasynchronous option of er| ang: suspend_pr ocess/ 2
has been used and the suspendee has not yet been suspended by Pi d. Note that the Act i veSuspendCount

andQut st andi ngSuspendCount arenot thetotal suspend count on Suspendee, only the parts contributed
by Pi d.

{total heap_size, Size}
Si ze isthetotal sizeinwords of al heap fragments of the process. This currently include the stack of the process.

124 | Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS)

erlang

{trace, Internal TraceFl ags}

I nt er nal Tr aceFl ags isan integer representing internal trace flag for this process. This| nf oTupl e may
be changed or removed without prior notice.

{trap_exit, Bool ean}

Bool ean istr ue if the processistrapping exits, otherwiseitisf al se.
Note however, that not all implementations support every one of the abovel t ens.
Failure: badar g if Pi d isnot alocal process, orif | t emisnotavalid| t em

processes() -> [pid()]
Returns alist of process identifiers corresponding to all the processes currently existing on the local node.

Note that a process that is exiting, exists but is not alive, i.e,, i s_process_al i ve/ 1 will return f al se for a
process that is exiting, but its process identifier will be part of the result returned from pr ocesses/ 0.

> processes().
[<0. 0. 0>, <0. 2. 0>, <0. 4. 0>, <0. 5. 0>, <0. 7. 0>, <0. 8. 0>]

pur ge_nodul e(Modul e) -> voi d()
Types:
Module = atom()

Removes old code for Modul e. BeforethisBIF isused, er | ang: check_process_code/ 2 should be caled to
check that no processes are executing old code in the module.

Warning:
This BIF isintended for the code server (see code(3)) and should not be used elsewhere.

Failure: badar g if thereis no old code for Mbdul e.

put (Key, Val) -> ddval | undefined
Types:
Key =Val = OldVal =term()

Adds anew Key to the process dictionary, associated with the value Val , and returnsundef i ned. If Key aready
exists, the old value is deleted and replaced by Val and the function returns the old value.

Note:

The values stored when put is evaluated within the scope of a cat ch will not be retracted if at hr ow is
evaluated, or if an error occurs.

> X = put(nanme, walrus), Y = put(nane, carpenter),
Z = get(nane),

Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS) | 125

erlang

{X, Y Z}.
{undef i ned, wal rus, car pent er}

erl ang: rai se(C ass, Reason, Stacktrace)
Types:
Class=error | exit | throw
Reason =term()
Stacktrace = [{Module, Function, Arity | Args} | {Fun, Args}]
Module = Function = atom()
Arity =int()
Args=[term()]
Fun =[fun()]

Stopsthe execution of the calling process with an exception of given class, reason and call stack backtrace (stacktrace).

Warning:

This BIF isintended for debugging and for use in the Erlang operating system. In general, it should be avoided
in applications, unless you know very well what you are doing.

Ol assisoneof error,exit ort hr ow, soif it werenot for the stacktraceer | ang: r ai se(d ass, Reason,

St acktrace) isequivalentto erl ang: ass(Reason) . Reason isany term and St ackt r ace isalist as
returned fromget _st acktrace(),thatisalist of 3-tuples{ Modul e, Function, Arity | Args} where
Modul e and Funct i on are atoms and the third element is an integer arity or an argument list. The stacktrace may
also contain { Fun, Ar gs} tupleswhere Fun isalocal funand Ar gs isan argument list.

The stacktrace is used as the exception stacktrace for the calling process; it will be truncated to the current maximum
stacktrace depth.

Because evaluating this function causes the process to terminate, it has no return value - unless the arguments are
invalid, in which case the function returnsthe error reason, that isbadar g. If you want to be really sure not to return
youcancal error(erl ang: rai se(Cl ass, Reason, Stacktrace)) andhope to distinguish exceptions
later.

erlang:read _tiner(TinerRef) -> int() | false
Types:
Timer Ref = reference()

Ti mer Ref is a timer reference returned by erlang:send after/3 or erlang:start_timer/3. If the timer is active,
the function returns the time in milliseconds left until the timer will expire, otherwise f al se (which means that
Ti mer Ref was never atimer, that it has been cancelled, or that it has already delivered its message).

See dso erlang:send_after/3, erlang:start_timer/3, and erlang: cancel_timer/1.

erlang:ref to list(Ref) -> string()
Types:
Ref = reference()

Returns a string which corresponds to the text representation of Ref .

126 | Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS)

erlang

Warning:

ThisBIF isintended for debugging and for use in the Erlang operating system. It should not be used in application
programs.

regi ster(RegNane, Pid | Port) -> true

Types:
RegName = atom()
Pid = pid()

Port = port()

Associates the name RegNarre with apid or aport identifier. RegNarme, which must be an atom, can be used instead
of the pid / port identifier in the send operator (RegNanme ! Message).

> register(db, Pid)
true

Failure: badar g if Pi d isnot an existing, local process or port, if RegNare isalready in use, if the process or port
is aready registered (already has aname), or if RegNane isthe atom undef i ned.

regi stered() -> [RegNane]
Types.
RegName = atom()
Returns alist of names which have been registered using register/2.

> registered().
[code_server, file_server, init, user, ny_db]

erl ang: resume_process(Suspendee) -> true
Types:

Suspendee = pid()
Decreases the suspend count on the process identified by Suspendee. Suspendee should previously
have been suspended via erlang:suspend process/’2, or erlang:suspend_process/l by the process calling
erl ang: resume_pr ocess(Suspendee) . When the suspend count on Suspendee reach zero, Suspendee

will be resumed, i.e, the state of the Suspendee is changed from suspended into the state Suspendee was in
before it was suspended.

Warning:
This BIF isintended for debugging only.

Failures:

Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS) | 127

erlang

badar g
If Suspendee isn't aprocessidentifier.
badar g
If the process calling er | ang: r esune_pr ocess/ 1 had not previously increased the suspend count on the
processidentified by Suspendee.
badar g
If the processidentified by Suspendee isnot alive.

round(Nunmber) -> int()
Types:
Number = number ()
Returns an integer by rounding Nurrber .

> round(5.5).
6

Allowed in guard tests.

self() -> pid()
Returns the pid (process identifier) of the calling process.

> sel f().
<0. 26. 0>

Allowed in guard tests.

erl ang: send(Dest, Msg) -> Mg
Types:
Dest = pid() | port() | RegName | {RegName, Node}
Msg =term()
RegName = atom()
Node = node()

Sends a message and returns Msg. ThisisthesameasDest ! Msg.

Dest may be aremote or local pid, a (local) port, alocally registered name, or atuple { RegNane, Node} for a
registered name at another node.

erl ang: send(Dest, Msg, [Option]) -> Res
Types:

Dest = pid() | port() | RegName | {RegName, Node}

RegName = atom()

Node = node()

Msg =term()

Option = nosuspend | noconnect

Res = ok | nosuspend | noconnect

128 | Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS)

erlang

Sends a message and returns ok, or does not send the message but returns something else (see below). Otherwise the
same as erlang: send/2. See aso erlang: send_nosuspend/2,3. for more detailed explanation and warnings.

The possible options are:
nosuspend
If the sender would have to be suspended to do the send, nosuspend isreturned instead.
noconnect
If the destination node would have to be auto-connected before doing the send, noconnect isreturned instead.

Warning:

Aswither | ang: send_nosuspend/ 2, 3: Use with extreme carel

erl ang: send_after(Tine, Dest, Msg) -> TinmerRef
Types.
Time=int()
0 <= Time <= 4294967295
Dest = pid() | RegName
L ocalPid = pid() (of a process, alive or dead, on the local node)
Msg = term()
Timer Ref = reference()
Starts atimer which will send the message Msg to Dest after Ti me milliseconds.

If Dest isanatom, it issupposed to be the name of aregistered process. The process referred to by the nameislooked
up at the time of delivery. No error is given if the name does not refer to a process.

If Dest isapid, thetimer will be automatically canceled if the process referred to by the pid is not alive, or when the
process exits. This feature was introduced in erts version 5.4.11. Note that timers will not be automatically canceled
when Dest isan atom.

See also erlang: start_timer/3, erlang:cancel_timer/1, and erlang:read_timer/1.
Failure: badar g if the arguments does not satisfy the requirements specified above.

erl ang: send_nosuspend(Dest, Msg) -> bool ()
Types:
Dest = pid() | port() | RegName | {RegName, Node}
RegName = atom()
Node = node()
Msg = term()
Thesameaserlang: send(Dest, Msg, [nosuspend]), but returnst r ue if themessagewassent andf al se if themessage
was not sent because the sender would have had to be suspended.

This function is intended for send operations towards an unreliable remote node without ever blocking the sending
(Erlang) process. If the connection to the remote node (usually not areal Erlang node, but anode writtenin C or Java)
is overloaded, this function will not send the message but return f al se instead.

The same happens, if Dest refersto alocal port that isbusy. For all other destinations (allowed for the ordinary send
operator ' ! ') this function sends the message and returnst r ue.

Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS) | 129

erlang

Thisfunction is only to be used in very rare circumstances where a process communicates with Erlang nodes that can
disappear without any trace causing the TCP buffers and the drivers queue to be over-full before the node will actually
be shut down (due to tick timeouts) by net _ker nel . The normal reaction to take when this happens is some kind
of premature shutdown of the other node.

Note that ignoring the return value from this function would result in unreliable message passing, which is
contradictory to the Erlang programming model. The message is not sent if this function returnsf al se.

Note also that in many systems, transient states of overloaded queues are normal. The fact that this function returns
f al se does not in any way mean that the other node is guaranteed to be non-responsive, it could be a temporary
overload. Also areturn value of t r ue does only mean that the message could be sent on the (TCP) channel without
blocking, the message is not guaranteed to have arrived at the remote node. Also in the case of a disconnected non-
responsive node, the return valueist r ue (mimics the behaviour of the! operator). The expected behaviour as well
as the actions to take when the function returnsf al se are application and hardware specific.

Warning:

Use with extreme care!

erl ang: send_nosuspend(Dest, Msg, Options) -> bool ()
Types:
Dest = pid() | port() | RegName | {RegName, Node}
RegName = atom()
Node = node()
Msg = term()
Option = noconnect
The same as erlang: send(Dest, Msg, [hosuspend | Options]), but with boolean return value.

Thisfunction behaveslike erlang: send _nosuspend/2), but takes athird parameter, alist of options. The only currently
implemented option isnoconnect . The option noconnect makes the function return f al se if the remote node
is not currently reachable by the local node. The normal behaviour is to try to connect to the node, which may stall
the process for a shorter period. The use of the noconnect option makesit possible to be absolutely sure not to get
even the dlightest delay when sending to a remote process. Thisis especially useful when communicating with nodes
who expect to always be the connecting part (i.e. nodes writtenin C or Java).

Whenever the function returnsf al se (either when a suspend would occur or when noconnect was specified and
the node was not already connected), the message is guaranteed not to have been sent.

Warning:

Use with extreme care!

erl ang: set _cooki e(Node, Cookie) -> true
Types:

Node = node()

Cookie = atom()

130 | Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS)

erlang

Sets the magic cookie of Node to the atom Cooki e. If Node isthe local node, the function also sets the cookie of
all other unknown nodesto Cooki e (see Distributed Erlang in the Erlang Reference Manual).

Failure: f unct i on_cl ause if theloca nodeis not aive.

set el enent (I ndex, Tuplel, Value) -> Tuple2
Types.

Index = 1..tuple_size(Tuplel)

Tuplel = Tuple2 = tuple()

Value =term()

Returns atuple whichis a copy of the argument Tupl el with the element given by theinteger argument | ndex (the
first element is the element with index 1) replaced by the argument Val ue.

> setelenent (2, {10, green, bottles}, red).
{10, red, bottl es}

size(ltem) ->int()
Types:
Item = tuple() | binary()
Returns an integer which isthe size of the argument | t em which must be either atuple or abinary.

> size({nmorni, mulle, bwange}).
3

Allowed in guard tests.
spawn(Fun) -> pid()
Types:

Fun =fun()
Returnsthe pid of anew process started by the application of Fun to theempty list [] . Otherwise workslike spawn/3.

spawn(Node, Fun) -> pid()

Types:
Node = node()
Fun = fun()

Returns the pid of a new process started by the application of Fun to the empty list [] on Node. If Node does not
exist, auseless pid is returned. Otherwise works like spawn/3.

spawn(Mbdul e, Function, Args) -> pid()
Types:

M odule = Function = atom()

Args=[term()]

Returnsthe pid of anew process started by the application of Modul e: Funct i on toAr gs. The new process created
will be placed in the system scheduler queue and be run some time later.

Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS) | 131

erlang

error _handl er: undefi ned _function(Mdul e, Function, Args) isevaluated by the new process
if Modul e: Function/ Arity does not exist (where Arity is the length of Args). The error handler can
be redefined (see process flag/2). If error _handl er is undefined, or the user has redefined the default
error _handl er itsreplacement is undefined, afailure with the reason undef will occur.

> spawn(speed, regul ator, [high _speed, thin_cut]).
<0.13. 1>

spawn(Node, Mdul e, Function, Args) -> pid()
Types.
Node = node()
M odule = Function = atom()
Args=[term()]
Returnsthe pid of anew process started by the application of Modul e: Funct i on to Ar gs on Node. If Node does
not exists, a useless pid is returned. Otherwise works like spawn/3.

spawn_l i nk(Fun) -> pid()
Types.
Fun = fun()

Returns the pid of a new process started by the application of Fun to the empty list []. A link is created between the
calling process and the new process, atomically. Otherwise works like spawn/3.

spawn_l i nk(Node, Fun) -> pid()

Types:
Node = node()
Fun =fun()

Returns the pid of a new process started by the application of Fun to the empty list [] on Node. A link is created
between the calling process and the new process, atomically. If Node does not exist, auseless pid is returned (and due
to thelink, an exit signal with exit reason noconnect i on will be received). Otherwise works like spawn/3.

spawn_| i nk(Modul e, Function, Args) -> pid()
Types.

M odule = Function = atom()

Args=[term()]

Returnsthe pid of anew process started by the application of Mbdul e: Funct i on to Ar gs. A link iscreated between
the calling process and the new process, atomically. Otherwise works like spawn/3.

spawn_I i nk(Node, Modul e, Function, Args) -> pid()
Types:

Node = node()

M odule = Function = atom()

Args=[term()]

132 | Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS)

erlang

Returns the pid of a new process started by the application of Modul e: Functi on to Args on Node. A link is
created between the calling process and the new process, atomically. If Node does not exist, a useless pid is returned
(and dueto thelink, an exit signal with exit reasonnoconnect i on will bereceived). Otherwise works like spawn/3.

spawn_nonitor (Fun) -> {pid(),reference()}
Types:
Fun = fun()

Returns the pid of a new process started by the application of Fun to the empty list [] and reference for a monitor
created to the new process. Otherwise works like spawn/3.

spawn_noni t or (Mbdul e, Function, Args) -> {pid(),reference()}
Types:

M odule = Function = atom()

Args=[term()]

A new process is started by the application of Modul e: Funct i on to Ar gs, and the process is monitored at the
same time. Returns the pid and a reference for the monitor. Otherwise works like spawn/3.

spawn_opt (Fun, [Option]) -> pid() | {pid(),reference()}
Types.
Fun =fun()
Option = link | monitor | {priority, Level} | {fullsweep_after, Number} | {min_heap_size, Size} |
{min_bin_vheap_size, VSize}
Level =low | normal | high
Number =int()
Size=int()
VSize=int()
Returns the pid of a new process started by the application of Fun to the empty list [] . Otherwise works like
Spawn_opt/4.

If the option noni t or is given, the newly created process will be monitored and both the pid and reference for the
monitor will be returned.

spawn_opt (Node, Fun, [Option]) -> pid()

Types:
Node = node()
Fun =fun()

Option = link |{priority, Level} | {fullsweep_after, Number} | {min_heap_size, Size} |

{min_bin_vheap_size, VSize}

Level =low | normal | high

Number =int()

Size=int()

VSize=int()
Returns the pid of a new process started by the application of Fun to the empty list [] on Node. If Node does not
exist, ausaless pid is returned. Otherwise works like spawn_opt/4.

Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS) | 133

erlang

spawn_opt (Modul e, Function, Args, [Option]) -> pid() | {pid(),reference()}
Types:
M odule = Function = atom()
Args=[term()]
Option =link | monitor | {priority, Level} | {fullsweep_after, Number} | {min_heap_size, Size} |
{min_bin_vheap_size, VSize}
Level =low | normal | high
Number =int()
Size=int()
VSize=int()
Works exactly like spawn/3, except that an extraoption list is given when creating the process.
If the option noni t or is given, the newly created process will be monitored and both the pid and reference for the
monitor will be returned.
i nk
Setsalink to the parent process (like spawn_L| i nk/ 3 does).
noni t or
Monitor the new process (just like monitor/2 does).
{priority, Level}

Setsthe priority of the new process. Equivalent to executing process flag(priority, Level) in the start function of
the new process, except that the priority will be set before the process is selected for execution for the first time.
For more information on priorities see process flag(priority, Level).

{full sweep_after, Nunber}

This option is only useful for performance tuning. In general, you should not use this option unless you know
that there is problem with execution times and/or memory consumption, and you should measure to make sure
that the option improved matters.

The Erlang runtime system uses a generational garbage collection scheme, using an "old heap" for data that
has survived at least one garbage collection. When there is no more room on the old heap, a fullsweep garbage
collection will be done.

Thef ul | sweep_aft er option makesit possible to specify the maximum number of generational collections
before forcing a fullsweep even if there is still room on the old heap. Setting the number to zero effectively
disables the general collection algorithm, meaning that all live datais copied at every garbage collection.

Here are a few cases when it could be useful to change f ul | sweep_aft er. Firstly, if binaries that are no
longer used should be thrown away as soon as possible. (Set Nunber to zero.) Secondly, a process that mostly
have short-lived datawill be full sweeped seldom or never, meaning that the old heap will contain mostly garbage.
To ensure a fullsweep once in awhile, set Nunber to a suitable value such as 10 or 20. Thirdly, in embedded
systems with limited amount of RAM and no virtual memory, one might want to preserve memory by setting
Nunber to zero. (The value may be set globally, see erlang:system flag/2.)

{m n_heap_si ze, Size}

This option is only useful for performance tuning. In general, you should not use this option unless you know
that there is problem with execution times and/or memory consumption, and you should measure to make sure
that the option improved matters.

Gives a minimum heap size in words. Setting this value higher than the system default might speed up some
processes because less garbage collection is done. Setting too high value, however, might waste memory and

134 | Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS)

erlang

slow down the system due to worse data locality. Therefore, it is recommended to use this option only for fine-
tuning an application and to measure the execution time with various Si ze values.
{m n_bin_vheap_size, VSize}

This option is only useful for performance tuning. In general, you should not use this option unless you know
that there is problem with execution times and/or memory consumption, and you should measure to make sure
that the option improved matters.

Givesaminimum binary virtual heap sizeinwords. Setting this value higher than the system default might speed
up some processes because | ess garbage collection is done. Setting too high value, however, might waste memory.
Therefore, it is recommended to use this option only for fine-tuning an application and to measure the execution
time with various VSi ze values.

spawn_opt (Node, Mbdul e, Function, Args, [Option]) -> pid()
Types:
Node = node()
M odule = Function = atom()
Args=[term()]
Option =link | {priority, Level} | {fullsweep_after, Number} | {min_heap_size, Size} |
{min_bin_vheap_size, VSize}
Level =low | normal | high
Number =int()
Size=int()
VSize=int()
Returnsthe pid of anew process started by the application of Modul e: Funct i on to Ar gs on Node. If Node does
not exist, auseless pid is returned. Otherwise works like spawn_opt/4.

split_binary(Bin, Pos) -> {Binl, Bin2}
Types:

Bin = Binl =Bin2 = binary()

Pos = 0..byte _size(Bin)

Returns atuple containing the binaries which are the result of splitting Bi n into two parts at position Pos. Thisis not
adestructive operation. After the operation, there will be three binaries altogether.

> B = list_to_binary("0123456789").
<<"0123456789" >>

> byte_size(B).

10

> {Bl1, B2} = split_binary(B, 3).
{<<" 012" >>, <<" 3456789" >>}

> byte_size(Bl1).

3

> byte_size(B2).

7

erlang:start _timer(Tinme, Dest, Msg) -> TinerRef
Types:
Time=int()

Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS) | 135

erlang

0 <= Time <= 4294967295
Dest = LocalPid | RegName
LocalPid = pid() (of a process, alive or dead, on the local node)
RegName = atom()
Msg =term()
TimerRef = reference()
Starts atimer which will send the message{ti neout, Ti nerRef, Msg} toDest after Ti ne milliseconds.

If Dest isanatom, it issupposed to be the name of aregistered process. The process referred to by the nameislooked
up at the time of delivery. No error is given if the name does not refer to a process.

If Dest isapid, thetimer will be automatically canceled if the process referred to by the pid is not alive, or when the
process exits. This feature was introduced in erts version 5.4.11. Note that timers will not be automatically canceled
when Dest isan atom.

See also erlang:send_after/3, erlang:cancel_timer/1, and erlang:read_timer/1.

Failure: badar g if the arguments does not satisfy the requirements specified above.

statistics(Type) -> Res
Types:
Type, Res -- see below
Returns information about the system as specified by Type:
context _sw tches

Returns{ Cont ext Swi t ches, 0} ,whereCont ext Swi t ches isthetotal number of context switchessince
the system started.

exact _reductions
Returns{ Tot al _Exact Reductions, Exact Reductions_Since Last Call}.

NOTE:st ati sti cs(exact _reductions) is a more expensive operation than statistics(reductions)
especialy on an Erlang machine with SMP support.

gar bage_col | ection

Returns { Number _of _GCs, Words_Recl ai ned, 0}. This information may not be valid for all
implementations.

Returns{{i nput, Input}, {output, CQutput}},wherel nput isthetota number of bytesreceived
through ports, and Qut put isthetotal number of bytes output to ports.

reductions
Returns{ Tot al _Reducti ons, Reductions_Since_Last_Call}.

NOTE: From erts version 5.5 (OTP release R11B) this value does not include reductions performed in current
time slices of currently scheduled processes. If an exact value is wanted, use statistics(exact_reductions).

run_queue
Returns the length of the run queue, that is, the number of processes that are ready to run.
runtime

Returns{ Total _Run_Ti nme, Tinme_Since_Last Call}. Notethat the run-timeis the sum of the run-
time for all threads in the Erlang run-time system and may therefore be greater than the wall-clock time.

136 | Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS)

erlang

wal I _cl ock

Returns{ Total _Wal I cl ock_Ti nme, Wallclock Tinme_Since Last _Call}.wall _cl ockcanbe
used in the same manner asr unt i me, except that real time is measured as opposed to runtime or CPU time.

All times are in milliseconds.

> statistics(runtine).

{1690, 1620}

> statistics(reductions).

{2046, 11}

> statistics(garbage_col |l ection).
{85, 23961, 0}

erl ang: suspend_process(Suspendee, OptList) -> true | false
Types:

Suspendee = pid()

OptList = [Opt]

Opt = atom()

Increasesthe suspend count on the processidentified by Sus pendee and putsit in the suspended stateif it isn't already
in the suspended state. A suspended process will not be scheduled for execution until the process has been resumed.

A process can be suspended by multiple processes and can be suspended multiple times by a single process.
A suspended process will not leave the suspended state until its suspend count reach zero. The suspend count
of Suspendee is decreased when erlang:resume_process(Suspendee) is called by the same process that called
erl ang: suspend_process(Suspendee) . All increased suspend counts on other processes acquired by a
process will automatically be decreased when the process terminates.

Currently the following options (Opt s) are available:

asynchronous
A suspend request is sent to the process identified by Suspendee. Suspendee will eventually suspend
unlessit isresumed before it was able to suspend. The caller of er | ang: suspend_pr ocess/ 2 will return
immediately, regardless of whether the Suspendee has suspended yet or not. Note that the point in time when
the Suspendee will actually suspend cannot be deduced from other events in the system. The only guarantee
givenisthat the Suspendee will eventually suspend (unlessit is resumed). If the asynchr onous option
has not been passed, the caller of er | ang: suspend_pr ocess/ 2 will be blocked until the Suspendee
has actually suspended.

unl ess_suspendi ng
The process identified by Suspendee will be suspended unless the calling process aready is suspending the
Suspendee. If unl ess_suspendi ng is combined with theasynchr onous option, a suspend request
will be sent unless the calling process already is suspending the Suspendee or if a suspend request already
has been sent and isin transit. If the calling process already is suspending the Suspendee, or if combined
with theasynchr onous option and a send request aready isin transit, f al se isreturned and the suspend
count on Suspendee will remain unchanged.

If the suspend count on the process identified by Suspendee was increased, t r ue is returned; otherwise, f al se
is returned.

Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS) | 137

erlang

Warning:
This BIF isintended for debugging only.

Failures:

badar g
If Suspendee isn't aprocessidentifier.
badar g
If the processidentified by Suspendee is same the process as the process calling
erl ang: suspend_process/ 2.
badar g
If the processidentified by Suspendee isnot alive.
badar g
If the process identified by Suspendee resides on another node.
badar g
If Opt Li st isn't aproper list of valid Opt s.
system|limt
If the processidentified by Suspendee has been suspended more times by the calling process than can be
represented by the currently used internal data structures. The current system limit is larger than 2 000 000 000
suspends, and it will never be less than that.

erl ang: suspend_process(Suspendee) -> true
Types:
Suspendee = pid()

Suspends the process identified by Suspendee. The same as calling erlang: suspend_process(Suspendee, []). For
more information see the documentation of erlang: suspend process/2.

Warning:
This BIF isintended for debugging only.

erl ang: system fl ag(Fl ag, Value) -> d dval ue
Types.
Flag, Value, OldValue -- see below
Sets various system properties of the Erlang node. Returns the old value of the flag.
erl ang: system fl ag(backtrace_dept h, Depth)
Sets the maximum depth of call stack back-tracesin the exit reason element of * EXI T tuples.
erl ang: system fl ag(cpu_t opol ogy, CpuTopol ogy)

Sets the user defined CpuTopol ogy. The user defined CPU topology will override any automatically
detected CPU topology. By passing undefined as CpuTopol ogy the system will revert back
to the CPU topology automatically detected. The returned value equals the vaue returned from
erl ang: system i nf o(cpu_t opol ogy) before the change was made.

The CPU topology is used when binding schedulers to logical processors. If schedulers are already bound when
the CPU topology is changed, the schedulers will be sent arequest to rebind according to the new CPU topology.

138 | Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS)

erlang

The user defined CPU topology can also be set by passing the +sct command line argument to er | .

For information on the CpuTopology type and more, see the documentation of
erlang:system info(cpu_topology), the er | +sct emulator flag, and erlang:system flag(scheduler_bind_type,
How).

erl ang: system fl ag(full sweep_after, Nunber)

Nunber isanon-negativeinteger which indicates how many times generational garbage collections can be done
without forcing a fullsweep collection. The value applies to new processes; processes aready running are not
affected.

In low-memory systems (especially without virtual memory), setting the value to 0 can help to conserve memory.

An dternative way to set this value is through the (operating system) environment variable
ERL_FULLSVEEP_AFTER.

erl ang: system flag(m n_heap_si ze, M nHeapSi ze)

Sets the default minimum heap size for processes. The sizeisgivenin words. Thenew mi n_heap_si ze only
effects processes spawned after the change of mi n_heap_si ze has been made. Them n_heap_si ze can
be set for individual processes by use of spawn_opt/N or process flag/2.

erl ang: system fl ag(ni n_bi n_vheap_si ze, M nBi nVHeapSi ze)

Sets the default minimum binary virtual heap size for processes. The size is given in words. The new
m n_bi n_vhheap_si ze only effects processes spawned after the change of m n_bi n_vhheap_si ze
has been made. The mi n_bi n_vheap_si ze can be set for individual processes by use of spawn_opt/N or
process_flag/2.

erl ang: system flag(nul ti _schedul i ng, Bl ockState)

er

Bl ockState = bl ock | unbl ock

If multi-scheduling is enabled, more than one scheduler thread is used by the emulator. Multi-scheduling can be
blocked. When multi-scheduling has been blocked, only one scheduler thread will schedule Erlang processes.

If Bl ockSt at e =: = bl ock, multi-scheduling will beblocked. If Bl ockSt at e =: = unbl ock and no-one
el seisblocking multi-scheduling and this process has only blocked onetime, multi-scheduling will be unblocked.
One process can block multi-scheduling multiple times. If a process has blocked multiple times, it hasto unblock
exactly as many times as it has blocked before it has released its multi-scheduling block. If a process that has
blocked multi-scheduling exits, it will release its blocking of multi-scheduling.

Thereturn valuesaredi sabl ed, bl ocked, or enabl ed. The returned value describes the state just after the
caltoerl ang: system flag(nulti_scheduling, Bl ockState) hasbeen made. Thereturnvalues
are described in the documentation of erlang: system info(multi_scheduling).

NOTE: Blocking of multi-scheduling should normally not be needed. If you feel that you need to block multi-
scheduling, think through the problem at least a couple of times again. Blocking multi-scheduling should only be
used as alast resort since it will most likely be a very inefficient way to solve the problem.

See dso erlang:system info(multi_scheduling), erlang:system info(multi_scheduling_blockers), and
erlang:system info(schedulers).

ang: system fl ag(schedul er _bind_type, How)

Controlsif and how schedulers are bound to logical processors.

Whener | ang: system fl ag(schedul er _bi nd_type, How) iscalled, an asynchronoussignal issent
toall schedulersonlinewhich causesthemto try to bind or unbind asrequested. NOTE: If ascheduler failsto bind,
thiswill often be silently ignored. Thissinceitisn't always possibleto verify valid logical processor identifiers. If

an error isreported, it will bereportedtotheer r or _| ogger . If you want to verify that the schedulers actually
have bound as requested, call erlang: system info(scheduler_bindings).

Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS) | 139

erlang

Schedulers can currently only be bound on newer Linux, Solaris, FreeBSD, and Windows systems, but more
systems will be supported in the future.

In order for the runtime system to be able to bind schedulers, the CPU topology needsto be known. If the runtime
system fails to automatically detect the CPU topology, it can be defined. For more information on how to define
the CPU topology, see erlang:system flag(cpu_topology, CpuTopology).

The runtime system will by default bind schedulersto logical processorsusing thedef aul t _bi nd bind typeif
the amount of schedulers are at least equal to the amount of logical processors configured, binding of schedulers
is supported, and a CPU topology is available at startup.

NOTE: If the Erlang runtime system isthe only operating system processthat binds threadsto logical processors,
this improves the performance of the runtime system. However, if other operating system processes (as for
example another Erlang runtime system) also bind threads to logical processors, there might be a performance
penalty instead. If thisis the case you, are are advised to unbind the schedulers using the +sbtu command line
argument, or er | ang: system fl ag(schedul er _bi nd_type, unbound).

Schedulers can be bound in different ways. The How argument determines how schedulers are bound. How can
currently be one of:

unbound

Schedulers will not be bound to logical processors, i.e., the operating system decides where the scheduler threads
execute, and when to migrate them. This s the default.

no_spread
Schedulers with close scheduler identifiers will be bound as close as possible in hardware.
t hread_spread

Thread refers to hardware threads (e.g. Intels hyper-threads). Schedulers with low scheduler identifiers, will be
bound to the first hardware thread of each core, then schedulers with higher scheduler identifiers will be bound
to the second hardware thread of each core, etc.

processor _spread

Schedulers will be spread liket hr ead_spr ead, but also over physical processor chips.
spread

Schedulers will be spread as much as possible.

no_node_t hread_spread

Liket hr ead_spr ead, but if multiple NUMA (Non-Uniform Memory Access) nodes exists, schedulerswill be
spread over one NUMA node at atime, i.e., all logical processors of one NUMA nodewill be bound to schedulers
in sequence.

no_node_processor_spread

Like pr ocessor _spr ead, but if multiple NUMA nodes exists, schedulers will be spread over one NUMA
node at atime, i.e., al logical processors of one NUMA node will be bound to schedulersin sequence.

thread_no_node_processor_spread

A combination of t hr ead_spr ead, and no_node_processor _spr ead. Schedulers will be spread over
hardware threads across NUMA nodes, but schedulers will only be spread over processors internally in one
NUMA node at atime.

def aul t _bi nd

Binds schedulers the default way. Currently the default ist hr ead_no_node_pr ocessor _spr ead (which
might change in the future).

140 | Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS)

erlang

How schedulers are bound matters. For example, in situations when there are fewer running processes than
schedulers online, the runtime system triesto migrate processes to schedulers with low scheduler identifiers. The
more the schedulers are spread over the hardware, the more resources will be available to the runtime system
in such situations.

The value returned equals How beforethe schedul er _bi nd_t ype flag was changed.
Failure:

not sup

If binding of schedulersis not supported.

badarg

If Howisn't one of the documented alternatives.

badar g

If no CPU topology information is available.

The scheduler bind type can a so be set by passing the +sbt command line argument toer | .

For more information, see erlang: system info(scheduler_bind_type), erlang: system info(scheduler_bindings),
theer | +sbt emulator flag, and erlang: system flag(cpu_topology, CpuTopology).

erl ang: system fl ag(schedul ers_online, Schedul ersOnli ne)
Sets the amount of schedulers online. Valid range is 1 <= Schedulerld <= erlang:system_info(schedulers).
For more information see, erlang: system info(schedulers), and erlang: system info(schedulers_online).
erl ang: system flag(trace_control _word, TCW

Setsthe value of the node's trace control word to TCW TCWshould be an unsigned integer. For more information
see documentation of the set_tcw function in the match specification documentation in the ERTS User's Guide.

Note:

The schedul er s option has been removed as of erts version 5.5.3. The number of scheduler threads is
determined at emulator boot time, and cannot be changed after that.

erl ang: system.info(Type) -> Res
Types:
Type, Res -- see below
Returns various information about the current system (emulator) as specified by Type:
al | ocat ed_ar eas
Returns alist of tuples with information about miscellaneous allocated memory areas.

Each tuple contains an atom describing type of memory asfirst element and amount of allocated memory in bytes
as second element. In those cases when there is information present about allocated and used memory, athird
element is present. This third element contains the amount of used memory in bytes.

erl ang: system.info(allocated areas) is intended for debugging, and the content is highly
implementation dependent. The content of the results will therefore change when needed without prior notice.

Note: The sum of these valuesis not the total amount of memory alocated by the emulator. Some values are part
of other values, and some memory areas are not part of the result. If you are interested in the total amount of
memory allocated by the emulator see erlang: memory/0,1.

Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS) | 141

erlang

al | ocat or
Returns{ Al | ocat or, Version, Features, Settings}.
Types:
e Allocator = undefined | glibc
e Version = [int()]
e Features = [atom()]
e Settings = [{Subsystem [{Parameter, Value}]}]
e Subsystem = atom()
e Paranmeter = atom()
e Value = term)

Explanation:

« All ocat or corresponds to the mal | oc() implementation used. If Al | ocat or equals undefi ned,
themal | oc() implementation used could not be identified. Currently gl i bc can be identified.

« Versionisalist of integers (but not a string) representing the version of the mal | oc() implementation
used.

* Feat ures isalist of atoms representing allocation features used.

e Settings isalist of subsystems, their configurable parameters, and used values. Settings may differ
between different combinations of platforms, allocators, and allocation features. Memory sizes are givenin
bytes.

See also "System Flags Effecting erts alloc” in erts_alloc(3).
alloc_util _allocators

Returns a list of the names of al allocators using the ERTS internal al | oc_ut i | framework as atoms. For
more information see the "the alloc_util framework" section in the erts_alloc(3) documentation.

{all ocator, Alloc}

Returns information about the specified allocator. As of erts version 5.6.1 the return value is a list of
{instance, |nstanceNo, |nstancel nfo} tupleswherel nst ancel nf o containsinformation about
a specific instance of the allocator. If Al | oc is not arecognized allocator, undef i ned isreturned. If Al | oc
isdisabled, f al se isreturned.

Note: Theinformation returned is highly implementation dependent and may be changed, or removed at any time
without prior notice. It was initialy intended as a tool when developing new allocators, but since it might be of
interest for othersiit has been briefly documented.

The recognized alocators are listed in erts_alloc(3). After reading theerts_al | oc(3) documentation, the
returned information should more or less speak for itself. But it can be worth explaining some things. Call
counts are presented by two values. The first value is giga cals, and the second vaue is calls. nbcs, and
sbcs are abbreviations for, respectively, multi-block carriers, and single-block carriers. Sizes are presented
in bytes. When it is not a size that is presented, it is the amount of something. Sizes and amounts are often
presented by three values, the first is current value, the second is maximum value since the last cal to
erl ang: system.info({allocator, Alloc}),andthethirdismaximum vauesincetheemulator was
started. If only one value is present, it is the current value. f i x_al | oc memory block types are presented by
two values. The first value is memory pool size and the second value used memory size.

{al l ocator_sizes, Alloc}

Returnsvarioussizeinformation for the specified allocator. Theinformation returnedisasubset of theinformation
returned by erlang:system info({allocator, Alloc}).

142 | Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS)

erlang

build_type

Returns an atom describing the build type of the runtime system. Thisis normally the atom opt for optimized.
Other possible return values are debug, puri fy, quanti fy, purecov, gcov, val gri nd, gpr of , and
| cnt . Possible return values may be added and/or removed at any time without prior notice.

c_conpil er _used

Returns a two-tuple describing the C compiler used when compiling the runtime system. The first element is an
atom describing the name of the compiler, or undef i ned if unknown. The second element is aterm describing
the version of the compiler, or undef i ned if unknown.

check io

Returns a list containing miscellaneous information regarding the emulators internal 1/0 checking. Note, the
content of the returned list may vary between platforms and over time. The only thing guaranteed is that a list
is returned.

conpat _rel

Returns the compatibility mode of the local node as an integer. The integer returned represents the Erlang/OTP
release which the current emulator has been set to be backward compatible with. The compatibility mode can be
configured at startup by using the command line flag +R, see erl(1).

cpu_t opol ogy

Returns the CpuTopol ogy which currently is used by the emulator. The CPU topology is used when binding
schedulerstological processors. The CPU topology used isthe user defined CPU topology if such exist; otherwise,
the automatically detected CPU topology if such exist. If no CPU topology exist undef i ned is returned.
Types:

e CpuTopol ogy = Level EntryList | undefined

e Level EntryList = [Level Entry] (al Level Entrysof aLevel EntryLi st must contain the
sameLevel Tag, except on thetop level where both node and pr ocessor Level Tagsmay co-exist)

e Level Entry = {Level Tag, SublLevel} | {Level Tag, InfoList, SublLevel}
({Level Tag, SublLevel} == {Level Tag, [], SubLevel})

e Level Tag = node| processor| core|t hread (moreLevel Tagsmay beintroduced in the
future)

e SublLevel = [Level Entry] | Logical Cpuld

e Logical Cpuld = {logical, integer()}

e InfoList = [] (thel nfoLi st may beextended in the future)

node refersto NUMA (non-uniform memory access) hodes, andt hr ead refersto hardware threads (e.g. Intels

hyper-threads).

A level inthe CpuTopol ogy term can be omitted if only one entry exists and the | nf oLi st isempty.

t hr ead canonly beasublevel tocor e. cor e canbeasublevel to either pr ocessor ornode. pr ocessor

can either be on the top level or a sub level to node. node can either be on the top level or a sub level to

processor. Thatis, NUMA nodes can be processor internal or processor external. A CPU topol ogy can consist

of amix of processor internal and external NUMA nodes, aslong aseach logical CPU belongsto one and only one

NUMA node. Cache hierarchy is not part of the CouTopol ogy type yet, but will be in the future. Other things

may aso makeit into the CPU topology in the future. In other words, expect the CouTopol ogy typeto change.
{cpu_t opol ogy, defined}

Returns the wuser defined CpuTopol ogy. For more information see the documentation of
erlang: system_flag(cpu_topology, CpuTopology) and the documentation of the cpu_topology argument.

Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS) | 143

erlang

{cpu_t opol ogy, detect ed}

Returns the automatically detected CpuTopol ogy. The emulator currently only detects the CPU topology on
some newer Linux, Solaris, FreeBSD, and Windows systems. On Windows system with more than 32 logical
processors the CPU topology is not detected.

For more information see the documentation of the cpu_topology argument.
{cpu_t opol ogy, used}

Returns the CpuTopol ogy which is used by the emulator. For more information see the documentation of the
cpu_topology argument.

creation

Returnsthe creation of thelocal node asan integer. The creation ischanged when anodeisrestarted. The creation
of anodeis stored in process identifiers, port identifiers, and references. This makes it (to some extent) possible
to distinguish between identifiers from different incarnations of a node. Currently valid creations are integersin
the range 1..3, but this may (probably will) changein the future. If the nodeis not alive, O is returned.

debug _conpi | ed
Returnst r ue if the emulator has been debug compiled; otherwise, f al se.
di st

Returns a binary containing a string of distribution information formatted as in Erlang crash dumps. For more
information see the "How to interpret the Erlang crash dumps® chapter in the ERTS User's Guide.

dist_ctrl

Returns a list of tuples { Node, ControllingEntity}, one entry for each connected remote node.
The Node is the name of the node and the Control | i ngEntity is the port or pid responsible for the
communication to that node. More specifically, the Cont r ol | i ngEnt i ty for nodes connected via TCP/IP
(the normal case) is the socket actually used in communication with the specific node.

driver_version

Returns a string containing the erlang driver version used by the runtime system. It will be on the form "<major
ver>.<minor ver>".

elib_malloc

This option will be removed in a future release. The return value will always be f al se since the elib_malloc
allocator has been removed.

di st_buf _busy_limit

Returns the value of the distribution buffer busy limit in bytes. This limit can be set on startup by passing the
+zdbbl command lineflagtoer| .

full sweep_after

Returns{ful | sweep_after, int()} whichistheful | sweep_aft er garbage collection setting used
by default. For more information see gar bage_col | ect i on described below.

gar bage_col | ection

Returns a list describing the default garbage collection settings. A process spawned on the local node by a
spawn or spawn_I i nk will use these garbage collection settings. The default settings can be changed by use
of system flag/2. spawn_opt/4 can spawn a process that does not use the default settings.

gl obal _heaps_si ze
Returns the current size of the shared (global) heap.

144 | Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS)

erlang

heap_si zes

Returnsalist of integers representing valid heap sizesin words. All Erlang heaps are sized from sizesin thislist.
heap_t ype

Returns the heap type used by the current emulator. Currently the following heap types exist:

private

Each process has a heap reserved for its use and no references between heaps of different processes are allowed.
M essages passed between processes are copied between heaps.

shar ed

One heap for use by all processes. Messages passed between processes are passed by reference.

hybrid

A hybrid of thepr i vat e and shar ed heap types. A shared heap as well as private heaps are used.
i nfo

Returns a binary containing a string of miscellaneous system information formatted as in Erlang crash dumps.
For more information see the "How to interpret the Erlang crash dumps' chapter in the ERTS User's Guide.

ker nel _pol |
Returnst r ue if the emulator uses some kind of kernel-poll implementation; otherwise, f al se.
| oaded

Returns a binary containing a string of loaded module information formatted as in Erlang crash dumps. For more
information see the "How to interpret the Erlang crash dumps' chapter in the ERTS User's Guide.

| ogi cal _processors

Returns the detected number of logical processors configured on the system. The return valueis either aninteger,
or the atom unknown if the emulator wasn't able to detect logical processors configured.

| ogi cal _processors_avail abl e

Returns the detected number of logical processors available to the Erlang runtime system. The return value is
either an integer, or the atom unknown if the emulator wasn't able to detect logical processors available. The
number of logical processors available islessthan or equal to the number of logical processorsonline.

| ogi cal _processors_online

Returns the detected number of logical processors online on the system. The return value is either an integer,
or the atom unknown if the emulator wasn't able to detect logical processors online. The number of logical
processors onlineis less than or equal to the number of logical processors configured.

machi ne
Returns a string containing the Erlang machine name.
m n_heap_si ze

Returns{nmi n_heap_si ze, M nHeapSi ze} where M nHeapSi ze isthe current system wide minimum
heap size for spawned processes.

nm n_bi n_vheap_si ze

Returns { mi n_bi n_vheap_si ze, M nBi nVHeapSi ze} where M nBi nVHeapSi ze is the current
system wide minimum binary virtual heap size for spawned processes.

Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS) | 145

erlang

nodi fied timng_| evel

Returnsthe modified timing level (an integer) if modified timing has been enabled; otherwise, undef i ned. See
the +T command line flag in the documentation of the erl(1) command for more information on modified timing.

nmul ti _schedul i ng
Returnsdi sabl ed, bl ocked, or enabl ed. A description of the return values:
di sabl ed

The emulator has only one scheduler thread. The emulator does not have SMP support, or have been started with
only one scheduler thread.

bl ocked

The emulator has more than one scheduler thread, but all scheduler threads but one have been blocked, i.e., only
one scheduler thread will schedule Erlang processes and execute Erlang code.

enabl ed

The emulator has more than one scheduler thread, and no scheduler threads have been blocked, i.e., all available
scheduler threads will schedule Erlang processes and execute Erlang code.

Seealso erlang: system flag(multi_scheduling, BlockState), erlang: system_info(multi_scheduling_blockers), and
erlang:system info(schedulers).

mul ti _schedul i ng_bl ockers

Returns alist of PI Ds when multi-scheduling is blocked; otherwise, the empty list. The Pl DsinthelistisPl Ds
of the processes currently blocking multi-scheduling. A PI D will only be present once in the list, even if the
corresponding process has blocked multiple times.

See dso erlang:system flag(multi_scheduling, BlockSate), erlang:system info(multi_scheduling), and
erlang:system info(schedulers).

otp_rel ease
Returns a string containing the OTP release number.
process_count

Returns the number of processes currently existing at the local node as an integer. The same vaue as
| engt h(processes()) returns.

process_lint

Returns the maximum number of concurrently existing processes at the local node as an integer. This limit can
be configured at startup by using the command line flag +P, see erl(1).

procs

Returns a binary containing a string of process and port information formatted as in Erlang crash dumps. For
more information see the "How to interpret the Erlang crash dumps' chapter in the ERTS User's Guide.

schedul er _bi nd_t ype
Returns information on how user has requested schedulers to be bound or not bound.

NOTE: Even though user has regquested schedulers to be bound via erlang: system flag(scheduler_bind_type,
How), they might have silently failed to bind. In order to inspect actual scheduler bindings call
erlang: system info(scheduler_bindings).

For more information, see erlang: system flag(scheduler_bind_type, How), and
erlang:system info(scheduler_bindings).

146 | Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS)

erlang

schedul er _bi ndi ngs
Returnsinformation on currently used scheduler bindings.

A tuple of a size equal to erlang:system info(schedulers) is returned. The elements of the tuple are
integers or the atom unbound. Logical processor identifiers are represented as integers. The Nth
element of the tuple equals the current binding for the scheduler with the scheduler identifier equal
to N. E.g., if the schedulers have been bound, el errent (erl ang: syst em i nf o(schedul er _i d),
erl ang: system i nf o(schedul er _bi ndi ngs)) will return the identifier of the logical processor that
the calling process is executing on.

Note that only schedulers online can be bound to logical processors.

For more information, see erlang:system flag(scheduler_bind_type, How),
erlang:system info(schedulers_onling).

scheduler_id

Returns the scheduler id (Schedul erld) of the scheduler thread that the calling process is
executing on. Schedul erld is a postive integer; where 1 <= Schedul erl d <=
erl ang: system i nf o(schedul er s) . Seealso erlang: system _info(schedulers).

schedul er s

Returns the number of scheduler threads used by the emulator. Scheduler threads online schedules Erlang
processes and Erlang ports, and execute Erlang code and Erlang linked in driver code.

The number of scheduler threads is determined at emulator boot time and cannot be changed after that. The
amount of schedulers online can however be changed at any time.

See aso erlang:system flag(schedulers online, SchedulersOnline), erlang:system info(schedulers online),
erlang:system info(scheduler_id), erlang:system flag(multi_scheduling, BlockSate),
erlang:system info(multi_scheduling), and and erlang: system info(multi_scheduling_blockers).

schedul ers_online

Returns the amount of schedulers online. The scheduler identifiers of schedulers online satisfy the following
relationship: 1 <= Schedul erld <= erl ang: system.i nfo(schedul ers_online).

For more information, see erlang:system info(schedulers), and erlang:system flag(schedulers online,
SchedulersOnline).

snmp_suppor t
Returnst r ue if the emulator has been compiled with smp support; otherwise, f al se.
system versi on
Returns a string containing version number and some important properties such as the number of schedulers.
system architecture
Returns a string containing the processor and OS architecture the emulator is built for.
t hr eads
Returnst r ue if the emulator has been compiled with thread support; otherwise, f al se isreturned.
t hr ead_pool _si ze

Returns the number of async threads in the async thread pool used for asynchronous driver calls (driver_async())
as an integer.

trace_control _word

Returns the value of the node's trace control word. For more information see documentation of the function
get _t cwin"Match Specificationsin Erlang", ERTS User's Guide.

Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS) | 147

erlang

update _cpu_info

The runtime system rereads the CPU information available and updates its internally stored information about
the detected CPU topology and the amount of logical processors configured, online, and available. If the CPU
information has changed since the last time it was read, the atom changed is returned; otherwise, the atom
unchanged is returned. If the CPU information has changed you probably want to adjust the amount of
schedulers online. Y ou typically want to have as many schedulers online as logical processors available.

versi on

Returns a string containing the version number of the emulator.
wor dsi ze

Sameas{wor dsi ze, internal}
{wordsi ze, internal}

Returns the size of Erlang term words in bytes as an integer, i.e. on a 32-bit architecture 4 is returned, and on a
pure 64-bit architecture 8 is returned. On a halfword 64-bit emulator, 4 isreturned, asthe Erlang terms are stored
using avirtual wordsize of half the systems wordsize.

{wor dsi ze, external}

Returns the true wordsize of the emulator, i.e. the size of a pointer, in bytes as an integer. On a pure 32-bit
architecture 4 is returned, on both a halfword and pure 64-bit architecture, 8 is returned.

Note:

The schedul er argument has changed name to schedul er _i d. This in order to avoid mixup with the
schedul er s argument. Theschedul er argument wasintroducedin ERTSversion 5.5 and renamed in ERTS
version 5.5.1.

erl ang: systemnonitor() -> MonSettings
Types.
MonSettings -> {Monitor Pid, Options} | undefined
Monitor Pid = pid()
Options=[Option]
Option ={long_gc, Time} | {large_heap, Size} | busy port | busy dist port
Time= Size=int()
Returns the current system monitoring settings set by erlang: system monitor/2 as{ Moni t or Pi d, Opti ons},or
undef i ned if there are no settings. The order of the options may be different from the one that was set.

erl ang: system nonitor (undefined | {MnitorPid, Options}) -> MnSettings
Types:

Monitor Pid, Options, M onSettings -- see below
When called with the argument undef i ned, all system performance monitoring settings are cleared.

Cdling the function with {MbnitorPid, Options} as agument, is the same as caling
erlang: system_monitor(MonitorPid, Options).

Returns the previous system monitor settings just like erlang: system _monitor/O.

148 | Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS)

erlang

erl ang: system nonitor(MnitorPid, [Option]) -> MnSettings
Types:
MonitorPid = pid()
Option = {long_gc, Time} | {large_heap, Size} | busy_port | busy_dist_port
Time=Size=int()
MonSettings = {OldM onitor Pid, [Option]}
OldM onitor Pid = pid()
Sets system performance monitoring options. Moni t or Pi d isalocal pid that will receive system monitor messages,
and the second argument is alist of monitoring options:
{long_gc, Tine}

If a garbage collection in the system takes at least Ti ne wallclock milliseconds, a message { noni t or,
GcPid, long gc, Info} issentto MonitorPid. GePid isthe pid that was garbage collected and
I nfo is alist of two-element tuples describing the result of the garbage collection. One of the tuples is
{tinmeout, GcTi ne} whereGcTi ne istheactual timefor the garbage collection in milliseconds. The other
tuples aretagged with heap_si ze, heap_bl ock_si ze,st ack_si ze,nbuf _si ze,ol d_heap_si ze,
andol d_heap_bl ock_si ze. Thesetuples are explained in the documentation of the gc_start trace message
(see erlang:trace/3). New tuples may be added, and the order of the tuplesin the | nf o list may be changed at
any time without prior notice.

{large_heap, Size}

If agarbage collection in the system resultsin the allocated size of aheap being at least Si ze words, a message
{monitor, GcPid, |arge_heap, |nfo} issenttoMonitorPid.GcPidandl nfo arethesameas
for | ong_gc above, except that the tuple tagged with t i meout isnot present. Note: As of ertsversion 5.6 the
monitor message is sent if the sum of the sizes of all memory blocks allocated for all heap generationsis equal
to or larger than Si ze. Previously the monitor message was sent if the memory block allocated for the youngest
generation was equal to or larger than Si ze.

busy_port

If a process in the system gets suspended because it sends to a busy port, a message { noni t or, SusPi d,
busy_port, Port} issenttoMonitorPi d. SusPi d isthe pid that got suspended when sendingto Por t .

busy_di st _port

If a process in the system gets suspended because it sends to a process on a remote node whose inter-node
communication was handled by a busy port, a message { noni tor, SusPid, busy dist_port,
Port} issentto MonitorPi d. SusPi d isthe pid that got suspended when sending through the inter-node
communication port Port .

Returns the previous system monitor settings just like erlang: system _monitor/O.

Note:

If amonitoring processgetsso largethat it itself startsto cause system monitor messages when garbage collecting,
the messages will enlarge the process's message queue and probably make the problem worse.
K eep the monitoring process neat and do not set the system monitor limits too tight.

Failure: badar g if Moni t or Pi d does not exist.

Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS) | 149

erlang

erl ang: system profile() -> ProfilerSettings
Types:
Profiler Settings -> {Profiler Pid, Options} | undefined
Profiler Pid = pid() | port()
Options=[Option]
Option =runnable_procs|runnable ports|scheduler | exclusive

Returns the current system profiling settings set by erlang: system profile/l2 as{ Profi |l er Pi d, Opti ons}, or
undef i ned if there are no settings. The order of the options may be different from the one that was set.

erl ang: system profile(ProfilerPid, Options) -> ProfilerSettings
Types.
Profiler Settings -> {Profiler Pid, Options} | undefined
ProfilerPid = pid() | port()
Options = [Option]
Option =runnable procs|runnable ports|scheduler | exclusive

Sets system profiler options. Pr of i | er Pi d isalocal pid or port that will receive profiling messages. The receiver
is excluded from al profiling. The second argument isalist of profiling options:

runnabl e_procs

If aprocessis put into or removed from therun queueamessage, { profil e, Pid, State, Ma, Ts},is
sent to Pr of i | er Pi d. Running processes that is reinserted into the run queue after having been preemptively
scheduled out will not trigger this message.

runnabl e_ports

If aport is put into or removed from the run queue amessage, { profile, Port, State, 0, Ts},is
sentto Prof i | er Pi d.

schedul er

If ascheduler is put to sleep or awoken amessage, { profi | e, scheduler, 1d, State, NoScheds,
Ts},issenttoProfil erPid.

excl usi ve

If a synchronous call to a port from a process is done, the calling process is considered not runnable during the
call runtime to the port. The calling processis notified asi nact i ve and subsequently act i ve when the port
callback returns.

Note:

erl ang: syst em profi | e isconsidered experimental and its behaviour may change in the future.

termto_binary(Ternm -> ext_binary()
Types:
Term =term()
Returns a binary data object which is the result of encoding Ter maccording to the Erlang external term format.

This can be used for avariety of purposes, for examplewriting aterm to afilein an efficient way, or sending an Erlang
term to some type of communications channel not supported by distributed Erlang.

150 | Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS)

erlang

See also binary to ternv1.

termto_binary(Term [Option]) -> ext_binary()
Types:
Term =term()
Option = compressed | {compressed,L evel} | {minor_version,Version}
Returns a binary data object which is the result of encoding Ter maccording to the Erlang external term format.

If the option conpr essed is provided, the external term format will be compressed. The compressed format is
automatically recognized by bi nary_to_term 1 inR7B and later.

It is also possible to specify acompression level by giving the option{ conpr essed, Level } ,whereLevel isan
integer from O through 9. 0 means that no compression will be done (it is the same as not giving any conpr essed
option); 1 will take the least time but may not compress aswell asthe higher levels; 9 will take the most time and may
produce asmaller result. Note the "mays" in the preceding sentence; depending on theinput term, level 9 compression
may or may not produce a smaller result than level 1 compression.

Currently, conpr essed givesthe sameresult as{ conpr essed, 6} .

The option { m nor _ver si on, Ver si on} can be use to control some details of the encoding. This option was
introduced in R11B-4. Currently, the allowed values for Ver si on are0 and 1.

{m nor _versi on, 1} forcesany floatsin the term to be encoded in amore space-efficient and exact way (namely
in the 64-bit |IEEE format, rather than converted to a textual representation). bi nary _to_term 1 in R11B-4 and
later is able decode the new representation.

{m nor _ver si on, 0} iscurrently the default, meaning that floats will be encoded using a textual representation,;
this option is useful if you want to ensure that releases prior to R11B-4 can decode resulting binary.

See also binary to ternvi.

t hr om(Any)
Types:
Any =term()

A non-local return from afunction. If evaluated within acat ch, cat ch will return the value Any.

> catch throwm{hello, there}).
{hell o, t here}

Failure: nocat ch if not evaluated within a catch.

time() -> {Hour, Mnute, Second}
Types:

Hour = Minute = Second = int()
Returnsthe current timeas{ Hour, M nute, Second}.

The time zone and daylight saving time correction depend on the underlying OS.

> time().
{9, 42, 44}

Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS) | 151

erlang

tl(Listl) -> List2
Types:
Listl =List2=[term()]
Returnsthetail of Li st 1, that is, the list minus the first element.

> tl([geesties, guilies, beasties]).
[guilies, beasties]

Allowed in guard tests.
Failure: badar g if Li st istheempty list[].

erlang: trace(Pi dSpec, How, FlagList) -> int()
Types.

PidSpec = pid() | existing | new | all

How = booal()

FlagList = [Flag]

Flag -- see below

Turnson (if How == t rue) or off (if How == f al se) thetraceflagsin FlI agLi st for the process or processes
represented by Pi dSpec.

Pi dSpec iseither apidfor aloca process, or one of the following atoms:
exi sting
All processes currently existing.
new
All processes that will be created in the future.
al |
All currently existing processes and all processes that will be created in the future.

FI agLi st can contain any number of the following flags (the "message tags" refersto thelist of messagesfollowing
below):

al |
Set dl trace flagsexcept {tracer, Tracer} andcpu_ti nest anp that arein their nature different than
the others.
send
Trace sending of messages.
Message tags: send, send_t o_non_exi sti ng_process.
'recei ve'
Trace receiving of messages.
Messagetags. ' recei ve' .
procs

Trace process related events.

152 | Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS)

erlang

Message tags. spawn, exit, register, unregister, link, unlink, getting_linked,
getting unlinked.

cal |
Trace certain function calls. Specify which function callsto trace by calling erlang:trace pattern/3.
Messagetags: cal | ,return_from

sil ent

Used in conjunction withthecal | traceflag. Thecal | ,return_fromandr et ur n_t o trace messages are
inhibited if thisflag is set, but if there are match specs they are executed as hormal.

Silent mode is inhibited by executing er | ang: trace(_, false, [silent]|_]), or by amatch spec
executingthe{si |l ent, fal se} function.

The si | ent trace flag facilitates setting up a trace on many or even all processes in the system. Then the
interesting trace can be activated and deactivated using the { si | ent , Bool } match spec function, giving a
high degree of control of which functions with which arguments that triggers the trace.

Messagetags: cal | ,return_fromreturn_to.Or rather, the absence of.
return_to

Used in conjunction with the cal | trace flag. Trace the actual return from atraced function back to its caller.
Only works for functions traced with the | ocal option to erlang:trace pattern/3.

The semantics is that a trace message is sent when a call traced function actually returns, that is, when a chain
of tail recursive callsis ended. There will be only one trace message sent per chain of tail recursive calls, why
the properties of tail recursiveness for function calls are kept while tracing with this flag. Using cal | and
r et ur n_t o trace together makes it possible to know exactly in which function a process executes at any time.

To get trace messages containing return values from functions, usethe{r et ur n_t r ace} match_spec action
instead.

Messagetags: ret urn_t o.
runni ng
Trace scheduling of processes.
Messagetags: i n, and out .
exiting
Trace scheduling of an exiting processes.
Messagetags. i n_exi ti ng,out _exiting,andout exited.
gar bage_col | ection
Trace garbage collections of processes.
Messagetags. gc_st art,gc_end.
ti mestanp

Include a time stamp in al trace messages. The time stamp (Ts) is of the same form as returned by
erl ang: now().

cpu_ti nmestanp

A global trace flag for the Erlang node that makes al trace timestamps be in CPU time, not wallclock. It isonly
alowed with Pi dSpec==al | . If the host machine operating system does not support high resolution CPU time
measurements, t r ace/ 3 exitswith badar g.

Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS) | 153

erlang

arity

Used in conjunction withthecal | traceflag.{M F, Arity} will bespecifiedinsteadof {M F, Args}
in call trace messages.

set _on_spawn
Makes any process created by atraced process inherit its trace flags, including theset _on_spawn flag.
set_on_first_spawn
Makesthefirst process created by atraced processinherit itstraceflags, excludingtheset _on_first _spawn
flag.
set _on_link
Makes any process linked by atraced process inherit its trace flags, including theset _on_1 i nk flag.
set_on_first_link

Makesthefirst processlinked to by atraced processinherit itstraceflags, excludingtheset _on_first _|ink
flag.
{tracer, Tracer}

Specify where to send the trace messages. Tr acer must be the pid of alocal process or the port identifier of a
local port. If thisflag is not given, trace messages will be sent to the processthat called er | ang: t race/ 3.

The effect of combining set _on first link with set _on |ink is the same as having
set_on_first_|inkaone Likewiseforset _on_spawnandset _on_first_spawn.

If theti mest anp flag is not given, the tracing process will receive the trace messages described below. Pi d isthe
pid of the traced process in which the traced event has occurred. The third element of the tuple is the message tag.

If thet i mest anp flagisgiven, thefirst element of the tuplewill bet r ace_t s instead and the timestamp is added
last in the tuple.

{trace, Pid, 'receive', Mg}
When Pi d receives the message Msg.
{trace, Pid, send, Mg, To}
When Pi d sends the message Ms g to the process To.
{trace, Pid, send_to_non_existing process, Mg, To}
When Pi d sends the message Ms g to the non-existing process To.
{trace, Pid, call, {M F, Args}}
When Pi d calls atraced function. The return values of calls are never supplied, only the call and its arguments.

Note that the trace flag ar i t y can be used to change the contents of this message, so that Ari ty is specified
instead of Ar gs.

{trace, Pid, return_to, {M F, Arity}}

When Pi d returns to the specified function. This trace message is sent if boththecal | andthereturn_to
flags are set, and the function is set to be traced on local function calls. The messageis only sent when returning
from a chain of tail recursive function calls where at least one call generated acal | trace message (that is, the
functions match specification matched and { nessage, fal se} wasnot an action).

{trace, Pid, return_from {M F, Arity}, ReturnVal ue}

When Pi d returns fromthe specified function. Thistrace messageissent if thecal | flagisset, and the function
has a match specification withar et urn_t race orexcepti on_t race action.

154 | Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS)

erlang

{trace, Pid, exception from {M F, Arity}, {dass, Value}}

When Pi d exits from the specified function due to an exception. This trace message is sent if thecal | flagis
set, and the function has a match specification with an except i on_t r ace action.

{trace, Pid, spawn, Pid2, {M F, Args}}
When Pi d spawns anew process Pi d2 with the specified function call as entry point.
Note that Ar gs is supposed to be the argument list, but may be any term in the case of an erroneous spawn.
{trace, Pid, exit, Reason}
When Pi d exits with reason Reason.
{trace, Pid, link, Pid2}
When Pi d linksto a process Pi d2.
{trace, Pid, unlink, Pid2}
When Pi d removes the link from a process Pi d2.
{trace, Pid, getting_linked, Pid2}
When Pi d gets linked to a process Pi d2.
{trace, Pid, getting unlinked, Pid2}
When Pi d gets unlinked from a process Pi d2.
{trace, Pid, register, RegNane}
When Pi d gets the name RegNane registered.
{trace, Pid, unregister, RegNane}

When Pi d getsthe name RegNane unregistered. Note that thisis done automatically when aregistered process
exits.

{trace, Pid, in, {M F, Arity} | 0}

When Pi d isscheduled to run. The processwill runin function{M F, Arity}.Onsomerareoccasionsthe
current function cannot be determined, then the last element Ari t y isO.

{trace, Pid, out, {M F, Arity} | 0}

When Pi d is scheduled out. The process was running in function {M, F, Arity}. On some rare occasions the
current function cannot be determined, then the last element Ari t y isO.

{trace, Pid, gc_start, Info}

Sent when garbage collection is about to be started. | nf o isalist of two-element tuples, where the first element
is akey, and the second is the value. Y ou should not depend on the tuples have any defined order. Currently,
the following keys are defined:

heap_si ze

The size of the used part of the heap.

heap_bl ock_si ze

The size of the memory block used for storing the heap and the stack.
ol d_heap_si ze

The size of the used part of the old heap.

ol d_heap_bl ock_si ze

The size of the memory block used for storing the old heap.
stack_si ze

The actual size of the stack.

Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS) | 155

erlang

recent _size

The size of the data that survived the previous garbage collection.

nmbuf _si ze

The combined size of message buffers associated with the process.

bi n_vheap_si ze

Thetotal size of unique off-heap binaries referenced from the process heap.

bi n_vheap_bl ock_si ze

Thetotal size of binaries, in words, allowed in the virtual heap in the process before doing a garbage collection.
bin_ol d_vheap_si ze

Thetotal size of unique off-heap binaries referenced from the process old heap.

bi n_vheap_bl ock_si ze

Thetotal size of binaries, in words, allowed in the virtual old heap in the process before doing a garbage
collection.

All sizesare in words.
{trace, Pid, gc_end, Info}

Sent when garbage collectionisfinished. | nf o containsthe samekind of list asinthegc_st art message, but
the sizes reflect the new sizes after garbage collection.

If the tracing process dies, the flags will be silently removed.
Only one process can trace a particular process. For this reason, attempts to trace an aready traced process will fail.

Returns: A number indicating the number of processesthat matched Pi dSpec. If Pi dSpec isapid, thereturn value
will be 1. If Pi dSpec isal | or exi sti ng the return value will be the number of processes running, excluding
tracer processes. If Pi dSpec isnew, the return value will be 0.

Failure: If specified arguments are not supported. For example cpu_t i mest anp is not supported on all platforms.

erlang:trace_del i vered(Tracee) -> Ref

Types.
Tracee = pid() | all
Ref = reference()

The delivery of trace messages is dislocated on the time-line compared to other events in the system. If
you know that the Tr acee has passed some specific point in its execution, and you want to know when
at least al trace messages corresponding to events up to this point have reached the tracer you can use
erlang:trace_delivered(Tracee). A {trace_delivered, Tracee, Ref} message is sent
to the caller of erl ang: trace_del i vered(Tracee) when it is guaranteed that all trace messages have
been delivered to the tracer up to the point that the Tracee had reached at the time of the call to
erlang:trace_del i vered(Tracee).

Notethatthet r ace_del i ver ed messagedoesnotimply that trace messageshave been delivered; instead, itimplies
that all trace messages that should be delivered have been delivered. It isnot an error if Tr acee isn't, and hasn't been
traced by someone, but if thisis the case, no trace messages will have been delivered whenthet r ace_del i ver ed
message arrives.

Note that Tr acee has to refer to a process currently, or previously existing on the same node as the caller of
erlang:trace_del i vered(Tracee) resides on. The specia Tr acee atom al | denotes al processes that
currently are traced in the node.

An example: Process Aistracee, port Bistracer, and process Cisthe port owner of B. Cwantsto close B when A exits.
C can ensure that the trace isn't truncated by calling er | ang: trace_del i ver ed(A) when A exits and wait for
the{trace_delivered, A, Ref} messagebeforeclosingB.

156 | Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS)

erlang

Failure: badar g if Tracee does not refer to a process (dead or alive) on the same node as the caller of
erl ang:trace_del i vered(Tracee) resideson.

erlang:trace_i nfo(Pi dOrFunc, Item) -> Res
Types.
PidOr Func = pid() | new | {Module, Function, Arity} | on_load
Module = Function = atom()
Arity = int()
Item, Res -- see below
Returns trace information about a process or function.

To get information about a process, Pi dOr Func should be a pid or the atom new. The atom new means that the
default trace state for processes to be created will be returned. | t emmust have one of the following values:

flags

Return a list of atoms indicating what kind of traces is enabled for the process. The list will be empty if
no traces are enabled, and one or more of the followings atoms if traces are enabled: send, ' recei ve',
set _on_spawn, cal |, return_to, procs, set_on_first_spawn, set_on_Ilink, running,
gar bage_col |l ection,ti nestanp,andarity. Theorder isarbitrary.

tracer

Return the identifier for process or port tracing this process. If this processis not being traced, the return value
will be[] .

To get information about a function, Pi dOr Func should be a three-element tuple: { Modul e, Functi on,
Arity} ortheatom on_| oad. No wildcards are alowed. Returns undef i ned if the function does not exist or
f al se if thefunctionisnot traced at all. | t emmust have one of the following values:

traced

Return gl obal if this function is traced on global function calls, | ocal if this function is traced on local
function calls (i.elocal and global function calls), and f al se if neither local nor global function calls are traced.

mat ch_spec

Return the match specification for this function, if it has one. If the function islocally or globally traced but has
no match specification defined, the returned valueis|[] .

net a

Return the meta trace tracer process or port for this function, if it has one. If the function is not meta traced the
returned value isf al se, and if the function is meta traced but has once detected that the tracer proc isinvalid,
the returned valueis|].

nmet a_mat ch_spec

Return the meta trace match specification for this function, if it has one. If the function is meta traced but has no
match specification defined, the returned valueis|[] .

cal |l _count

Return the call count value for this function or t r ue for the pseudo function on_| oad if call count tracing is
active. Return f al se otherwise. See also erlang:trace pattern/3.

call _time

Return the call time values for this function or t r ue for the pseudo function on_| oad if cal time tracing is
active. Returnsf al se otherwise. Thecall timevaluesreturned, [{ Pi d, Count, S, Us}],isalistof each
process that has executed the function and its specific counters. See also erlang:trace pattern/3.

Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS) | 157

erlang

al |

Return alist containingthe{ 1t em Val ue} tuplesfor al other items, or return f al se if notracing isactive
for this function.

The actua return value will be{ 1t em Val ue}, where Val ue isthe requested information as described above. If
apid for adead process was given, or the name of a non-existing function, Val ue will beundef i ned.

If Pi dOr Func istheon_| oad, theinformation returned refers to the default value for code that will be loaded.

erlang:trace_pattern(MFA, MatchSpec) -> int()
The same as erlang:trace pattern(MFA, MatchSpec, []), retained for backward compatibility.

erlang:trace_pattern(MA, Mat chSpec, FlagList) -> int()
Types:
MFA, MatchSpec, FlagL ist -- see below

This BIF is used to enable or disable call tracing for exported functions. It must be combined with erlang:trace/3 to
setthecal | traceflag for one or more processes.

Conceptually, call tracing works like this: Inside the Erlang virtual machine there is a set of processes to be traced
and a set of functions to be traced. Tracing will be enabled on the intersection of the set. That is, if a processincluded
in the traced process set calls afunction included in the traced function set, the trace action will be taken. Otherwise,
nothing will happen.

Use erlang:trace/3 to add or remove one or more processes to the set of traced processes. Use
erl ang:trace_pattern/ 2 toadd or remove exported functions to the set of traced functions.

The erl ang: trace_pattern/3 BIF can aso add match specifications to an exported function. A match
specification comprises a pattern that the arguments to the function must match, a guard expression which must
evaluatetot r ue and an action to be performed. The default action is to send a trace message. If the pattern does not
match or the guard fails, the action will not be executed.

The MFA argument should be a tuple like { Modul e, Function, Arity} ortheaom on_| oad (described

below). It can be the module, function, and arity for an exported function (or a BIF in any module). The' ' atom
can be used to mean any of that kind. Wildcards can be used in any of the following ways:
{Modul e, Function,"' "}
All exported functions of any arity named Funct i on in module Modul e.
{Module,"_',"_"}
All exported functions in module Modul e.
¢
All exported functionsin all loaded modules.
Other combinations, such as{ Modul e, ' ', Ari ty}, arenot allowed. Local functions will match wildcards only

if thel ocal optionisintheFl agLi st .

If the MFA argument isthe atom on_| oad, the match specification and flag list will be used on all modules that are
newly loaded.

The Mat chSpec argument can take any of the following forms:
fal se
Disable tracing for the matching function(s). Any match specification will be removed.

158 | Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS)

erlang

true
Enable tracing for the matching function(s).
Mat chSpeclLi st

A list of match specifications. An empty list isequivalenttot r ue. Seethe ERTS User's Guide for adescription
of match specifications.

restart

For the FI agLi st option cal | _count and cal | _ti nme: restart the existing counters. The behaviour is
undefined for other FI agLi st options.

pause

For the FI agLi st option cal I _count and cal | _ti nme: pause the existing counters. The behaviour is
undefined for other Fl agLi st options.

TheFl aglLi st parameter isalist of options. The following options are allowed:
gl obal

Turn on or off call tracing for global function calls (that is, calls specifying the module explicitly). Only exported
functions will match and only global callswill generate trace messages. Thisis the default.

| ocal

Turn on or off call tracing for al types of function calls. Trace messages will be sent whenever any of the
specified functions are called, regardless of how they are called. If ther et ur n_t o flag is set for the process, a
r et ur n_t o message will also be sent when this function returnsto its caler.

meta | {nmeta, Pid}

Turn on or off metatracing for al types of function calls. Trace messageswill be sent to the tracer process or port
Pi d whenever any of the specified functions are called, regardless of how they are called. If no Pi d isspecified,
sel f () isused asadefault tracer process.

Metatracing traces all processes and does not care about the processtrace flagsset by t r ace/ 3, thetraceflags
areinstead fixedto[cal |, tinestanp].

The match spec function {r et ur n_t r ace} works with meta trace and send its trace message to the same
tracer process.

cal |l _count

Starts (Mat chSpec == true) or stops(Mat chSpec == f al se) call count tracing for all types of function
calls. For every function a counter is incremented when the function is called, in any process. No process trace
flags need to be activated.

If call count tracing is started while already running, the count is restarted from zero. Running counters can be
pausedwith Mat chSpec == pause. Paused and running counterscan berestarted from zerowith Mat chSpec
== restart.

The counter value can be read with erlang:trace_info/2.
call _tinme

Starts (Mat chSpec == true) or stops (Mat chSpec == f al se) call timetracing for all types of function
calls. For every function a counter is incremented when the function is called. Time spent in the function is
accumulated in two other counters, seconds and micro-seconds. The counters are stored for each call traced
process.

Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS) | 159

erlang

If call timetracing is started while already running, the count and time is restarted from zero. Running counters
can be paused with Mat chSpec == pause. Paused and running counters can be restarted from zero with
Mat chSpec == restart.

The counter value can be read with erlang:trace_info/2.

Thegl obal andl ocal optionsare mutualy exclusiveand gl obal isthedefault (if no options are specified). The
cal | _count and et a options perform a kind of local tracing, and can aso not be combined with gl obal . A
function can be either globally or locally traced. If global tracing is specified for a specified set of functions; local,
meta, call time and call count tracing for the matching set of local functionswill be disabled, and vice versa.

When disabling trace, the option must match the type of trace that is set on the function, so that local tracing must be
disabled with thel ocal option and global tracing with the gl obal option (or no option at al), and so forth.

There is no way to directly change part of a match specification list. If a function has a match specification, you can
replaceit with acompletely new one. If you need to change an existing match specification, usethe erlang:trace_info/2
BIF to retrieve the existing match specification.

Returns the number of exported functions that matched the MFA argument. Thiswill be zero if none matched at all.

trunc(Nunber) -> int()
Types:
Number = number ()
Returns an integer by the truncating Nunber .

> trunc(5.5).
5

Allowed in guard tests.

tupl e_size(Tuple) -> int()
Types.
Tuple = tuple()
Returns an integer which is the number of elementsin Tupl e.

> tupl e_size({nmorni, mulle, bwange}).
3

Allowed in guard tests.

tuple_to list(Tuple) -> [term)]
Types:
Tuple=tuple)
Returns alist which corresponds to Tupl e. Tupl e may contain any Erlang terms.

> tuple_to_list({share, {'Ericsson_B', 163}}).
[share, {' Ericsson_B', 163}]

160 | Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS)

erlang

erl ang: universaltime() -> {Date, Tine}
Types:
Date={Year, Month, Day}
Time = {Hour, Minute, Second}
Year = Month = Day = Hour = Minute = Second = int()
Returns the current date and time according to Universal Time Coordinated (UTC), also caled GMT, in the form

{{Year, Month, Day}, {Hour, M nute, Second}} if supported by the underlying operating system. If
not, erl ang: uni versal ti ne() isequivdenttoer! ang: | ocal time().

> erl ang: uni versal time().
{{1996, 11, 6}, {14, 18, 43}}

erlang: universaltine_to_localtime({Datel, Tinel}) -> {Date2, Tinme2}
Types:

Datel = Date2 = {Year, Month, Day}

Timel = Time2 = {Hour, Minute, Second}

Year = Month = Day = Hour = Minute = Second = int()

ConvertsUniversal Time Coordinated (UTC) date and timeto local date and time, if thisis supported by the underlying
OS. Otherwise, no conversionisdone, and { Dat e1l, Ti mel} isreturned.

> erlang: universaltime_to_ | ocal time({{1996, 11, 6}, {14, 18, 43}}).
{{1996, 11, 7}, {15, 18, 43} }

Failure: badar g if Dat el or Ti mel do not denote avalid date or time.

unlink(ld) -> true
Types:
Id = pid() | port()
Removesthelink, if thereis one, between the calling process and the process or port referred to by | d.
Returnst r ue and does not fail, even if thereisnolink to | d, or if | d does not exist.

Onceunl i nk(1 d) hasreturned it is guaranteed that the link between the caller and the entity referred to by | d has
no effect on the caller in the future (unless the link is setup again). If caler is trapping exits, an{' EXI T', Id,
_} message due to the link might have been placed in the callers message queue prior to the call, though. Note, the
{"EXIT, Id, _} messagecanbetheresultof thelink, but canalsobetheresultof | d callingexi t / 2. Therefore,
it may be appropriate to cleanup the message queue when trapping exits after the call tounl i nk(1 d) , asfollow:

unl i nk(1d),
receive
{EXT, Id, _} ->
true
after 0 ->
true
end

Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS) | 161

erlang

Note:

Prior to OTP release R11B (erts version 5.5) unl i nk/ 1 behaved completely asynchronous, i.e., the link was
active until the "unlink signal" reached the linked entity. This had one undesirable effect, though. Y ou could
never know when you were guaranteed not to be effected by the link.

Current behavior can be viewed astwo combined operations: asynchronously send an "unlink signal" to thelinked
entity and ignore any future results of the link.

unr egi st er (RegNane) -> true
Types:
RegName = atom()
Removes the registered name RegNane, associated with a pid or a port identifier.

> unregi ster(db).
true

Users are advised not to unregister system processes.
Failure: badar g if RegNare is not aregistered name.

wher ei s(RegNane) -> pid() | port() | undefined

Returns the pid or port identifier with the registered name RegNane. Returns undefi ned if the name is not
registered.

> wherei s(db).
<0. 43. 0>

erlang:yield() -> true

Voluntarily let other processes (if any) get a chance to execute. Using er | ang: yi el d() issimilartor ecei ve
after 1 -> ok end, exceptthatyi el d() isfaster.

Warning:

Thereis seldom or never any need to use this BIF, especialy in the SMP-emulator as other processes will have a
chance to run in another scheduler thread anyway. Using this BIF without a thorough grasp of how the scheduler
works may cause performance degradation.

162 | Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS)

init

init

Erlang module

Thei ni t moduleis pre-loaded and contains the code for thei ni t system process which coordinates the start-up of
the system. The first function evaluated at start-up is boot (Boot Ar gs) , where Boot Ar gs isalist of command
line arguments supplied to the Erlang runtime system from the local operating system. See erl(1).

i ni t readstheboot script which containsinstructionson how to initiate the system. See script(4) for moreinformation
about boot scripts.

i ni t also contains functions to restart, reboot, and stop the system.

Exports

boot (Boot Args) -> void()
Types:
BootArgs = [binary()]
Starts the Erlang runtime system. This function is called when the emulator is started and coordinates system start-up.
Boot Ar gs areall command line arguments except the emulator flags, that is, flags and plain arguments. See erl(1).

i nit itself interprets some of the flags, see Command Line Flags below. The remaining flags ("user flags")
and plain arguments are passed to the i nit loop and can be retrieved by calling get _ar gunent s/ 0 and
get _pl ai n_ar gunent s/ 0, respectively.

get_args() -> [Arg]
Types:
Arg=atom()

Returns any plain command line arguments as a list of atoms (possibly empty). It is recommended that
get _pl ai n_argunent s/ 1 isused instead, because of the limited length of atoms.

get _argunent (Flag) -> {ok, Arg} | error

Types:
Flag = atom()
Arg=[Valueg

Values = [string()]

Returnsall values associated with the command line user flag Fl ag. If Fl ag isprovided several times, each Val ues
isreturned in preserved order.

%erl -abc-ad
1> init:get_argunent(a).
{ok, [["b","c"],["d"]]}

There are also a number of flags, which are defined automatically and can be retrieved using this function:
r oot
The installation directory of Erlang/OTP, $ROOT.

Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS) | 163

init

2> init:get_argunent(root).
{ok,[["/usr/l|ocal/otp/rel eases/ ot p_beam sol ari s8_r 10b_pat ched"]]}

pr ognamne

The name of the program which started Erlang.

3> init:get_argunent (prognane).

{ok,[["erl"]]}

home
The home directory.

4> init:get_argunent (hone).
{ok,[["/home/harry"]]}

Returnser r or if thereis no value associated with Fl ag.

get _argunents() -> Flags

Types:
Flags = [{Flag, Values}]
Flag = atom()

Values = [string()]
Returns all command line flags, as well as the system defined flags, seeget _ar gunent / 1.

get _plain_argunents() -> [Arg]
Types:
Arg=string()
Returns any plain command line arguments as alist of strings (possibly empty).

get _status() -> {Internal Status, ProvidedStatus}
Types:
InternalStatus = starting | started | stopping
ProvidedStatus = term()
The current status of thei ni t process can be inspected. During system startup (initialization), | nt er nal St at us
isstarting,andProvi dedSt at us indicates how far the boot script has been interpreted. Each { pr ogr ess,

I nf o} term interpreted in the boot script affects Pr ovi dedSt at us, that is, Pr ovi dedSt at us gets the value
of | nf o.

reboot () -> void()

All applications are taken down smoothly, al code is unloaded, and all ports are closed before the system terminates.
If the- heart command line flag was given, thehear t program will try to reboot the system. Refer to hear t (3)
for more information.

164 | Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS)

init

To limit the shutdown time, the timei ni t is allowed to spend taking down applications, the - shut down_t i ne
command line flag should be used.

restart() -> void()

The system isrestarted inside the running Erlang node, which means that the emulator is not restarted. All applications
are taken down smoothly, all code is unloaded, and all ports are closed before the system is booted again in the same
way asinitialy started. The same Boot Ar gs are used again.

To limit the shutdown time, the timei ni t is alowed to spend taking down applications, the - shut down_t i ne
command line flag should be used.

script_id() ->1d
Types:
Id =term()

Get the identity of the boot script used to boot the system. | d can be any Erlang term. In the delivered boot scripts,
I dis{Name, Vsn}.Name andVsn are strings.

stop() -> void()

All applications are taken down smoothly, all code is unloaded, and all ports are closed before the system terminates.
If the - heart command line flag was given, the hear t program is terminated before the Erlang node terminates.
Refer to hear t (3) for more information.

To limit the shutdown time, the time i ni t is allowed to spend taking down applications, the - shut down_t i e
command line flag should be used.

stop(Status) -> void()
Types:
Status = int()>=0 | string()

All applications are taken down smoothly, all code is unloaded, and al ports are closed before the system terminates
by calling hal t (St at us) . If the- heart command line flag was given, the hear t program isterminated before
the Erlang node terminates. Refer to hear t (3) for moreinformation.

To limit the shutdown time, the time i ni t is allowed to spend taking down applications, the - shut down_t i e
command line flag should be used.

Command Line Flags

Warning:

The support for loading of code from archive files is experimental. The sole purpose of releasing it before it is
ready is to obtain early feedback. The file format, semantics, interfaces etc. may be changed in a future release.
The- code_pat h_choi ce flag is aso experimental.

Thei ni t moduleinterprets the following command line flags:

Everything following - - up to the next flag is considered plain arguments and can be retrieved using
get _pl ai n_argunent s/ 0.

Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS) | 165

init

-code_path_choi ce Choi ce

This flag can be set to stri ct or r el axed. It controls whether each directory in the code path should be
interpreted strictly as it appears in the boot scri pt orif i nit should be more relaxed and try to find a
suitable directory if it can choose from a regular ebin directory and an ebin directory in an archive file. This
flag is particular useful when you want to elaborate with code loading from archives without editing the boot
scri pt . Seescript(4) for more information about interpretation of boot scripts. The flag doesaso haveasimilar
affect on how the code server works. See code(3).

-eval Expr

Scans, parses and evaluates an arbitrary expression Expr during system initialization. If any of these steps fail
(syntax error, parse error or exception during evaluation), Erlang stopswith an error message. Hereisan example
that seeds the random number generator:

%erl -eval '{XY,Z}' = now), random seed(X Y, 2Z)."

This example uses Erlang as a hexadecimal calculator:

%erl -noshell -eval 'R = 16#1F+16#A0, io:format("~. 16B~n", [R])"' \\
-s erlang halt
BF

If multiple - eval expressions are specified, they are evaluated sequentialy in the order specified. - eval
expressions are eval uated sequentially with - s and - r un function calls (thisalso in the order specified). Aswith
- s and - r un, an evaluation that does not terminate, blocks the system initialization process.

-extra

Everything following -extra is considered plain arguments and can be retrieved using
get _plai n_argunents/O0.

-run Mod [Func [Argl, Arg2, ...]1]

Evaluates the specified function call during system initialization. Func defaults to st art . If no arguments
are provided, the function is assumed to be of arity 0. Otherwise it is assumed to be of arity 1, taking the list
[Argl, Arg2,...] asargument. All arguments are passed as strings. If an exception is raised, Erlang stops
with an error message.

Example:

%erl -run foo -run foo bar -run foo bar baz 1 2

This starts the Erlang runtime system and eval uates the following functions:

foo:start()
f oo: bar ()
foo: bar (["baz", "1", "2"]).

The functions are executed sequentially in an initialization process, which then terminates normally and passes
control to the user. This means that a - r un call which does not return will block further processing; to avoid
this, use some variant of spawn in such cases.

166 | Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS)

init

-s Mod [Func [Argl, Arg2, ...]]

Evaluates the specified function call during system initiadlization. Func defaults to st art . If no arguments
are provided, the function is assumed to be of arity 0. Otherwise it is assumed to be of arity 1, taking the list
[Argl, Arg2,...] asargument. All arguments are passed as atoms. If an exception is raised, Erlang stops
with an error message.

Example:

%erl -s foo -s foo bar -s foo bar baz 1 2

This starts the Erlang runtime system and eval uates the following functions:

foo:start()
f oo: bar ()
foo: bar([baz, '1', '2']).

The functions are executed sequentially in an initialization process, which then terminates normally and passes
control to the user. This means that a- s call which does not return will block further processing; to avoid this,
use some variant of spawn in such cases.

Due to the limited length of atoms, it is recommended that - r un be used instead.

Example

%erl -- ab -children thomas claire -ages 7 3 -- x vy

1> init:get_plain_argunments().
["a"!" b"!"X"!"y"]

2> init:get_argunent (children).
{ok,[["thomas","claire"]]}

3> init:get_argunent (ages).
{ok, [["7","3"]]}

4> init:get_argument(silly).
error

SEE ALSO
erl_prim_loader(3), heart(3)

Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS) | 167

zlib

zlib

Erlang module

The zlib module provides an API for the zlib library (http://www.zlib.org). It is used to compress and decompress
data. The dataformat is described by RFCs 1950 to 1952.

A typical (compress) usage looks like:

Z = zlib:open(),
ok = zlib:deflatelnit(z default),

Conpress = fun(end_of _data, _Cont) -> [];
(Data, Cont) ->
[zlib:defl ate(Z, Data)| Cont(Read(), Cont)]

end,
Conpr essed = Conpress(Read(), Conpress),
Last = zlib:deflate(z, [], finish),
ok = zlib: defl at eEnd(2),
zlib: cl ose(2),
list_to_binary([Conpressed|Last])

Inall functionserrors, {' EXI T' , { Reason, Backt r ace} } , might be thrown, where Reason describesthe error.
Typical reasons are:

badar g
Bad argument
data_error
The data contains errors
streamerror
Inconsistent stream state
ei nval
Bad value or wrong function called
{need_di ctionary, Adl er 32}
Seeinflate/?2

DATA TYPES

iodata = iolist() | binary()

iolist = [char() | binary() | iolist()]
a binary is allowed as the tail of the list

zstream = a zlib stream see open/O0

168 | Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS)

zlib

Exports

open() -> Z
Types:

Z = zstream()
Open a zlib stream.

close(2) -> ok
Types.
Z = zstream()
Closes the stream referenced by Z.

deflatelnit(z) -> ok
Types:

Z = zstream()
Sameaszlib:deflatelnit(Z, default).

deflatelnit(Z, Level) -> ok
Types:

Z = zstream()

Level = none | default | best_speed | best_compression | 0..9
Initialize a zlib stream for compression.

Level decidesthe compressionlevel tobeused, 0 (none), givesno compressionat al, 1 (best _speed) givesbest
speed and 9 (best _conpr essi on) gives best compression.

deflatelnit(Z, Level, Method, WndowBits, MenLevel, Strategy) -> ok
Types:

Z = zstream()

Level = none | default | best_speed | best_compression | 0..9

Method = deflated

WindowBits = 9..15|-9..-15

MemLevel =1..9

Strategy = default|filtered|huffman_only

Initiates a zlib stream for compression.

The Level parameter decides the compression level to be used, O (none), gives no compression at al, 1
(best _speed) gives best speed and 9 (best _conpr essi on) gives best compression.

The Met hod parameter decides which compression method to use, currently the only supported method is
def | at ed.

The W ndowBi t s parameter is the base two logarithm of the window size (the size of the history buffer). It should
be in the range 9 through 15. Larger values of this parameter result in better compression at the expense of memory
usage. The default valueis15if def | at el ni t/ 2. A negative W ndowBi t s value suppresses the zlib header (and
checksum) from the stream. Note that the zlib source mentions this only as a undocumented feature.

Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS) | 169

zlib

The MenLevel parameter specifies how much memory should be allocated for the internal compression state.
MermLevel =1 uses minimum memory but is slow and reduces compression ratio; MenLevel =9 uses maximum
memory for optimal speed. The default valueis 8.

The St r at egy parameter is used to tune the compression algorithm. Use the value def aul t for normal data,
filtered for data produced by afilter (or predictor), or huf f man_onl y to force Huffman encoding only (no
string match). Filtered data consists mostly of small values with a somewhat random distribution. In this case, the
compression algorithm is tuned to compress them better. The effect of fi | t er edis to force more Huffman coding
and less string matching; it is somewhat intermediate between def aul t and huf f man_onl y. The St r at egy
parameter only affects the compression ratio but not the correctness of the compressed output even if it is not set
appropriately.

deflate(Z, Data) -> Conpressed
Types.

Z =zstream()

Data = iodata()

Compressed =iolist()
Sameasdef |l ate(Z, Data, none).

deflate(Z, Data, Flush) ->
Types.
Z = zstream()
Data = iodata()
Flush = none| sync| full | finish
Compressed = iolist()
def | at e/ 3 compresses as much data as possible, and stops when the input buffer becomes empty. It may introduce
some output latency (reading input without producing any output) except when forced to flush.

If the parameter Fl ush isset to sync, al pending output is flushed to the output buffer and the output is aligned on
a byte boundary, so that the decompressor can get al input data available so far. Flushing may degrade compression
for some compression algorithms and so it should be used only when necessary.

If Fl ushissettof ul | , all output isflushed aswith sync, and the compression state is reset so that decompression
can restart from this point if previous compressed data has been damaged or if random accessis desired. Using f ul |
too often can seriously degrade the compression.

If the parameter Fl ush issetto f i ni sh, pending input is processed, pending output is flushed and def | at e/ 3
returns. Afterwards the only possible operations on the stream aredef | at eReset/ 1 or def | at eEnd/ 1.

Fl ush canbesettof i ni sh immediately after def | at el ni t if all compression isto be donein one step.

zlib:deflatelnit(2),

Bl = zlib:deflate(Zz Data),

B2 = zlib:deflate(Z, << >>, finish),
zl i b: def | at eEnd(2),
list_to_binary([B1, B2])

def | ateSet Di ctionary(Z, Dictionary) -> Adler32
Types:

170 | Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS)

zlib

Z = zstream()

Dictionary = binary()

Adler32 =integer()
Initializes the compression dictionary from the given byte sequence without producing any compressed output.
This function must be caled immediately after deflatelnit/[1] 2| 6] or defl at eReset/ 1, before

any cal of deflate/ 3. The compressor and decompressor must use exactly the same dictionary (see
i nfl at eSet Di cti onary/ 2). Theadler checksum of the dictionary is returned.

def | at eReset (2) -> ok
Types:
Z = zstream()

This function is equivalent to def | at eEnd/ 1 followed by defl atelnit/[1| 2| 6], but does not free and
reallocate all theinternal compression state. The stream will keep the same compression level and any other attributes.

def | at eParans(Z, Level, Strategy) -> ok
Types:

Z = zstream()

Level = none | default | best_speed | best_compression | 0..9

Strategy = default|filtered|huffman_only
Dynamically update the compression level and compression strategy. The interpretation of Level and Str at egy
isasindef | at el ni t/ 6. This can be used to switch between compression and straight copy of the input data, or
to switch to adifferent kind of input data requiring a different strategy. If the compression level is changed, the input

available so far is compressed with the old level (and may be flushed); the new level will take effect only at the next
cal of def | at e/ 3.

Beforethe call of deflateParams, the stream state must be set asfor acall of def | at e/ 3, sincethe currently available
input may have to be compressed and flushed.

defl ateEnd(Z) -> ok
Types.
Z = zstream()

End the deflate session and cleans all data used. Note that this function will throw an dat a_er r or exception if the
last call todef | at e/ 3 wasnot called with Fl ush settofi ni sh.

inflatelnit(2) -> ok
Types:
Z = zstream()
Initialize a zlib stream for decompression.

inflatelnit(Z, WndowBits) -> ok
Types:

Z = zstream()

WindowBits = 9..15]-9..-15

Initialize decompression session on zlib stream.

Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS) | 171

zlib

TheW ndowBi t s parameter isthe base two logarithm of the maximum window size (the size of the history buffer). It
should bein the range 9 through 15. The default valueis 15if i nf | at el ni t/ 1 isused. If acompressed stream with
alarger window size is given as input, inflate() will throw the dat a_er r or exception. A negative W ndowBi t s
value makes zlib ignore the zlib header (and checksum) from the stream. Note that the zlib source mentions this only
as aundocumented feature.

inflate(Z, Data) -> DeConpressed
Types.
Z = zstream()
Data = iodata()
DeCompressed =iolist()
i nfl at e/ 2 decompresses as much data as possible. It may some introduce some output latency (reading input
without producing any output).

If a preset dictionary is needed at this point (see i nfl at eSet Di cti onary below), i nfl at e/ 2 throws a
{need_di ctionary, Adl er} exception where Adl er isthe adler32 checksum of the dictionary chosen by the
COmpressor.

inflateSetDictionary(Z, Dictionary) -> ok
Types:
Z = zstream()
Dictionary = binary()
Initializes the decompression dictionary from the given uncompressed byte sequence. This function must be called
immediately after a call of i nfl ate/ 2 if this cal threw a { need_di cti onary, Adl er} exception. The

dictionary chosen by the compressor can be determined from the Adler value thrown by thecall toi nf | at e/ 2. The
compressor and decompressor must use exactly the same dictionary (seedef | at eSet Di cti onary/ 2).

Example:

unpack(Z, Conpressed, Dict) ->
case catch zlib:inflate(Z, Conpressed) of
{"EXIT ,{{need_dictionary,DictlD}, }} ->
zlib:inflateSetDictionary(Z, Dict),
Unconpressed = zlib:inflate(Z, []);
Unconpr essed - >
Unconpr essed
end.

i nfl ateReset (Z2) -> ok
Types:
Z =zstream()

Thisfunction isequivalent to i nf | at eEnd/ 1 followed by i nf | at el ni t/ 1, but does not free and reallocate all
theinternal decompression state. The stream will keep attributesthat may havebeensetbyinfl atel nit/[1] 2] .

inflateEnd(Z) -> ok

Types:
Z = zstream()

172 | Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS)

zlib

End the inflate session and cleans all data used. Note that this function will throw adat a_er r or exception if no
end of stream was found (meaning that not all data has been uncompressed).

set Buf Si ze(Z, Size) -> ok

Types.
Z = zstream()
Size = integer()

Sets the intermediate buffer size.

get Buf Si ze(Z) -> Size

Types:
Z = zstream()
Size = integer()

Get the size of intermediate buffer.

crc32(2) -> CRC

Types:
Z = zstream()
CRC =integer()

Get the current calculated CRC checksum.

crc32(Z, Binary) -> CRC
Types.
Z = zstream()
Binary = binary()
CRC =integer()
Calculate the CRC checksum for Bi nary.

crc32(Z, PrevCRC, Binary) -> CRC
Types.
Z = zstream()
PrevCRC = integer()
Binary = binary()
CRC =integer()
Update a running CRC checksum for Bi nary. If Bi nary isthe empty binary, this function returns the required
initial value for the crc.

Crc = lists:foldl (fun(Bin,Crc0) ->
zlib:crc32(z, CrcO, Bin),
end, zlib:crc32(z << >>), Bins)

crc32_conbine(Z, CRCL, CRC2, Size2) -> CRC
Types:

Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS) | 173

zlib

Z =zstream()
CRC =integer()
CRC1=integer()
CRC2 =integer()
Size2 = integer ()
Combine two CRC checksums into one. For two binaries, Bi n1 and Bi n2 with sizesof Si zel and Si ze2, with

CRC checksums CRC1 and CRC2. cr ¢32_conbi ne/ 4 returns the CRC checksum of <<Bi n1/ bi nary, Bi n2/
bi nar y>>, requiring only CRC1, CRC2, and Si ze2.

adl er32(Z, Binary) -> Checksum
Types:

Z =zstream()

Binary = binary()

Checksum = integer ()
Calculate the Adler-32 checksum for Bi nary.

adl er32(2Z, PrevAdler, Binary) -> Checksum
Types:

Z =zstream()

PrevAdler = integer()

Binary = binary()

Checksum = integer ()

Update arunning Adler-32 checksum for Bi nar y. If Bi nary isthe empty binary, this function returns the required
initial value for the checksum.

Crc = lists:foldl (fun(Bin, Crc0) ->
zlib:adler32(2Z, CrcO, Bin),
end, zlib:adler32(Z << >>), Bins)

adl er32_conbi ne(Z, Adlerl, Adler2, Size2) -> Adler

Types.
Z = zstream()
Adler =integer()

Adlerl =integer()
Adler2 = integer()
Size2 = integer ()
Combinetwo Adler-32 checksumsinto one. For two binaries, Bi n1 and Bi n2 withsizesof Si zel and Si ze2, with

Adler-32 checksums Adl er 1 and Adl er 2. adl er 32_conbi ne/ 4 returns the Adl er checksum of <<Bi n1/
bi nary, Bi n2/ bi nar y>>, requiring only Adl er 1, Adl er 2, and Si ze2.

conpress(Bi nary) -> Conpressed

Types:
Binary = Compressed = binary()

174 | Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS)

zlib

Compress a binary (with zlib headers and checksum).

unconpress(Bi nary) -> Deconpressed
Types:

Binary = Decompressed = binary()
Uncompress a binary (with zlib headers and checksum).

zi p(Bi nary) -> Conpressed
Types:
Binary = Compressed = binary()
Compress a binary (without zlib headers and checksum).

unzi p(Bi nary) -> Deconpressed
Types:
Binary = Decompressed = binary()
Uncompress a binary (without zlib headers and checksum).

gzi p(Data) -> Conpressed
Types.
Binary = Compressed = binary()
Compress a binary (with gz headers and checksum).

gunzi p(Bi n) -> Deconpressed
Types:

Binary = Decompressed = binary()
Uncompress a binary (with gz headers and checksum).

Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS) | 175

epmd

epmd

Command

Erlang Port Mapper Daemon

epnd [-d|-debug] [DbgExtra...] [-port No] [-daenon] [-relaxed_conmand_check]
Starts the port mapper daemon

epnd [-d|-debug] [-port No] [-names|-kill]|-stop Nane]
Communicates with a running port mapper daemon

This daemon acts as a name server on all hosts involved in distributed Erlang computations. When an Erlang node
starts, the node has aname and it obtains an address from the host OS kernel. The name and the address are sent to the
epnd daemon running on the local host. In a TCP/IP environment, the address consists of the IP address and a port
number. The name of the node is an atom on the form of Name @\ode. The job of the epnd daemon isto keep track
of which node name listens on which address. Hence, epnd map symbolic nhode names to machine addresses.

The TCP/IP epnd daemon actually only keeps track of the Nane (first) part of an Erlang node name, the Host part
(whatever is after the @is implicit in the node name where the epnd daemon was actually contacted, as is the IP
address where the Erlang node can be reached. Consistent and correct TCP naming services are therefore required for
an Erlang network to function correctly.

Starting the port mapper daemon

The daemon is started automatically by theer | command if the node is to be distributed and there is no running
instance present. If automatically launched, environment variables has to be used to alter the behavior of the
daemon. See the Environment variables section below.

If the -daemon argument is not given, the epnd runs as a normal program with the controlling terminal of the
shell in whichit is started. Normally, it should run as a daemon.

Regular start-up options are described in the Regular options section below.
The DbgExt r a options are described in the DbgExtra options section below.
Communicating with a running port mapper daemon

Communicating with the running epmd daemon by means of the epnd program is done primarily for debugging
purposes.

The different queries are described in the Interactive options section below.

Regular options

These options are available when starting the actual name server. The name server is normally started automatically
by theer | command (if not already available), but it can also be started at i.e. system start-up.

-port No

Let this instance of epmd listen to another TCP port than default 4369. This can also be set using the
ERL _EPMD PORT environment variable, see the section Environment variables below

-d | -debug

Enable debug output. The more- d flags given, the more debug output you will get (to acertain limit). Thisoption
is most useful when the epmd daemon is not started as a daemon.

176 | Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS)

epmd

- daenon

Start epmd detached from the controlling terminal. Logging will end up in syslog when available and correctly
configured. If the epmd daemon is started at boot, this option should definitely be used. It is also used when the
er | command automaticaly startsepnd.

-rel axed_comand_check

Start the epmd program with relaxed command checking (mostly for backward compatibility). This affects the
following:

* Withrelaxed command checking, the epnd daemon can be killed from the localhost withi.e.epnd - ki | |
even if there are active nodes registered. Normally only daemons with an empty node database can be killed
withtheepnd - kil | command.

e The epnd -stop command (and the corresponding messages to epmd, as can be given using
erl _interface/ei)isnormaly alwaysignored, as it opens up for strange situation when two nodes
of the same name can be dive at the same time. A node unregistersitself by just closing the connection to
epmd, why the st op command was only intended for use in debugging situations.

With relaxed command checking enabled, you can forcibly unregister live nodes.

Relaxed command checking can adso be enabled by setting the environment variable
ERL_EPMD RELAXED COMVAND CHECK prior to starting eprrd.

Only use relaxed command checking on systems with very limited interactive usage.

DbgExtra options
These options are purely for debugging and testing epmd clients, they should not be used in normal operation.
- packet timeout Seconds

Set the number of seconds a connection can be inactive before epmd times out and cl oses the connection (default
60).

-del ay_accept Seconds

To simulate a busy server you can insert a delay between epmd gets notified about that a new connection is
reguested and when the connections gets accepted.

-delay_write Seconds

Also asimulation of abusy server. Inserts adelay before areply is sent.

Interactive options

These options make epnd run as an interactive command displaying the results of sending queries ta an already
running instance of epnd. The epmd contacted is always on the local node, but the - port option can be used to
select between instances if several are running using different port on the host.

-port No

Contacts the epnd listening on the given TCP port number (default 4369). This can also be set using the
ERL_EPMD_PORT environment variable, see the section Environment variables below

- nanes

List names registered with the currently running epmd
-kill

Kill the currently running epnd.

Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS) | 177

epmd

Killing the running epnd is only dlowed if epnd -names show an empty database or -

rel axed_conmand_check was given when the running instance of epnd was started. Note that -

r el axed_conmand_check isgiven when starting the daemon that isto accept killing when it has live nodes
registered. When running epmd interactively, - r el axed_conmmand_check has no effect. A daemon that is
started without relaxed command checking has to be killed using i.e. signals or some other OS specific method
if it has active clients registered.

-stop Nane
Forcibly unregister alive node from epnd's database

This command can only be used when contacting epnd instances started with the -
rel axed_conmand_check flag. Note that relaxed command checking has to be enabled for the epnd
daemon contacted, When running epmd interactively, - r el axed_comrand_check has no effect.

Environment variables
ERL_EPMD PORT

This environment variable can contain the port number epmd will use. The default port will work fine in most
cases. A different port can be specified to allow several instances of epmd, representing independent clusters of
nodes, to co-exist on the same host. All nodes in a cluster must use the same epmd port number.

ERL_EPMD_RELAXED COMMAND_ CHECK

If set prior to start, the epnd daemon will behave asif the- r el axed_conmand_check option was given at
start-up. If consequently setting this option before starting the Erlang virtual machine, the automatically started
epnd will accept the- ki I | and - st op commands without restrictions.

Logging
On some operating systems syslog will be used for error reporting when epmd runs as an daemon. To enable the error
logging you have to edit /etc/syslog.conf file and add an entry

I epnd
*. *<TABs>/var /| og/ epnd. | og

where <TABs> are at least one real tab character. Spaces will silently be ignored.

Access restrictions

The epnd daemon accepts messages from both localhost and remote hosts. However, only the query commands are
answered (and acted upon) if the query comes from a remote host. It is always an error to try to register a nodename
if the client is not a process located on the same host as the epnd instance is running on, why such requests are
considered hostile and the connection isimmediately closed.

The queries accepted from remote nodes are:

» Port queries- i.e. on which port does the node with a given name listen
* Namelisting - i.e. give alist of all names registered on the host

To restrict access further, firewall software has to be used.

178 | Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS)

erl

erl

Command

Theer | program startsan Erlang runtime system. The exact details (for example, whether er | isascript or aprogram
and which other programsit calls) are system-dependent.

Windows users probably wants to use thewer | program instead, which runs in its own window with scrollbars and
supports command-line editing. Theer | program on Windows provides no line editing in its shell, and on Windows
95 there is no way to scroll back to text which has scrolled off the screen. Theer | program must be used, however,

n pipelines or if you want to redirect standard input or output.

Note:

As of ERTS version 5.8 (OTP-R14A) the runtime system will by default bind schedulers to logical processors
using the def aul t _bi nd bind type if the amount of schedulers are at least equal to the amount of logical
processors configured, binding of schedulersis supported, and a CPU topology is available at startup.

If the Erlang runtime system is the only operating system process that binds threads to logical processors, this
improves the performance of the runtime system. However, if other operating system processes (as for example
another Erlang runtime system) also hind threads to logical processors, there might be a performance penalty
instead. If thisisthe case you, are are advised to unbind the schedulers using the +shtu command line argument,

or by invoking erlang:system flag(scheduler_hind_type, unbound).

Exports

erl

<ar gunment s>

Starts an Erlang runtime system.

The arguments can be divided into emulator flags, flags and plain arguments:

Any argument starting with the character + isinterpreted as an emulator flag.

Asindicated by the name, emulator flags controls the behavior of the emulator.
Any argument starting with the character - (hyphen) isinterpreted as a flag which should be passed to the Erlang
part of the runtime system, more specifically to thei ni t system process, seeinit(3).

Thei ni t processitself interprets some of these flags, the init flags. It also stores any remaining flags, the user
flags. The latter can be retrieved by callingi ni t : get _argunent/ 1.

It can be noted that there are asmall number of "-" flags which now actually are emulator flags, see the description
below.

Plain arguments are not interpreted in any way. They are also stored by thei ni t processand can be retrieved by
calingi ni t: get pl ai n_argunent s/ 0. Plain arguments can occur before thefirst flag, or after a- - flag.
Additionally, the flag - ext r a causes everything that follows to become plain arguments.

Example:

Y% erl +Ww -snane arnie +R 9 -s ny_init -extra +bertie
(arni e@ost) 1> init:get_argunment (snane).
{ok,[["arnie"]]}

(arnie@ost)2> init:get_plain_arguments().

Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS) | 179

erl

["+bertie"]

Here +W wand +R 9 areemulator flags.-s mny_i ni t isaninit flag, interpreted by i nit.-snane arni eisa
user flag, stored by i ni t . Itisread by Kernel and will cause the Erlang runtime system to become distributed. Finally,
everything after - ext r a (that is, +ber t i e) isconsidered as plain arguments.

Y%erl -nyflag 1
1> init:get_argunent (nmyfl ag).
{ok, [["1"]1}

2> init:get_plain_argunents().

[]

Here the user flag - myf 1 ag 1 is passed to and stored by the i ni t process. It is a user defined flag, presumably
used by some user defined application.

Flags

Inthefollowing list, init flagsare marked (init flag). Unless otherwise specified, all other flagsare user flags, for which
the values can be retrieved by calling i ni t : get _ar gunment / 1. Note that the list of user flags is not exhaustive,
there may be additional, application specific flags which instead are documented in the corresponding application
documentation.
- - (init flag)
Everything following - - up to the next flag (- f | ag or +f | ag) is considered plain arguments and can be
retrieved usingi ni t : get _pl ai n_ar gunment s/ 0.
- Application Par Val

Setsthe application configuration parameter Par tothevalueVal fortheapplication Appl i cat i on, seeapp(4)
and application(3).
-args_file Fil eNane

Command line arguments are read from the file Fi | eNane. The arguments read from the file replace the '-
args_fil e Fil eNane'flag on the resulting command line.

The file Fi | eName should be a plain text file and may contain comments and command line arguments. A
comment beginswith a# character and continues until next end of line character. Backslash (\\) isused as quoting
character. All command line arguments accepted by er | areallowed, alsothe-args_fil e Fi | eNane flag.
Be careful not to cause circular dependencies between files containing the- ar gs_f i | e flag, though.

The - ext r a flag is treated specially. Its scope ends at the end of the file. Arguments following an - extr a
flag are moved on the command line into the - ext r a section, i.e. the end of the command line following after
an - ext r a flag.

-async_shel | _start

Theinitial Erlang shell does not read user input until the system boot procedure has been completed (Erlang 5.4
and later). This flag disables the start synchronization feature and lets the shell start in parallel with the rest of
the system.

-boot File

Specifies the name of the boot file, Fi | e. boot , which is used to start the system. See init(3). UnlessFi | e
contains an absolute path, the system searchesfor Fi | e. boot inthe current and $ROCT/ bi n directories.

Defaultsto $ROOT/ bi n/ st art . boot .

180 | Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS)

erl

-boot _var Var Dir

If the boot script contains a path variable Var other than $ROOT, this variable is expanded to Di r . Used when
applications are installed in another directory than $ROOT/ | i b, see systools:make_script/1,2.

-code_pat h_cache
Enables the code path cache of the code server, see code(3).
-conpil e Mbdl Mbd2 ...

Compiles the specified modules and then terminates (with non-zero exit code if the compilation of somefile did
not succeed). Implies - noi nput . Not recommended - use erlc instead.

-config Config

Specifiesthe name of aconfigurationfile, Conf i g. conf i g, whichisusedto configure applications. See app(4)
and application(3).

-connect _all false

If thisflag is present, gl obal will not maintain afully connected network of distributed Erlang nodes, and then
global name registration cannot be used. See global (3).

- cooki e Cooki e
Obsolete flag without any effect and common misspelling for - set cooki e. Use- set cooki e instead.
- det ached

Startsthe Erlang runtime system detached from the system consol e. Useful for running daemons and backgrounds
processes. Implies- noi nput .

-emu_args
Useful for debugging. Prints out the actual arguments sent to the emulator.
-env Variabl e Val ue

Setsthe host OS environment variable Var i abl e to the value Val ue for the Erlang runtime system. Example:

% erl -env DI SPLAY gin:0

In this example, an Erlang runtime system is started with the DI SPLAY environment variable set to gi n: 0.
-eval Expr (init flag)

Makesi ni t evaluate the expression Expr , seeinit(3).
- extra(init flag)

Everything following -extra is considered plain arguments and can be retrieved using
init:get plain_argunents/O0.

- heart
Starts heart beat monitoring of the Erlang runtime system. See heart(3).
- hi dden

Startsthe Erlang runtime system asahidden node, if it isrun asadistributed node. Hidden nodes always establish
hidden connections to all other nodes except for nodes in the same global group. Hidden connections are not
published on either of the connected nodes, i.e. neither of the connected nodesare part of theresult fromnodes/ 0
on the other node. See also hidden global groups, global_group(3).

Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS) | 181

erl

-hosts Hosts

Specifies the |P addresses for the hosts on which Erlang boot servers are running, see erl_boot_server(3). This
flag ismandatory if the- | oader i net flagispresent.

The IP addresses must be given in the standard form (four decimal numbers separated by periods, for example
"150. 236. 20. 74" . Hosts names are not acceptable, but a broadcast address (preferably limited to the local
network) is.

-id Id

Specifies the identity of the Erlang runtime system. If it isrun as a distributed node, | d must be identical to the
name supplied together with the - snane or - nane flag.

-init_debug

Makesi ni t write some debug information while interpreting the boot script.

- i nst r (emulator flag)

Selects an instrumented Erlang runtime system (virtual machine) to run, instead of the ordinary one. When
running an instrumented runtime system, some resource usage data can be obtained and analysed using the module
i nstrunent . Functionally, it behaves exactly like an ordinary Erlang runtime system.

- | oader Loader

Specifies the method used by erl _prim]| oader to load Erlang modules into the system. See
erl_prim_loader(3). Two Loader methods are supported, ef i | e and i net . ef i | e means use the local file
system, this is the default. i net means use a boot server on another machine, and the - i d, - host s and -
set cooki e flags must be specified as well. If Loader is something else, the user supplied Loader port
program is started.

- make

Makesthe Erlang runtime systeminvoke make: al | () inthecurrent working directory and then terminate. See
make(3). Implies- noi nput .

-man Modul e

Displays the manual page for the Erlang module Modul e. Only supported on Unix.

-node interactive | enbedded

Indicates if the system should load code dynamically (i nt er acti ve), or if al code should be loaded during
systeminitialization (enbedded), see code(3). Defaultstoi nt er act i ve.

-nane Nane

Makes the Erlang runtime system into a distributed node. This flag invokes all network servers necessary for a
node to become distributed. See net_kernel(3). It isalso ensured that e pnd runs on the current host before Erlang
is started. See epmd(1).

The name of the node will be Nanme @ost , where Host isthefully qualified host name of the current host. For
short names, use the - snane flag instead.

- noi nput

Ensures that the Erlang runtime system never tries to read any input. Implies- noshel | .

-noshel |

Starts an Erlang runtime system with no shell. This flag makes it possible to have the Erlang runtime system as
acomponent in aseries of UNIX pipes.

-nosti ck

Disables the sticky directory facility of the Erlang code server, see code(3).

182 | Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS)

erl

- ol dshel |
Invokes the old Erlang shell from Erlang 3.3. The old shell can still be used.
-pa Dirl Dir2 ...

Addsthe specified directories to the beginning of the code path, similar tocode: add_pat hsa/ 1. See code(3).
Asan alternativeto - pa, if several directories areto be prepended to the code and the directories have acommon
parent directory, that parent directory could be specified in the ERL LI BS environment variable. See code(3).

-pz Dir1 Dir2 ...
Adds the specified directories to the end of the code path, similar to code: add_pat hsz/ 1. See code(3).
-rensh Node
Starts Erlang with aremote shell connected to Node.
-rsh Program
Specifies an aternativeto r sh for starting a slave node on aremote host. See slave(3).
-run Mod [Func [Argl, Arg2, ...]](initflag)

Makesi ni t cal the specified function. Func defaultsto st ar t . If ho arguments are provided, the function
is assumed to be of arity 0. Otherwise it is assumed to be of arity 1, taking the list [Argl, Arg2,...] as
argument. All arguments are passed as strings. See init(3).

-s Mod [Func [Argl, Arg2, ...]](initflag)

Makesi ni t cal the specified function. Func defaultsto st art . If no arguments are provided, the function
is assumed to be of arity 0. Otherwise it is assumed to be of arity 1, taking the list [Argl, Arg2,...] as
argument. All arguments are passed as atoms. See init(3).

-set cooki e Cooki e
Sets the magic cookie of the node to Cooki e, see erlang:set_cookie/2.
-shutdown_tine Tine

Specifies how long time (in milliseconds) the i ni t process is alowed to spend shutting down the system. If
Ti me ms have elapsed, all processes still existing are killed. Defaultstoi nfinity.

-snane Nane

Makes the Erlang runtime system into a distributed node, similar to - nane, but the host name portion of the
node name Nane @+ost will be the short name, not fully qualified.

Thisissometimesthe only way to run distributed Erlang if the DNS (Domain Name System) isnhot running. There
can be no communication between nodes running with the - snane flag and those running with the - narre flag,
as node names must be unique in distributed Erlang systems.

-snp [enabl e| aut o di sabl e]

-snmp enabl e and - snp starts the Erlang runtime system with SMP support enabled. This may fail if no
runtime system with SMP support isavailable. - snp aut o starts the Erlang runtime system with SMP support
enabled if it is available and more than one logical processor are detected. - snp di sabl e starts a runtime
system without SMP support. By default - sp aut o will be used unless a conflicting parameter has been
passed, then- snp di sabl e will beused. Currently only the- hybr i d parameter conflictswith- snp aut o.
NOTE: The runtime system with SMP support will not be available on all supported platforms. See also the +S
flag.
- ver si on(emulator flag)

Makes the emulator print out its version number. Thesameaser| +V.

Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS) | 183

erl

Emulator Flags

er | invokesthe code for the Erlang emulator (virtual machine), which supports the following flags:

+a size
Suggested stack size, in kilowords, for threads in the async-thread pool. Valid range is 16-8192 kilowords. The
default suggested stack size is 16 kilowords, i.e, 64 kilobyte on 32-bit architectures. This small default size
has been chosen since the amount of async-threads might be quite large. The default size is enough for drivers
delivered with Erlang/OTP, but might not be sufficiently large for other dynamically linked in drivers that use
the driver_async() functionality. Note that the value passed is only a suggestion, and it might even be ignored
on some platforms.

+A si ze
Sets the number of threads in async thread pool, valid range is 0-1024. Default is 0.

+B [c | d| i]
The ¢ option makes Ct r | - C interrupt the current shell instead of invoking the emulator break handler. The
d option (same as specifying +B without an extra option) disables the break handler. Thei option makes the
emulator ignore any break signal.
If the c optionisused with ol dshel | on Unix, Ct r | - Cwill restart the shell process rather than interrupt it.
Note that on Windows, this flag is only applicable for wer |, not er| (ol dshel |). Note also that Ct r | -
Br eak isused instead of Ct r | - C on Windows.

+c
Disable compensation for sudden changes of system time.
Normally, er | ang: now/ 0 will not immediately reflect sudden changes in the system time, in order to keep
timers (including r ecei ve- af t er) working. Instead, the time maintained by er | ang: now 0 is slowly
adjusted towards the new system time. (Slowly meansin one percent adjustments; if thetimeis off by one minute,
the time will be adjusted in 100 minutes.)
When the +c option is given, this slow adjustment will not take place. Instead er | ang: now/ 0 will always
reflect the current system time. Note that timersare based on er | ang: now 0. If the system time jumps, timers
then time out at the wrong time.

+d
If the emulator detects an internal error (or runs out of memory), it will by default generate both a crash dump
and acore dump. The core dump will, however, not be very useful since the content of process heapsis destroyed
by the crash dump generation.
The +d option instructs the emulator to only produce a core dump and no crash dump if an interna error is
detected.
Cdlinger | ang: hal t / 1 with astring argument will still produce a crash dump.

+e Number
Set max number of ETS tables.

+ec
Forcethe conpr essed option on al ETStables. Only intended for test and evaluation.

+f nl

The VM works with file names as if they are encoded using the 1SO-latin-1 encoding, disallowing Unicode
characters with codepoints beyond 255. This is default on operating systems that have transparent file naming,
i.e. al Unixes except MacOSX.

184 | Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS)

erl

+f nu

The VM works with file names as if they are encoded using UTF-8 (or some other system specific Unicode
encoding). Thisisthe default on operating systems that enforce Unicode encoding, i.e. Windows and MacOSX.

By enabling Unicode file name translation on systems where thisis not default, you open up to the possibility that
some file names can not be interpreted by the VM and therefore will be returned to the program as raw binaries.
The option is therefore considered experimental.

+f na

Selection between +f nl and +f nu is done based on the current locale settings in the OS, meaning that if you
have set your terminal for UTF-8 encoding, the filesystem is expected to use the same encoding for filenames
(use with care).

+hns Si ze

Sets the default heap size of processesto thesize Si ze.

+hnbs Si ze

Sets the default binary virtual heap size of processestothesize Si ze.

+K true | false

+

Enables or disables the kernel poll functionality if the emulator supportsit. Default isf al se (disabled). If the
emulator does not support kernel poll, and the +K flag is passed to the emulator, awarning isissued at startup.

Enables auto load tracing, displaying info while loading code.

+MFl ag Val ue

Memory allocator specific flags, see erts _alloc(3) for further information.

+P Nunber

Sets the maximum number of concurrent processesfor thissystem. Nunber must beintherange 16..134217727.
Default is 32768.

+R Rel easeNunber

+r

Sets the compatibility mode.

The distribution mechanism is not backwards compatible by default. Thisflags setsthe emulator in compatibility
mode with an earlier Erlang/OTP release Rel easeNunber. The release number must be in the range
7..<current rel ease>. Thislimitsthe emulator, making it possible for it to communicate with Erlang
nodes (as well as C- and Java nodes) running that earlier rel ease.

For example, an R10 node is not automatically compatible with an R9 node, but R10 nodes started with the +R
9 flag can co-exist with R9 nodes in the same distributed Erlang system, they are R9-compatible.

Note: Make sure all nodes (Erlang-, C-, and Java nodes) of a distributed Erlang system is of the same Erlang/
OTPrelease, or from two different Erlang/OTP releases X and Y, where all Y nodes have compatibility mode X.

For example: A distributed Erlang system can consist of R10 nodes, or of R9 nodes and R9-compatible R10
nodes, but not of R9 nodes, R9-compatible R10 nodes and "regular” R10 nodes, as R9 and "regular" R10 nodes
are not compatible.

Force ets memory block to be moved on realloc.

Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS) | 185

erl

+rg Reader GroupsLinmt

Limits the amount of reader groups used by read/write locks optimized for read operations in the Erlang runtime
system. By default the reader groups limit equals 8.

When the amount of schedulers is less than or equal to the reader groups limit, each scheduler has its own
reader group. When the amount of schedulers is larger than the reader groups limit, schedulers share reader
groups. Shared reader groups degrades read lock and read unlock performance while a large amount of reader
groups degrades write lock performance, so the limit is a tradeoff between performance for read operations and
performance for write operations. Each reader group currently consumes 64 byte in each read/write lock. Also
note that a runtime system using shared reader groups benefits from binding schedulers to logical processors,
since the reader groups are distributed better between schedulers.

+S Schedul ers: Schedul er Onl i ne

Sets the amount of scheduler threads to create and scheduler threads to set online when SMP support has been
enabled. Valid range for both values are 1-1024. If the Erlang runtime system is able to determine the amount of
logical processors configured and logical processors available, Schedul er s will default to logical processors
configured, and Schedul er sOnl i ne will default to logical processors available; otherwise, the default values
will be 1. Schedul er s may be omitted if : Schedul er Onl i ne is not and vice versa. The amount of
schedulers online can be changed at run time via erlang: system flag(schedulers_online, SchedulersOnline).

Thisflag will be ignored if the emulator doesn't have SMP support enabled (see the -smp flag).

+sFl ag Val ue

Scheduling specific flags.

+sbt Bi ndType

Set scheduler bind type. Currently valid Bi ndTypes:

u

Same as erlang: system flag(scheduler_bind_type, unbound).

ns

Same as erlang: system flag(scheduler_bind_type, no_spread).

ts

Same as erlang: system flag(scheduler_bind_type, thread_spread).

ps

Same as erlang: system flag(scheduler_bind_type, processor_spread).

S

Same as erlang: system flag(scheduler_bind_type, spread).

nnts

Same as erlang: system flag(scheduler_bind_type, no_node_thread spread).
nnps

Same as erlang: system flag(scheduler_bind_type, no_node processor_spread).
t nnps

Same as erlang: system flag(scheduler_bind type, thread_no_node processor_spread).
db

Same as erlang: system flag(scheduler_bind_type, default_bind).

186 | Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS)

erl

Binding of schedulersis currently only supported on newer Linux, Solaris, FreeBSD, and Windows systems.

If no CPU topology is available when the +sbt flag is processed and Bi ndType is any other type than u, the
runtime system will fail to start. CPU topology can be defined using the +sct flag. Note that the +sct flag may
have to be passed before the +sbt flag on the command line (in case no CPU topology has been automatically
detected).

The runtime system will by default bind schedulersto logical processorsusing thedef aul t _bi nd bind typeif
the amount of schedulers are at least equal to the amount of logical processors configured, binding of schedulers
is supported, and a CPU topology is available at startup.

NOTE: If the Erlang runtime system isthe only operating system process that binds threadsto logical processors,
this improves the performance of the runtime system. However, if other operating system processes (as for
example another Erlang runtime system) also bind threads to logical processors, there might be a performance
penalty instead. If this is the case you, are advised to unbind the schedulers using the +sbt u command line
argument, or by invoking erlang: system flag(scheduler_bind_type, unbound).

For more information, see erlang: system flag(scheduler_bind_type, SchedulerBindType).

+sct CpuTopol ogy

e <ld> = integer(); when 0 =< <ld> =< 65535

e <ldRange> = <l d>-<ld>

+ <ldOldRange> = <Id> | <IdRange>

e <ldList> = <1dO | dRange>, <l dO |1 dRange> | <IdOrl dRange>

e <Logicallds> = L<ldList>

e <Threadlds> = T<ldList> | t<ldList>

e <Corelds> = C<ldList> | c<ldList>

e <Processorlds> = P<ldList> | p<IdList>

e <Nodelds> = N<ldList> | n<ldList>

e <l dDefs> = <Logi cal | ds><Thr eadl ds><Cor el ds><Pr ocessor | ds><Nodel ds> |
<Logi cal | ds><Thr eadl ds><Cor el ds><Nodel ds><Pr ocessor | ds>

* CpuTopol ogy = <l dDef s>: <l dDefs> | <IdDefs>

Upper-case letters signify real identifiers and lower-case letters signify fake identifiers only used for description

of the topology. Identifiers passed as rea identifiers may be used by the runtime system when trying to access

specific hardware and if they are not correct the behavior is undefined. Faked logical CPU identifiers are not

accepted since thereis no point in defining the CPU topology without real logical CPU identifiers. Thread, core,

processor, and nodeidentifiersmay beleft out. If left out, thread id defaultstot 0, coreid defaultsto c O, processor

id defaults to p0, and node id will be left undefined. Either each logical processor must belong to one and only
one NUMA node, or no logical processors must belong to any NUMA nodes.

Both increasing and decreasing <I dRange>s are allowed.

NUMA nodeidentifiersare systemwide. That is, each NUMA node on the system haveto haveauniqueidentifier.
Processor identifiers are also system wide. Core identifiers are processor wide. Thread identifiers are core wide.

The order of the identifier types imply the hierarchy of the CPU topology. Valid
orders are ether <Logi cal | ds><Thr eadl ds><Cor el ds><Pr ocessor | ds><Nodel ds>, or
<Logi cal | ds><Thr eadl ds><Cor el ds><Nodel ds><Pr ocessor | ds>. That is, thread is part of a
corewhichispart of aprocessor whichispart of aNUMA node, or thread ispart of acorewhichispart of aNUMA
node which is part of a processor. A cpu topology can consist of both processor external, and processor internal
NUMA nodesas|ong aseach logical processor belongsto oneand only one NUMA node. If <Pr ocessor | ds>
isleft out, itsdefault position will be before<Nodel ds>. That is, the default is processor external NUMA nodes.

If alist of identifiersisused in an <I dDef s>:

Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS) | 187

erl

e <Logi cal | ds> havetobealist of identifiers.
« Atleast one other identifier type apart from <Logi cal | ds> also haveto have alist of identifiers.
e All lists of identifiers have to produce the same amount of identifiers.

A simple example. A single quad core processor may be described this way:

% erl +sct LO-3c0-3

1> erl ang: system i nfo(cpu_t opol ogy) .

[{processor,[{core, {|l ogical, 0}},
{core,{l ogical, 1}},
{core,{l ogical,2}},
{core,{logical,3}}]}]

A little more complicated example. Two quad core processors. Each processor in its own NUMA node. The
ordering of logical processorsisalittle weird. Thisin order to give a better example of identifier lists:

%erl +sct LO-1, 3-2c0-3p0ONO0: L7, 4, 6-5c0- 3p1NL

1> erl ang: system i nf o(cpu_t opol ogy) .

[{node, [{processor, [{core, {l ogi cal ,0}},
{core,{logical, 1}},
{core,{logical,3}},
{core,{logical,2}}]1}1},

{node, [{processor, [{core, {l ogical, 7}},

{core,{logical,4}},
{core,{l ogical,6}},
{core,{logical,5}}]}]}]

Aslong as real identifiers are correct it is okay to pass a CPU topology that is not a correct description of the
CPU topology. When used with care this can actually be very useful. Thisin order to trick the emulator to bind its
schedulers as you want. For example, if you want to run multiple Erlang runtime systems on the same machine,
you want to reduce the amount of schedulers used and manipul ate the CPU topology so that they bind to different
logical CPUs. An example, with two Erlang runtime systems on a quad core machine:

% erl +sct LO-3c0-3 +sbt db +S3:2 -detached -noi nput -noshell -snane one
%erl +sct L3-0c0-3 +sbt db +S3:2 -detached -noi nput -noshell -snane two

In this example each runtime system have two schedulers each online, and all schedulers online will run on
different cores. If we change to one scheduler online on one runtime system, and three schedulers online on the
other, all schedulers online will still run on different cores.

Note that afaked CPU topology that does not reflect how the real CPU topology looks like is likely to decrease
the performance of the runtime system.

For more information, see erlang: system flag(cpu_topology, CpuTopology).
+swt very_| ow | ow medi unj hi gh| very_hi gh

Set scheduler wakeup threshold. Default is medi um The threshold determines when to wake up seeping
schedulers when more work than can be handled by currently awake schedulers exist. A low threshold will cause
earlier wakeups, and a high threshold will cause later wakeups. Early wakeups will distribute work over multiple
schedulers faster, but work will more easily bounce between schedulers.

NOTE: Thisflag may be removed or changed at any time without prior notice.

188 | Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS)

erl

+sss size

Suggested stack size, in kilowords, for scheduler threads. Valid range is 4-8192 kilowords. The default stack size
is OS dependent.

+t size
Set the maximum number of atoms the VM can handle. Default is 1048576.

+T Level
Enables modified timing and setsthe modified timing level. Currently valid rangeis0-9. Thetiming of theruntime
system will change. A high level usually means a greater change than alow level. Changing the timing can be
very useful for finding timing related bugs.
Currently, modified timing affects the following:
Process spawning
A process caling spawn, spawn_l i nk, spawn_noni tor, or spawn_opt will be scheduled out
immediately after completing the call. When higher modified timing levels are used, the caller will also sleep
for awhile after being scheduled out.
Context reductions
The amount of reductions a processis a allowed to use before being scheduled out isincreased or reduced.
Input reductions
The amount of reductions performed before checking 1/0 isincreased or reduced.
NOTE: Performance will suffer when modified timing is enabled. This flag is only intended for testing and
debugging. Also note that r et urn_t o and r et ur n_f r omtrace messages will be lost when tracing on the
spawn BIFs. This flag may be removed or changed at any time without prior notice.

+V
Makes the emulator print out its version number.

+v
Verbose.

+tWw | i

Sets the mapping of warning messages for er r or _| ogger . Messages sent to the error logger using one of
the warning routines can be mapped either to errors (default), warnings (+W wj), or info reports (+W i). The
current mapping can be retrieved using er r or _| ogger : war ni ng_rnap/ 0. See error_logger (3) for further
information.

+zFl ag Val ue

Miscellaneous flags.
+zdbbl size
Set thedistribution buffer busy limit (dist_buf _busy limit) inkilobytes. Valid rangeis1-2097151. Defaultis 1024.

A larger buffer limit will allow processes to buffer more outgoing messages over the distribution. When the buffer
limit has been reached, sending processes will be suspended until the buffer size has shrunk. The buffer limit is
per distribution channel. A higher limit will give lower latency and higher throughput at the expense of higher
memory usage.

Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS) | 189

erl

Environment variables
ERL_CRASH DUWP

If the emulator needs to write a crash dump, the value of thisvariable will be the file name of the crash dump file.
If the variable is not set, the name of the crash dump filewill beer | _crash. dunp inthe current directory.

ERL_CRASH_DUWP_NI CE

Unix systems: If the emulator needs to write acrash dump, it will use the value of thisvariableto set the nicevalue
for the process, thus lowering its priority. The allowable range is 1 through 39 (higher values will be replaced
with 39). The highest value, 39, will give the process the lowest priority.

ERL_CRASH DUMP_SECONDS

Unix systems: Thisvariable gives the number of secondsthat the emulator will be allowed to spend writing acrash
dump. When the given number of seconds have elapsed, the emulator will be terminated by a SIGALRM signal.

ERL_AFLAGS
The content of this environment variable will be added to the beginning of the command linefor er | .

The - ext r a flag is treated specially. Its scope ends at the end of the environment variable content. Arguments
following an - ext r a flag are moved on the command lineinto the - ext r a section, i.e. the end of the command
line following after an - ext r a flag.

ERL_ZFLAGSand ERL_FLAGS
The content of these environment variables will be added to the end of the command linefor er | .

The - ext r a flag istreated specially. Its scope ends at the end of the environment variable content. Arguments
following an - ext r a flag are moved on the command lineinto the- ext r a section, i.e. the end of the command
line following after an - ext r a flag.

ERL_LI BS

This environment variable contains a list of additional library directories that the code server will search for
applications and add to the code path. See code(3).

ERL_EPMD_PORT

This environment variable can contain the port number to use when communicating with epmd. The default port
will work finein most cases. A different port can be specified to allow nodes of independent clusters to co-exist
on the same host. All nodesin a cluster must use the same epmd port number.

SEE ALSO

init(3), erl_prim_loader(3), erl_boot_server(3), code(3), application(3), heart(3), net_kernel(3), auth(3), make(3),
epmd(1), erts_alloc(3)

190 | Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS)

erlc

erlc

Command

Theer | ¢ program provides a common way to run all compilersin the Erlang system. Depending on the extension
of each input file, er | ¢ will invoke the appropriate compiler. Regardless of which compiler is used, the same flags
are used to provide parameters such as include paths and output directory.

The current working directory, " . ", will not beincluded in the code path when running the compiler (to avoid loading
Beam files from the current working directory that could potentially be in conflict with the compiler or Erlang/OTP
system used by the compiler).

Exports

erlc flags filel.ext file2.ext...

Er | ¢ compilesone or morefiles. The files must include the extension, for example. er | for Erlang source code, or
. yrl for Yecc source code. Er | ¢ usesthe extension to invoke the correct compiler.

Generally Useful Flags
The following flags are supported:
-I directory

Instructs the compiler to search for include filesin the specified directory. When encountering an- i ncl ude or
-incl ude_di r directive, the compiler searches for header filesin the following directories:

. . ", the current working directory of the file server;

e the base name of the compiled filg;

« thedirectories specified using the - | option. The directory specified last is searched first.
-o directory

The directory where the compiler should place the output files. If not specified, output fileswill be placed in the
current working directory.

-Dname
Defines a macro.
-Dname=value

Defines a macro with the given value. The value can be any Erlang term. Depending on the platform, the value
may need to be quoted if the shell itself interprets certain characters. On Unix, terms which contain tuples and
list must be quoted. Terms which contain spaces must be quoted on al platforms.

-Werror

Makes all warningsinto errors.
-Wnumber

Setswarning level to number. Defaultis 1. Use - WD to turn off warnings.
-W

Same as- WL.. Defaullt.

Enables verbose output.

Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS) | 191

erlc

-b output-type

Specifies the type of output file. Generally, output-type is the same as the file extension of the output file but
without the period. This option will be ignored by compilers that have a a single output format.

-hybrid

Compile using the hybrid-heap emulator. This is mainly useful for compiling native code, which needs to be
compiled with the same run-time system that it should be run on.

-Sn’]p

Compile using the SMP emulator. Thisis mainly useful for compiling native code, which needs to be compiled
with the same run-time system that it should be run on.

-M
Produces a Makefile rule to track headers dependencies. Theruleis sent to stdout. No object file is produced.
-MF Makefile
Like the - Moption above, except that the Makefile is written to Makefile. No object file is produced.
-MD
Sameas- M - MF <Fi | e>. Pheam
-MT Target
In conjunction with - Mor - M-, change the name of the rule emitted to Target.
-MQ Target
Likethe - MT option above, except that characters special to make(1) are quoted.
-MP
In conjunction with - Mor - M~, add a phony target for each dependency.
-MG

In conjunction with - Mor - M-, consider missing headers as generated files and add them to the dependencies.

Signals that no more options will follow. The rest of the arguments will be treated as file names, even if they
start with hyphens.

+term

A flag starting with a plus ('+") rather than a hyphen will be converted to an Erlang term and passed unchanged
to the compiler. For instance, theexport _al | option for the Erlang compiler can be specified as follows:

erlc +export_all file.erl

Depending on the platform, the value may need to be quoted if the shell itself interprets certain characters. On
Unix, terms which contain tuples and list must be quoted. Terms which contain spaces must be quoted on all
platforms.

Special Flags
Theflagsin this section are useful in special situations such as re-building the OTP system.

192 | Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS)

erlc

-padirectory

Appendsdirectory to thefront of the code path intheinvoked Erlang emulator. This can be used to invoke another
compiler than the default one.

-pz directory
Appends directory to the code path in the invoked Erlang emulator.

Supported Compilers
el
Erlang source code. It generatesa. beamfile.

Theoptions-P, -E, and -Sare equivaent to +'P, +'E', and +'S, except that it is not necessary to include the single
quotes to protect them from the shell.

Supported options: -1, -0, -D, -v, -W, -b.

yrl
Y ecc source code. It generatesan . er | file.
Usethe-I option with the name of afileto usethat file asacustomized prologuefile (thei ncl udefi | e option).
Supported options. -0, -v, -, -W (see above).

.mib
MIB for SNMP. It generatesa. bi n file.
Supported options: -1, -0, -W.

.bin
A compiled MIB for SNMP. It generatesa. hrl file.
Supported options: -0, -V.

rel
Script file. It generates a boot file.

Use the -1 to name directories to be searched for application files (equivalent to the pat h in the option list for
syst ool s: make_scri pt/ 2).

Supported options: -o.
.asnl
ASNL1 file.

Createsan . erl, . hrl,and . asnldb file from an . asnl file. Also compilesthe. er| using the Erlang
compiler unlessthe +noobj optionsis given.

Supported options: -1, -0, -b, -W.
Aidl

ICfile.

Runsthe IDL compiler.

Supported options: -1, -0.

Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS) | 193

erlc

Environment Variables

ERLC_EMULATOR
The command for starting the emulator. Default is erl in the same directory asthe erlc program itself, or if it
doesn't exigt, erl in any of the directories given in the PATH environment variable.

SEE ALSO
erl(1), compile(3), yece(3), snmp(3)

194 | Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS)

werl

werl

Command

On Windows, the preferred way to start the Erlang system for interactive useis:
wer | <argunent s>

Thiswill start Erlang in its own window, with fully functioning command-line editing and scrollbars. All flags except
- ol dshel | work asthey do for the erl command.

Ctrl-C is reserved for copying text to the clipboard (Ctrl-V to paste). To interrupt the runtime system or the shell
process (depending on what has been specified with the +B system flag), you should use Ctrl-Break.

In cases where you want to redirect standard input and/or standard output or use Erlang in a pipeline, thewer | isnot
suitable, and the er | program should be used instead.

Thewer | window isin many ways modelled after the xt er mwindow present on other platforms, as the xt er m
model fits well with line oriented command based interaction. This means that selecting text is line oriented rather
than rectangle oriented.

To select textinthewer | window , simply press and hold the left mouse button and drag the mouse over the text you
want to select. If the selection crosses line boundaries, the selected text will consist of complete lines where applicable
(just like in aword processor). To select more text than fits in the window, start by selecting a small portion in the
beginning of the text you want, then use the scrollbar to view the end of the desired selection, point to it and press
the right mouse-button. The whole area between your first selection and the point where you right-clicked will be
included in the selection.

The selected text is copied to the clipboard by either pressing Ct r | - C, using the menu or pressing the copy button
in the toolbar.

Pasted text isalwaysinserted at the current prompt position and will be interpreted by Erlang as usual keyboard input.

Previous command lines can be retrieved by pressing the Up ar r owor by pressing Ct r | - P. Thereis also adrop
down box in the toolbar containing the command history. Selecting a command in the drop down box will insert it at
the prompt, just asif you used the keyboard to retrieve the command.

Closing thewer | window will stop the Erlang emulator.

Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS) | 195

escript

escript

Command

escri pt provides support for running short Erlang programs without having to compile them first and an easy way
to retrieve the command line arguments.

Exports
scri pt-name script-argl script-arg2...

escript escript-flags script-name script-argl script-arg2...
escri pt runsascript written in Erlang.
Here follows an example.

$ cat factorial

#!/usr/bin/env escript

%Wo-*- erlang -*-

%6 -snp enable -snane factorial -mmesia debug verbose
main([String]) ->

try
N =1list_to_integer(String),
F = fac(N),
io:format("factorial ~w = ~wn", [N F])
cat ch
_ ->
usage()
end;
main(_) ->
usage() .

usage() ->
io:format ("usage: factorial integer\n"),
hal t (1).

fac(0) -> 1;

fac(N) -> N* fac(N1).
$ factorial 5

factorial 5 = 120

$ factorial

usage: factorial integer
$ factorial five

usage: factorial integer

The header of the Erlang script in the example differs from anormal Erlang module. The first line is intended to be
the interpreter line, which invokesescr i pt . However if you invoketheescri pt likethis

$ escript factorial 5

the contents of the first line does not matter, but it cannot contain Erlang code asit will be ignored.

The second line in the example, contains an optional directive to the Emacs editor which causesit to enter the major
mode for editing Erlang source files. If the directive is present it must be located on the second line.

196 | Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS)

escript

On the third line (or second line depending on the presence of the Emacs directive), it is possible to give arguments
to the emulator, such as

%46 -snp enable -snane factorial -mmesia debug verbose

Such an argument line must start with %84 and the rest of the line will interpreted as arguments to the emulator.
If youknow thelocation of theescr i pt executable, thefirst linecan directly givethepathtoescr i pt . For instance:

#! /usr/ | ocal / bi n/ escri pt

As any other kind of scripts, Erlang scripts will not work on Unix platforms if the execution bit for the script fileis
not set. (Usechnod +x scri pt - nane to turn on the execution bit.)

The rest of the Erlang script file may either contain Erlang sour ce code, aninlined beam file oran
inlined archive file.

An Erlang script file must always contain the function main/1. When the script is run, the mai n/ 1 function will be
called with alist of strings representing the arguments given to the script (not changed or interpreted in any way).

If the mai n/ 1 function in the script returns successfully, the exit status for the script will be 0. If an exception is
generated during execution, a short message will be printed and the script terminated with exit status 127.

To return your own non-zero exit code, call hal t (Exi t Code) ; for instance:

hal t (1).

Call escript:script_name() from your to script to retrieve the pathname of the script (the pathname is usually, but not
aways, absolute).

If the file contains source code (as in the example above), it will be processed by the preprocessor epp. This means
that you for example may use pre-defined macros (such as ?MODULE) as well as include directives like the -
i ncl ude_I i b directive. For instance, use

-include_lib("kernel/include/file.hrl").

to include the record definitions for the records used by thef i | e: read_| i nk_i nf o/ 1 function.

The script will be checked for syntactic and semantic correctness before being run. If there are warnings (such as
unused variables), they will be printed and the script will still be run. If there are errors, they will be printed and the
script will not be run and its exit status will be 127.

Both the module declaration and the export declaration of the nai n/ 1 function are optional.

By default, the script will be interpreted. Y ou can force it to be compiled by including the following line somewhere
in the script file:

-nmode(conpil e).

Execution of interpreted code is slower than compiled code. If much of the execution takes place in interpreted code it
may be worthwhileto compileit, even though the compilation itself will take alittle while. It isal so possible to supply

Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS) | 197

escript

nat i ve instead of compile, this will compile the script using the native flag, again depending on the characteristics
of the escript this could or could not be worth while.

Asmentioned earlier, it is possible to have a script which contains precompiled beamcode. In a precompiled script,
the interpretation of the script header is exactly the same as in a script containing source code. That means that you
can make abeamfile executable by prepending the file with the lines starting with #! and %894 mentioned above. In
a precompiled script, the function mai n/ 1 must be exported.

Asyet another option it is possible to have an entire Erlang archive in the script. In aarchive script, the interpretation
of the script header is exactly the same asin a script containing source code. That meansthat you can make an archive
file executable by prepending the file with the lines starting with #! and %88 mentioned above. In an archive script,
the function mai n/ 1 must be exported. By default the mai n/ 1 function in the module with the same name as the
basenameof theescr i pt filewill beinvoked. Thisbehavior can be overridden by setting theflag- escri pt main
Modul e as one of the emulator flags. The Modul e must be the name of a module which has an exported mai n/ 1
function. See code(3) for more information about archives and code |oading.

In many casesit is very convenient to have a header in the escript, especially on Unix platforms. But the header isin
fact optional. This means that you directly can "execute" an Erlang module, beam file or archive file without adding
any header to them. But then you have to invoke the script like this:

$ escript factorial.erl 5
factorial 5 = 120
$ escript factorial.beam5
factorial 5 = 120
$ escript factorial.zip 5
factorial 5 = 120

escript:create(FileOBin, Sections) -> ok | {ok, binary()} | {error, term()}
Types:

FileOrBin = filename() | 'binary'

Sections = [Header] Body | Body

Header = shebang | {shebang, Shebang} | comment | {comment, Comment} | {emu_args, EmuArgs}

Shebang = string() | 'default’ | 'undefined'

Comment = string() | 'default’ | 'undefined'

EmuArgs=string() | 'undefined'

Body = {source, Sour ceCode} | {beam, BeamCode} | {archive, ZipArchive}

SourceCode = BeamCode = ZipArchive = binary()
Thecr eat e/ 2 function creates an escript from alist of sections. The sections can be given in any order. An escript
begins with an optional Header followed by a mandatory Body. If the header is present, it does aways begin
with ashebang, possibly followed by acomrent and enu_ar gs. Theshebang defaultsto "/ usr/ bi n/ env

escri pt". Thecomment defaultsto" This is an -*- erlang -*- file".Thecreated escript can either
be returned as a binary or written to file.

As an example of how the function can be used, we create an interpreted escript which uses emu_args to set some
emulator flag. In this case it happens to disable the smp_support. We do also extract the different sections from the
newly created script:

> Source = "% Denmo\ nnai n(_Args) ->\n io:format (erl ang: system i nfo(snp_support)).\n".
" 986 Dero\ nmai n(_Args) ->\n io:format (erl ang: system i nf o(snp_support)).\n"

> jo:format ("~s\n", [Source]).

%% Deno

198 | Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS)

escript

mai n(_Args) ->
io:format (erl ang: system i nfo(snp_support)).

ok

> {ok, Bin} = escript:create(binary, [shebang, conment, {eru_args, "-snp disable"},
{source, list_to_binary(Source)}]).

{ok, <<"#!/usr/bin/env escript\n®o This is an -*- erlang -*- file\n%A&-snp disabl"...>>}

> file:wite file("deno.escript”, Bin).

ok

> os:cnd("escript denp.escript").

“fal se"

> escript:extract ("deno.escript”, []).
{ok, [{shebang, default}, {comment,default}, {enu_args,"-snp disable"},
{sour ce, <<" %% Deno\ nnmai n(_Args) ->\n io:format(erl ang: system.info(snp_su"...>>}1}

An escript without header can be created like this:

> file:wite file("deno.erl",
[" %% deno. erl \ n- nodul e(denp) . \ n-export ([main/1]).\n\n", Source]).
ok
> {ok, _, BeanCode} = conpile:file("deno.erl", [binary, debug_info]).
{ ok, denp,
<<70, 79, 82, 49, 0, 0, 2, 208, 66, 69, 65, 77, 65, 116, 111, 109, 0, O, O,
79,0,0,0,9, 4,100, ...>>}
> escript:create("denp. beant', [{beam BeantCode}]).
ok
> escript:extract ("deno. beant', []).
{ ok, [{shebang, undefi ned}, {conmment, undefined}, {eru_args, undefi ned},
{beam <<70, 79, 82, 49, 0, 0, 3, 68, 66, 69, 65, 77, 65, 116,
111, 109,0,0,0,83,0,0,0,9,...>>}]}
> os:cnd("escript deno. beant').
"true"

Here we create an archive script containing both Erlang code as well as beam code. Then we iterate over all filesin
the archive and collect their contents and some info about them.

> {ok, SourceCode} = file:read file("denmo.erl").

{ ok, <<" %% deno. er | \ n- nbdul e(deno) .\ n-export ([mai n/1]).\n\n%%6 Deno\ nnai n(_Arg"...>>}
> escript:create("deno. escript”,
[shebang,
{archive, [{"denp.erl", SourceCode},

{"denp. beant, BeanCode}], []}]).
ok
> {ok, [{shebang, default}, {comment, undefined}, {emu_args, undefi ned},
{archive, ArchiveBin}]} = escript:extract("deno.escript”, []).
{ ok, [{shebang, defaul t}, {comment, undefi ned}, {enu_args, undefi ned},
{{archi ve, <<80, 75, 3, 4, 20,0, 0,0, 8,0, 118, 7, 98, 60, 105
152, 61, 93, 107, 0,0, 0, 118,0, .. .>>}]}
> file:wite_file("deno.zip", ArchiveBin).
ok
> zip:foldl (fun(N, I, B, A ->[{N I1(), BO)} | Al end, [], "deno.zip")
{ok, [{"denp. bean!',
{file_info, 748, regular,read wite,
{{2010, 3, 2}, {0, 59, 22} },
{{2010, 3, 2}, {0, 59, 22} },
{{2010, 3, 2}, {0, 59, 22} },
54,1,0,0,0,0, 0},
<<70, 79, 82, 49, 0, 0, 2, 228, 66, 69, 65, 77, 65, 116, 111, 109, 0, 0, O
83,0,0,...>>},

Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS) | 199

escript

{"deno.erl",
{file_info, 118, reqgular,read_wite,
{{2010, 3, 2}, {0, 59, 22} },
{{2010, 3, 2}, {0, 59, 22} },
{{2010, 3, 2}, {0, 59, 22} },
54,1,0,0,0,0, 0},
<<" 9% denv. er | \ n- nodul e(deno) .\ n-export ([mai n/ 1]).\ n\ n%% Deno\ nmai n(_Arg"...>>}1}

escript:extract(File, Options) -> {ok, Sections} | {error, term()}
Types:

File = filename()

Options =[] | [compile_source]

Sections = Header s Body

Header s = {shebang, Shebang} {comment, Comment} {emu_args, EmuArgs}

Shebang = string() | 'default’ | 'undefined'

Comment = string() | 'default’ | 'undefined'

EmuArgs=string() | 'undefined'

Body = {source, SourceCode} | {source, BeamCode} | {beam, BeamCode} | {ar chive, ZipArchive}

Sour ceCode = BeamCode = ZipAr chive = binary()

Theext ract/ 2 function parses an escript and extractsits sections. Thisisthereverse of cr eat e/ 2.

All sections are returned even if they do not exist in the escript. If a particular section happens to have the same value
as the default value, the extracted value is set to the atom def aul t . If a section is missing, the extracted value is
set to the atom undef i ned.

The conpi | e_sour ce option only affects the result if the escript contains sour ce code. In that case the Erlang
code isautomatically compiled and { sour ce, BeamnCode} isreturned instead of { sour ce, Sour ceCode}.

> escript:create("deno. escript"
[shebang, {archive, [{"denp.erl", SourceCode},
{"deno. beant, BeanCode}], []1}]).

ok
> {ok, [{shebang, default}, {conment, undefined}, {emu_args, undefi ned},

{archive, ArchiveBin}]} =

escri pt:extract("deno.escript", []).
{ok, [{{archi ve, <<80, 75, 3, 4, 20, 0,0, 0, 8, 0, 118, 7, 98, 60, 105
152, 61, 93, 107, 0, 0, 0, 118, 0, . . . >>}
{emu_args, undefi ned}]}

escript:script_name() -> File
Types:
File = filename()

Thescri pt _name/ 0 function returns the name of the escript being executed. If the function isinvoked outside the
context of an escript, the behavior is undefined.

Options accepted by escript

-C
Compile the escript regardless of the value of the mode attribute.

200 | Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS)

escript

Debug the escript. Starts the debugger, |oads the module containing the mai n/ 1 function into the debugger,
setsabreakpoint in mai n/ 1 and invokes mai n/ 1. If the moduleis precompiled, it must be explicitly
compiled with thedebug_i nf o option.

Interpret the escript regardless of the value of the mode attribute.

Only perform a syntactic and semantic check of the script file. Warnings and errors (if any) are written to
the standard output, but the script will not be run. The exit status will be 0 if there were no errors, and 127
otherwise.

Compile the escript using the +native flag.

Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS) | 201

erlsrv

erlsrv

Command

This utility is specific to Windows NT/2000/XP® (and subsequent versions of Windows) It allows Erlang emulators
to run as services on the Windows system, allowing embedded systems to start without any user needing to log in.
The emulator started in this way can be manipulated through the Windows® services applet in a manner similar to
other services.

Note that erlsrv is not ageneral service utility for Windows, but designed for embedded Erlang systems.

As well as being the actual service, erlsrv also provides a command line interface for registering, changing, starting
and stopping services.

To manipulate services, the logged in user should have Administrator privileges on the machine. The Erlang machine
itself is (default) run asthe local administrator. This can be changed with the Services applet in Windows ®.

The processes created by the service can, as opposed to normal services, be "killed" with the task manager. Killing a
emulator that is started by a service will trigger the "OnFail" action specified for that service, which may be a reboot.

The following parameters may be specified for each Erlang service:

e StopAction: This tells erl srv how to stop the Erlang emulator. Default is to kill it (Win32
TerminateProcess), but this action can specify any Erlang shell command that will be executed in the emulator to
make it stop. The emulator is expected to stop within 30 seconds after the command isissued in the shell. If the
emulator is not stopped, it will report arunning state to the service manager.

e OnFai | : This can be either of r eboot , restart,restart_al ways ori gnor e (the default). In case of
r eboot , the NT system is rebooted whenever the emulator stops (a more simple form of watchdog), this could
be useful for lesscritical systems, otherwise use the heart functionality to accomplish this. Therestart value makes
the Erlang emulator be restarted (with whatever parameters are registered for the service at the occasion) when
it stops. If the emulator stops again within 10 seconds, it is not restarted to avoid an infinite loop which could
completely hangthe NT system. r est art _al ways issimilar to restart, but does not try to detect cyclic restarts,
it is expected that some other mechanism is present to avoid the problem. The default (ignore) just reports the
service as stopped to the service manager whenever it fails, it has to be manually restarted.

On a system where release handling is used, this should always be set to i gnor e. Use heart to restart the
service on failure instead.

* Machi ne: The location of the Erlang emulator. The default isthe er | . exe located in the same directory as
erlsrv.exe. Do not specify wer | . exe asthisemulator, it will not work.

If the system uses release handling, this should be set to aprogram similartost art _er| . exe.

e Env: Specifies an additional environment for the emulator. The environment variables specified here are added
to the system wide environment block that is normally present when a service starts up. Variables present in both
the system wide environment and in the service environment specification will be set to the value specified in
the service.

WorkDi r: Theworking directory for the Erlang emulator, hasto be on alocal drive (there are no network drives
mounted when a service starts). Default working directory for servicesis %8yst enDr i ve%®&yst enPat h%
Debug log fileswill be placed in this directory.

e« Priority: The processpriority of the emulator, this can be one of r eal ti e, hi gh, | owor def aul t (the
default). Real-time priority is not recommended, the machine will possibly be inaccessible to interactive users.
High priority could be used if two Erlang nodes should reside on one dedicated system and one should have
precedence over the other. Low process priority may be used if interactive performance should not be affected
by the emulator process.

202 | Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS)

erlsrv

e« SNane or Nane: Specifiesthe short or long node-name of the Erlang emulator. The Erlang services are dways
distributed, default is to use the service name as (short) node-name.

e DebugType: Can be one of none (default), new, reuse or consol e. Specifies that output from
the Erlang shell should be sent to a "debug log". The log file is named <servicename>. debug or
<servicename>. debug. <N>, where <N> is an integer between 1 and 99. The log-file is placed in the
working directory of the service (as specified in WorkDir). The r euse option always reuses the same log
file (<servicename>. debug) and the new option uses a separate log file for every invocation of the service
(<servicename>. debug. <N>). The consol e option opens an interactive Windows® console window for the
Erlang shell of the service. The consol e option automatically disablesthe St opAct i on and a service started
with an interactive console window will not survive logouts, OnFai | actions do not work with debug-consoles
either. If no DebugType is specified (none), the output of the Erlang shell is discarded.

Theconsol eDebugType isnot inany way intended for production. It isonly aconvenient way to debug Erlang
services during development. Thenewandr eus e options might seem convenient to havein aproduction system,
but one has to take into account that the logs will grow indefinitely during the systems lifetime and there is no
way, short of restarting the service, to truncate those logs. In short, the DebugType isintended for debugging
only. Logs during production are better produced with the standard Erlang logging facilities.

e Args: Additional arguments passed to the emulator startup program erl . exe (or start_erl . exe).
Arguments that cannot be specified here are - noi nput (StopActions would not work), - nane and - snane
(they are specified in any way. The most common useisfor specifying cookies and flagsto be passed to init:boot()
(-s).

e I nternal Servi ceNane: Specifies the Windows® internal service name (not the display name, which isthe
oneer | srv usesto identify the service).

This internal name can not be changed, it is fixed even if the service is renamed. Er | sr v generates a unique
internal name when a serviceis created, it is recommended to keep to the defaut if release-handling is to be used
for the application.

Theinternal service name can be seen in the Windows® service manager if viewing Pr operti es for an erlang
service.

« Conment : A textual comment describing the service. Not mandatory, but shows up as the service description
in the Windows® service manager.

The naming of the service in a system that uses release handling has to follow the convention NodeName Release,
where NodeName is the first part of the Erlang nodename (up to, but not including the" @") and Release isthe current
release of the application.

Exports

erlsrv {set | add} <service-nane> [<service options>]

The set and add commands adds or modifies a Erlang service respectively. The ssimplest form of an add command
would be completely without options in which case al default values (described above) apply. The service name is
mandatory.

Every option can be given without parameters, in which case the default value is applied. Values to the options are
supplied only when the default should not beused (i.e.er | srv set myservice -prio -ar g setsthedefault
priority and removes all arguments).

The following service options are currently available:

-st[opaction] [<erlang shell command>]

Defines the StopAction, the command given to the Erlang shell when the service is stopped. Default is none.
-on[fail] [{reboot | restart | restart_always}]

Specifies the action to take when the Erlang emulator stops unexpectedly. Default isto ignore.

Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS) | 203

erlsrv

-m[achin€] [<erl-command>]
The complete path to the Erlang emulator, never use the werl program for this. Default istheer | . exe inthe
samedirectory aser | srv. exe. When release handling is used, this should be set to aprogram similar to
start _erl. exe.

-g[nv] [<variable>[=<value>]] ...
Edits the environment block for the service. Every environment variable specified will add to the system
environment block. If avariable specified here has the same name as a system wide environment variable,
the specified value overrides the system wide. Environment variables are added to thislist by specifying
<variable>=<value> and deleted from the list by specifying <variable> alone. The environment block is
automatically sorted. Any number of - env options can be specified in one command. Default isto use the
system environment block unmodified (except for two additions, see below).

-w[orkdir] [<directory>]
Theinitial working directory of the Erlang emulator. Default is the system directory.

-p[riority] [{low|high|realtime}]
The priority of the Erlang emulator. The default is the Windows® default priority.

{-sn[ame] | -n[ame]} [<node-name>]
The node-name of the Erlang machine, distribution is mandatory. Default is- snane <servi ce nane>.

-d[ebugtype] [{ new|reuse|console}]
Specifies where shell output should be sent, default is that shell output is discarded. To be used only for
debugging.

-ar[gs] [<limited erl arguments>]
Additional arguments to the Erlang emulator, avoid - noi nput , - noshel | and - snane/- nane. Default is
no additional arguments. Remember that the services cookie file is not necessarily the same as the interactive
users. The service runs as the local administrator. All arguments should be given together in one string, use
double quotes (") to give an argument string containing spaces and use quoted quotes (\") to give an quote
within the argument string if necessary.

-i[nternal servicename] [<internal name>]
Only allowed for add. Specifies a Windows® internal service name for the service, which by default is set to
something unique (prefixed with the original service name) by erlsrv when adding a new service. Specifying
thisis a purely cosmethic action and is not recommended if release handling isto be performed. The internal
service name cannot be changed once the service is created. The internal name is not to be confused with the
ordinary service name, which isthe name used to identify a service to erlsrv.

-c[omment] [<short description>]
Specifies atextual comment describing the service. This comment will show upp as the service description in
the Windows® service manager.

erlsrv {start | stop | disable | enable} <service-nanme>

These commands are only added for convenience, the normal way to manipulate the state of a service is through the
control panelsservicesapplet. Thest art and st op commands communi cates with the service manager for stopping
and starting a service. The commands wait until the serviceis actually stopped or started. When disabling a service, it
is not stopped, the disabled state will not take effect until the service actually is stopped. Enabling a service setsit in
automatic mode, that is started at boot. This command cannot set the service to manual.

erl srv renpve <service-nane>

This command removes the service completely with all its registered options. It will be stopped beforeit is removed.

erlsrv list [<service-nanme>]

If no service name is supplied, a brief listing of all Erlang services is presented. If a service-name is supplied, all
options for that service are presented.

204 | Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS)

erlsrv

erlsrv help

ENVIRONMENT

The environment of an Erlang machine started as a service will contain two specia variables,
ERLSRV_SERVI CE_NAME, which is the name of the service that started the machine and ERLSRV_EXECUTABLE
which isthefull pathtotheer | srv. exe that can be used to manipulate the service. Thiswill come in handy when
defining a heart command for your service. A command file for restarting a service will smply look like this:

@cho of f
YERLSRV_EXECUTABLE% st op %ERLSRV_SERVI CE_NAME%
Y%ERLSRV_EXECUTABLE% st art %&ERLSRV_SERVI CE_NAME%

This command file is then set as heart command.

The environment variables can aso be used to detect that we are running as a service and make port programs react
correctly to the control events generated on logout (see below).

PORT PROGRAMS

When a program runs in the service context, it has to handle the control events that is sent to every program in the
system when theinteractive user logs off. Thisisdonein different waysfor programs running in the consol e subsystem
and programs running as window applications. An application which runsin the console subsystem (normal for port
programs) uses the win32 function Set Consol eCt r | Handl er to acontrol handler that returns TRUE in answer
to the CTRL_LOGOFF_EVENT. Other applications just forward WM_ENDSESSI ON and WM QUERYENDSESSI ON
to the default window procedure. Here is a brief examplein C of how to set the console control handler:

#i ncl ude <wi ndows. h>
/*
** A Consol e control handler that ignores the | og off events,
** and |ets the default handl er take care of other events.
*/
BOOL W NAPI servi ce_aware_handl er (DWORD ctrl) {

if(ctrl == CTRL_LOGOFF_EVENT)

return TRUE;
return FALSE;

}

void initialize_handl er(void){
char buffer[2];
/*
* W assune we are running as a service if this
* environment variable is defined
*/
i f (Get Envi ronment Var i abl e(" ERLSRV_SERVI CE_NAME", buf f er,
(DWORD) 2)){
/*
** Actually set the control handler
*/
Set Consol eCtr | Handl er (&servi ce_awar e_handl er, TRUE);

Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS) | 205

erlsrv

NOTES

Even though the options are described in a Unix-like format, the case of the options or commandsis not relevant, and
the"/" character for options can be used aswell asthe "-" character.

Note that the program resides in the emulators bi n-directory, not in the bi n-directory directly under the Erlang root.
The reasons for this are the subtle problem of upgrading the emulator on a running system, where a new version of
the runtime system should not need to overwrite existing (and probably used) executables.

To easily manipulate the Erlang services, put the <er| ang_r oot >\ ert s- <ver si on>\ bi n directory in the
path instead of <er| ang_r oot >\ bi n. The erlsrv program can be found from inside Erlang by using the
os: find_execut abl e/ 1 Erlang function.

For release handling towork, usest art _er | asthe Erlang machine. It isalso worth mentioning again that the name
of the service is significant (see above).

SEE ALSO
start_erl(1), release_handler(3)

206 | Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS)

start_erl

start_erl

Command

This describesthe st art _er | program specific to Windows NT. Although there exists programs with the same
name on other platforms, their functionality is not the same.

Thestart _erl| program is distributed both in compiled form (under <Erlang root>\\erts-<version>\\bin) and in
source form (under <Erlang root>\\erts-<version>\\src). The purpose of the source codeisto make it possibleto easily
customize the program for local needs, such as cyclic restart detection etc. Thereis aso a"make"-file, written for the
nmake program distributed with Microsoft® Visual C++®. The program can however be compiled with any Win32
C compiler (possibly with dlight modifications).

The purpose of the programisto aid rel ease handling on Windows NT®. The program should becalled by theer | srv
program, read up the rel ease datafile start_erl.dataand start Erlang. Certain optionsto start_erl are added and removed
by the release handler during upgrade with emulator restart (more specifically the - dat a option).

Exports

start_erl [<erl options>] ++ [<start_erl options>]
Thestart _erl| programinitsorigina form recognizes the following options:

++
Mandatory, delimits start_erl options from normal Erlang options. Everything on the command line before
the ++ isinterpreted as options to be sent to theer | program. Everything after++ is interpreted as options to
start _erl itself.

-reldir <release root>
Mandatory if the environment variable RELDI Ris not specified. Tells start_erl where the root of the release
treeis placed in the file-system (like <Erlang root>\\releases). Thest art _er | . dat a fileis expected to be
placed in this directory (if not otherwise specified).

-data <data file name>
Optional, specifies another data file than start_erl.datain the <release root>. It is specified relative to the
<release root> or absolute (including drive letter etc.). This option is used by the release handler during
upgrade and should not be used during normal operation. The release data file should not normally be named
differently.

-bootflags <boot flags file name>
Optional, specifies afile name relative to actual release directory (that is the subdirectory of <release root>
wherethe. boot fileetc. are placed). The contents of this file is appended to the command line when Erlang is
started. This makes it easy to start the emulator with different options for different releases.

NOTES

As the source code is distributed, it can easily be modified to accept other options. The program must still accept the
- dat a option with the semantics described above for the release handler to work correctly.

The Erlang emulator isfound by examining the registry keysfor the emulator version specified in the rel ease datafile.
The new emulator needs to be properly installed before the upgrade for this to work.

Although the program is located together with files specific to emulator version, it is not expected to be specific to
the emulator version. The release handler does not changethe - nmachi ne optiontoer | sr v during emulator restart.
Place the (possibly customized) st art _er | program so that it is not overwritten during upgrade.

Theer | srv program's default options are not sufficient for release handling. The machineer | sr v starts should be
specified asthest art _er | program and the arguments should contain the ++ followed by desired options.

Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS) | 207

start_erl

SEE ALSO

erlsrv(1), release_handler(3)

208 | Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS)

erl_set_memory_block

erl_set_memory_block
C Library

This documentation is specific to VxWorks.

Theer| _set nenory_bl ock function/command initiates custom memory allocation for the Erlang emulator. It
has to be called before the Erlang emulator is started and makes Erlang use one single large memory block for all
memory allocation.

The memory within the block can be utilized by other tasks than Erlang. Thisis accomplished by calling the functions
sys_alloc,sys reall ocandsys _freeinsteadof mal | oc,real | oc andf r ee respectively.

The purpose of thisis to avoid problems inherent in the VxWorks systems mal | oc library. The memory allocation
within thelarge memory block avoids fragmentation by using an "address order first fit" algorithm. Another advantage
of using a separate memory block is that resource reclamation can be made more easily when Erlang is stopped.

Theerl _set _menory_bl ock function is callable from any C program as an ordinary 10 argument function as
well as from the commandline.

Exports

int erl_set _nenory_bl ock(size t size, void *ptr, int warn_ni xed _mall oc, int
reall oc_al ways _noves, int use reclaim ...)

The function is called before Erlang is started to specify alarge memory block where Erlang can maintain memory
internally.

Parameters:

size tsize
The size in bytes of Erlang'sinternal memory block. Has to be specified. Note that the VxWorks system uses
dynamic memory alocation heavily, so leave some memory to the system.

void *ptr

A pointer to the actual memory block of size si ze. If thisis specified as 0 (NULL), Erlang will alocate the
memory when starting and will reclaim the memory block (as a whole) when stopped.

If amemory block is allocated and provided here, thesys_al | oc etc routines can still be used after the Erlang
emulator is stopped. The Erlang emulator can also be restarted while other tasks using the memory block are
running without destroying the memory. If Erlang isto be restarted, also set theuse_r ecl ai mflag.

If O is specified here, the Erlang system should not be stopped while some other task uses the memory block
(hascalled sys_al | oc).

int warn_mixed_malloc

If thisflag is set to true (anything elsethan 0), the system will write awarning message on the consoleif aprogram
ismixing normal mal | oc withsys_real | oc orsys_free.

int realloc_always moves

If thisflag is set to true (anything else than 0), all callstosys_r eal | oc result in amoved memory block. This
can in certain conditions give less fragmentation. This flag may be removed in future rel eases.

int use reclaim

If thisflag is set to true (anything else than 0), all memory allocated withsys_al | oc isautomatically reclaimed
as soon as atask exits. Thisis very useful to make writing port programs (and other programs as well) easier.

Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS) | 209

erl_set_memory_block

Combine this with using the routines save_open etc. specified in the reclaim.h file delivered in the Erlang
distribution.

Return Value:
Returns 0 (OK) on success, otherwise avalue <> 0.

int erl_menory_show(...)
Return Value:
Returns 0 (OK) on success, otherwise avalue <> 0.

int erl _mem.info_get(MEM PART_STATS *stats)
Parameter:

MEM_PART_STATS*stats
A pointer toaMEM_PART_STATS structure as defined in <nenili b. h>. A successful call will fill in all
fields of the structure, on error all fields are |eft untouched.

Return Value:
Returns 0 (OK) on success, otherwise avalue <> 0

NOTES

The memory block used by Erlang actually does not need to be inside the area known to ordinary mal | oc. It is
possible to set the USER_RESERVED NMEMpreprocessor symbol when compiling the wind kernel and then use user
reserved memory for Erlang. Erlang can therefor utilize memory above the 32 Mb limit of VxWorks on the PowerPC
architecture.

Example:
In config.h for the wind kernel:

#undef LOCAL_NMEM AUTCSI ZE
#undef LOCAL_MEM S| ZE
#undef USER RESERVED MEM

#def i ne LOCAL_MEM S| ZE 0x05000000
#def i ne USER_RESERVED_NMEM 0x03000000

In the start-up script/code for the VxWorks node:

erl _set_nenory_bl ock(sysPhysMenilop() - sysMeniTop(), sysMeniTop(), 0, 0, 1) ;

Setting the use_r ecl ai mflag decreases performance of the system, but makes programming much easier. Other
similar facilities are present in the Erlang system even without using a separate memory block. The routines called
save_mal | oc, save_real | oc and save_fr ee provide the same facilities by using VxWorks own mal | oc.
Similar routines exist for files, seethefiler ecl ai m h in the distribution.

210 | Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS)

run_erl

run_erl

Command

Thisdescribesther un_er | program specific to Solaris/Linux. This program redirect the standard input and standard
output streams so that all output can be logged. It also let the programt o_er | connect to the Erlang console making
it possible to monitor and debug an embedded system remotely.

Y ou can read more about the use in the Enbedded System User's Cui de.

Exports

run_erl [-daenon] pipe_dir/ log_ dir "exec conmand [command_ar gunment s]”
Therun_er| program arguments are;

-daemon
Thisoption is highly recommended. It makes run_erl run in the background completely detached from any
controlling terminal and the command returns to the caller immediately. Without this option, run_erl must be
started using several tricks in the shell to detach it completely from the terminal in use when starting it. The
option must be the first argument to run_erl on the command line.

pipe dir
Thisiswhere to put the named pipe, usualy / t np/ . It shall be suffixed by a/ (dlash), i.e. not/ t np/
epi pi es, but/t mp/ epi pes/ .

log_dir
Thisiswhere the log files are written. There will be onelog file, run_er | . | og that log progress and
warningsfromther un_er | program itself and there will be up to fivelog files at maximum 100K B each
(both number of logs and sizes can be changed by environment variables, see below) with the content of the
standard streams from and to the command. When the logs are full r un_er | will delete and reuse the oldest
log file.

"exec command [command_arguments]”
In the third argument comand is the to execute where everything written to stdin and stdout is logged to
log dir.

Notes concerning the log files

While running, run_erl (as stated earlier) sends al output, uninterpreted, to a log file. The file is called
erl ang. | og. N, where N is a number. When the log is "full", default after 100KB, run_erl startsto log in file
erl ang. | og. (N+1), until N reaches a certain number (default 5), where after N starts at 1 again and the ol dest
files start getting overwritten. I1f no output comes from the erlang shell, but the erlang machine still seemsto be alive,
an "ALIVE" message is written to the log, it is atimestamp and is written, by default, after 15 minutes of inactivity.
Also, if output from erlang islogged but it's been more than 5 minutes (default) since last time we got anything from
erlang, atimestamp is written in the log. The "ALIVE" messages ook like this:

===== ALI VE <date-time-string>
while the other timestamps look like this:

===== <date-tine-string>

Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS) | 211

run_erl

Thedat e-ti me- st ri ng isthe date and time the message iswritten, default in local time (can be changed to GMT
if one wantsto) and is formatted with the ANSI-C function st r f t i me using the format string%a % % % %
%, which produces messages on the line of ===== ALI VE Thu May 15 10:13:36 MEST 2003, thiscan
be changed, see below.

Environment variables

The following environment variables are recognized by run_erl and change the logging behavior. Also see the notes
above to get more info on how the log behaves.

RUN_ERL_LOG _ALIVE_MINUTES
How long to wait for output (in minutes) before writing an "ALIVE" message to the log. Default is 15, can
never belessthan 1.

RUN_ERL_LOG_ACTIVITY_MINUTES
How long erlang need to be inactive before output will be preceded with atimestamp. Default is
RUN_ERL_LOG_ALIVE_MINUTESdiv 3, but never lessthan 1.

RUN_ERL_LOG_ALIVE_FORMAT
Specifies another format string to be used in the strftime C library call. i.e specifying thisto " %e- %b- %y, %
%" will give log messages with timestamps looking like 15- May- 2003, 10: 23: 04 MET etc. Seethe
documentation for the C library function strftime for more information. Defaultis” %a % % % % %™ .

RUN_ERL_LOG _ALIVE_IN_UTC
If set to anything else than "0", it will make all times displayed by run_erl to bein UTC (GMT,CET,MET,
without DST), rather than in local time. This does not affect data coming from erlang, only the logs output
directly by run_erl. The application sasl can be modified accordingly by setting the erlang application
variableut c_| ogtotrue.

RUN_ERL_LOG_GENERATIONS
Controls the number of log files written before older files are being reused. Default is 5, minimum is 2,
maximum is 1000.

RUN_ERL_LOG_MAXSIZE
The size (in bytes) of alog file before switching to anew log file. Default is 200000, minimum is 1000 and
maximum is approximately 2"30.

SEE ALSO
start(1), start_erl(1)

212 | Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS)

start

start

Command

This describes the st art script that is an example script on how to startup the Erlang system in embedded mode
on Unix.

Y ou can read more about the use in the Enbedded System User's Cui de.

Exports

start [data_file]
In the example there is one argument

data file
Optional, specifieswhat st art _er | . dat a fileto use.

Thereisalso an environment variable RELDI Rthat can be set prior to calling this example that set the directory where
to find the release files.

SEE ALSO
run_erl(1), start_erl(1)

Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS) | 213

erl_driver

erl_driver
C Library

As of erts version 5.5.3 the driver interface has been extended (see extended marker). The extended interface
introduce version management, the possibility to pass capability flags (see driver flags) to the runtime system at driver
initialization, and some new driver API functions.

Note:

Old drivers (compiled withan er| _dri ver. h from an earlier erts version than 5.5.3) have to be recompiled
(but does not have to use the extended interface).

The driver calls back to the emulator, using the API functions declared in er| _dri ver. h. They are used for
outputting data from the driver, using timers, etc.

A driver isalibrary with aset of function that the emulator calls, in response to Erlang functions and message sending.
There may be multiple instances of adriver, each instance is connected to an Erlang port. Every port has a port owner
process. Communication with the port is normally done through the port owner process.

Most of the functions takes the por t handle as an argument. This identifies the driver instance. Note that this port
handle must be stored by the driver, it is not given when the driver is called from the emulator (see driver_entry).

Some of the functions takes a parameter of type Er | Dr vBi nar y, adriver binary. It should be both allocated and
freed by the caller. Using a binary directly avoid one extra copying of data.

Many of the output functions has a "header buffer”, with hbuf and hl en parameters. This buffer is sent as a list
beforethebinary (or list, depending on port mode) that is sent. Thisis convenient when matching on messagesreceived
from the port. (Although in the latest versions of Erlang, there is the binary syntax, that enables you to match on the
beginning of abinary.)

In the runtime system with SMP support, drivers are locked either on driver level or port level (driver instance level).
By default driver level locking will be used, i.e., only one emulator thread will execute code in the driver at atime. If
port level locking is used, multiple emulator threads may execute code in the driver at the sametime. There will only
be one thread at atime calling driver call-backs corresponding to the same port, though. In order to enable port level
locking set the ERL_DRV_FLAG USE_PORT_LOCKI NGdriver flag in the driver_entry used by the driver. When
port level locking is used it is the responsibility of the driver writer to synchronize all accesses to data shared by the
ports (driver instances).

Most drivers written before the runtime system with SMP support existed will be able to run in the runtime system
with SMP support without being rewritten if driver level locking is used.

Note:

It is assumed that drivers does not access other drivers. If drivers should access each other they have to provide
their own mechanism for thread saf e synchronization. Such "inter driver communication” is strongly discouraged.

Previoudly, in the runtime system without SMP support, specific driver call-backs were always called from the same
thread. Thisis not the case in the runtime system with SMP support. Regardless of locking scheme used, callsto driver
call-backs may be made from different threads, e.g., two consecutive callsto exactly the same call-back for exactly the
same port may be made from two different threads. Thiswill for most drivers not be a problem, but it might. Drivers

214 | Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS)

erl_driver

that depend on all call-backs being called in the same thread, have to be rewritten before being used in the runtime
system with SMP support.

Note:
Regardless of locking scheme used, callsto driver call-backs may be made from different threads.

Most functionsin this API are not thread-safe, i.e., they may not be called from an arbitrary thread. Function that are
not documented as thread-safe may only be called from driver call-backs or function calls descending from a driver
call-back call. Note that driver call-backs may be called from different threads. This, however, is not a problem for
any functionsin this API, since the emulator have control over these threads.

Note:

Functions not explicitly documented as thread-safe are not thread-safe. Also note that some functions are only
thread safe when used in a runtime system with SMP support.

FUNCTIONALITY

All functions that a driver needs to do with Erlang are performed through driver API functions. There are functions
for the following functionality:

Timer functions
Timer functions are used to control the timer that a driver may use. The timer will have the emulator call the
timeout entry function after a specified time. Only onetimer is available for each driver instance.

Queue handling

Every driver instance has an associated queue. This queue is a Sys| OVec that works as a buffer. It's mostly
used for the driver to buffer data that should be written to a device, it is a byte stream. If the port owner process
closes the driver, and the queue is not empty, the driver will not be closed. This enables the driver to flush its
buffers before closing.

The queue can be manipulated from arbitrary threads if a port data lock is used. See documentation of the
ErlDrvPDL type for more information.

Output functions
With the output functions, the driver sends data back the emulator. They will be received as messages by the
port owner process, see open_por t / 2. The vector function and the function taking adriver binary is faster,
because that avoid copying the data buffer. There is also afast way of sending terms from the driver, without
going through the binary term format.

Failure
The driver can exit and signal errors up to Erlang. Thisis only for severe errors, when the driver can't possibly
keep open.

Asynchronous calls
The latest Erlang versions (R7B and later) has provision for asynchronous function calls, using a thread pool
provided by Erlang. Thereis also aselect call, that can be used for asynchronous drivers.

Multi-threading

A POSIX thread like API for multi-threading is provided. The Erlang driver thread API only provide a subset of
the functionality provided by the POSIX thread API. The subset provided is more or less the basic functionality
needed for multi-threaded programming:

Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS) | 215

erl_driver

e Threads

¢ Mutexes

e Condition variables
¢ Read/Writelocks

e Thread specific data

The Erlang driver thread API can be used in conjunction with the POSIX thread API on UN-ices and with the
Windows native thread APl on Windows. The Erlang driver thread API has the advantage of being portable, but
there might exist situations where you want to use functionality from the POSIX thread API or the Windows
native thread API.

The Erlang driver thread API only return error codes when it is reasonable to recover from an error condition.
If it isn't reasonable to recover from an error condition, the whole runtime system is terminated. For example,
if a create mutex operation fails, an error code is returned, but if a lock operation on a mutex fails, the whole
runtime system is terminated.

Notethat there exist no " condition variable wait with timeout™ in the Erlang driver thread API. Thisisduetoissues
withpt hread_cond_ti medwai t () . When the system clock suddenly is changed, it isn't always guaranteed
that you will wake up from the call as expected. An Erlang runtime system has to be able to cope with sudden
changes of the system clock. Therefore, we have omitted it from the Erlang driver thread API. Inthe Erlang driver
case, timeouts can and should be handled with the timer functionality of the Erlang driver API.

In order for the Erlang driver thread API to function, thread support has to be enabled in the runtime system. An
Erlang driver can check if thread support is enabled by use of driver_system info(). Note that some functionsin
the Erlang driver APl are thread-safe only when the runtime system has SMP support, also this information can
be retrieved via driver_system info(). Also note that alot of functions in the Erlang driver API are not thread-
safe regardless of whether SMP support is enabled or not. If a function isn't documented as thread-safe it is not
thread-safe.

NOTE: When executing in an emulator thread, it is very important that you unlock all locks you have locked
beforeletting the thread out of your control; otherwise, you are very likely to deadlock the whole emulator. If you
need to use thread specific data in an emulator thread, only have the thread specific data set while the thread is
under your control, and clear the thread specific data before you let the thread out of your control.

Inthe futuretherewill probably be debug functionality integrated with the Erlang driver thread API. All functions
that create entities take anane argument. Currently the nane argument is unused, but it will be used when the
debug functionality has been implemented. If you name all entities created well, the debug functionality will be
able to give you better error reports.

Adding / remove drivers

A driver can add and later remove drivers.
Monitoring processes

A driver can monitor a process that does not own a port.
Version management

Version management is enabled for drivers that have set the
extended _marker field of their driver_entry to ERL_DRV_EXTENDED MARKER.
erl _driver. h definesERL_DRV_EXTENDED MARKER, ERL_DRV_EXTENDED MAJOR_VERSI ON, and
ERL_DRV_EXTENDED M NOR_VERSI ON. ERL_DRV_EXTENDED MAJOR_VERSI ONwill be incremented
when driver incompatible changes are made to the Erlang runtime system. Normally it will suffice to
recompile drivers when the ERL_DRV_EXTENDED NMAJOR _VERSI ON has changed, but it could, under rare
circumstances, mean that drivers have to be dlightly modified. If so, this will of course be documented.
ERL_DRV_EXTENDED M NOR_VERSI ON will be incremented when new features are added. The runtime
system use the minor version of the driver to determine what features to use. The runtime system will refuse to
load a driver if the major versions differ, or if the major versions are equal and the minor version used by the
driver is greater than the one used by the runtime system.

216 | Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS)

erl_driver

The emulator tries to check that a driver that doesn't use the extended driver interface isn't incompatible when
loading it. It can, however, not make sure that it isn't incompatible. Therefore, when loading adriver that doesn't
use the extended driver interface, thereisarisk that it will be loaded also when the driver isincompatible. When
the driver use the extended driver interface, the emulator can verify that it isn't of an incompatible driver version.
Y ou are therefore advised to use the extended driver interface.

DATA TYPES
ErlDrvSysinfo

typedef struct Erl DrvSyslnfo {
int driver_major_version;
int driver_m nor_version;
char *erts_version;
char *otp_rel ease;
int thread_support;
int snp_support;
int async_t hreads;
int schedul er_t hreads;
int nif_major_version;
int nif_mnor_version;

} Erl DrvSysl nf o;

The Erl DrvSysl nf o structure is used for storage of information about the Erlang runtime system.
driver_system info() will writethe system information when passed areferencetoaEr | Dr vSys| nf o structure.
A description of the fields in the structure follow:

driver_maj or _version

Thevaue of ERL_DRV_EXTENDED MAJOR_VERSON when the runtime system was compiled. This value
isthe same asthe value of ERL_DRV_EXTENDED_ MAJOR_VERSON used when compiling the driver;
otherwise, the runtime system would have refused to load the driver.

driver_m nor_version

Thevaue of ERL_DRV_EXTENDED_ MINOR _VERS ON when the runtime system was compiled. Thisvalue
might differ from the value of ERL_DRV_EXTENDED_MINOR_VERS ON used when compiling the driver.
erts_version

A string containing the version number of the runtime system (the same as returned by

erlang: system_info(version)).

otp_rel ease

A string containing the OTP release number (the same as returned by erlang: system _info(otp_release)).

t hr ead_support

A vaue! = 0 if theruntime system has thread support; otherwise, 0.

snmp_support

A vaue! = 0 if theruntime system has SMP support; otherwise, 0.

t hr ead_support

A vaue! = 0 if theruntime system has thread support; otherwise, 0.

snmp_support

A vaue! = 0 if theruntime system has SMP support; otherwise, 0.

async_t hreads

The number of async threads in the async thread pool used by driver_async() (the same as returned by
erlang: system_info(thread_pool_size)).

schedul er _t hreads

The number of scheduler threads used by the runtime system (the same as returned by

erlang: system_info(schedulers)).

Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS) | 217

erl_driver

ni f_maj or_version

Thevalue of ERL_NI F_MAJOR _VERSI ONwhen the runtime system was compiled.

ni f_mnor_version

Thevalue of ERL_NI F_M NOR_VERSI ONwhen the runtime system was compiled.
ErlDrvBinary

typedef struct ErlDrvBinary {
int orig_size;
char orig_bytes[];

} Erl DrvBinary;

TheEr | Dr vBi nary structureisabinary, as sent between the emulator and the driver. All binariesare reference
counted; when dri ver _bi nary_free iscaled, the reference count is decremented, when it reaches zero,
the binary is deallocated. The ori g_si ze is the size of the binary, and ori g_byt es is the buffer. The
Er | Dr vBi nary does not have afixed size, itssizeisori g_size + 2 * sizeof (int).

Note:

The refc fiedld has been removed. The reference count of an Erl DrvBi nary is now stored
elsewhere. The reference count of an Er | Dr vBi nary can be accessed via driver_binary get refc(),
driver_binary_inc_refc(), and driver_binary_dec_refc().

Some driver calls, such asdri ver _enq_bi nary, increments the driver reference count, and others, such as
dri ver _deq decrementsit.

Using adriver binary instead of anormal buffer, is often faster, since the emulator doesn't need to copy the data,
only the pointer is used.

A driver binary alocated in the driver, with dri ver _al | oc_bi nary, should be freed in the driver (unless
otherwise stated), with dri ver _free_bi nary. (Note that this doesn't necessarily deallocate it, if the driver
istill referred in the emulator, the ref-count will not go to zero.)

Driver binaries are used in the dr i ver _out put 2 and dri ver _out put v calls, and in the queue. Also the
driver call-back outputv uses driver binaries.

If the driver of some reason or another, wants to keep a driver binary around, in a static variable for instance,
the reference count should be incremented, and the binary can later be freed in the stop call-back, with
driver_free_binary.

Note that since adriver binary is shared by the driver and the emulator, a binary received from the emulator or
sent to the emulator, must not be changed by the driver.

From ertsversion 5.5 (OTPrelease R11B), orig_bytesis guaranteed to be properly aligned for storage of an array
of doubles (usually 8-byte aligned).

ErlDrvData

TheEr | Dr vDat a isahandle to driver-specific data, passed to the driver call-backs. It isapointer, and is most
often casted to a specific pointer in the driver.

SyslOVec
Thisisasystem /O vector, asused by wr i t ev on unix and WSASend on Win32. Itisused in Er | | OVec.
ErllOVec

218 | Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS)

erl_driver

typedef struct ErllOvec {
int vsize;
int size;
Sysl Ovec* i ov;
>Er | DrvBi nary** bi nv;
} Erll Ovec;

The 1/0 vector used by the emulator and drivers, isalist of binaries, with a Sys| Ovec pointing to the buffers
of the binaries. It isused in dri ver _out put v and the outputv driver call-back. Also, the driver queue is an
Erl 1 Ovec.

ErlDrvMonitor

When adriver createsamonitor for aprocess, aEr | Dr vMoni t or isfilledin. Thisisan opaque data-type which
can be assigned to but not compared without using the supplied compare function (i.e. it behaves like a struct).

The driver writer should provide the memory for storing the monitor when calling driver_monitor_process. The
address of the datais not stored outside of the driver, sothe Er | Dr vMbni t or can be used as any other datum,
it can be copied, moved in memory, forgotten etc.

ErlIDrvNowData

The Er | Dr vNowDat a structure holds a timestamp consisting of three values measured from some arbitrary
point in the past. The three structure members are;

megasecs

The number of whole megaseconds elapsed since the arbitrary point in time
Secs

The number of whole seconds elapsed since the arbitrary point in time
MiCrosecs

The number of whole microseconds elapsed since the arbitrary point in time

ErlDrvPDL

If certain port specific data have to be accessed from other threads than those calling the driver call-backs, a port
data lock can be used in order to synchronize the operations on the data. Currently, the only port specific data
that the emulator associates with the port datalock is the driver queue.

Normally a driver instance does not have a port data lock. If the driver instance want to use a port data lock, it
has to create the port data lock by calling driver_pdl_create(). NOTE: Once the port datalock has been created,
every access to data associated with the port data lock have to be done while having the port data lock locked.
The port datalock islocked, and unlocked, respectively, by use of driver_pdl_lock(), and driver_pdl_unlock().

A port datalock is reference counted, and when the reference count reach zero, it will be destroyed. The emulator
will at least increment the reference count once when the lock is created and decrement it once when the port
associated with the lock terminates. The emulator will also increment the reference count when an async job is
engueued and decrement it after an async job has been invoked, or canceled. Besides this, it is the responsibility
of the driver to ensure that the reference count does not reach zero before the last use of the lock by the
driver has been made. The reference count can be read, incremented, and decremented, respectively, by use of
driver_pdl_get refc(), driver_pdl_inc_refc(), and driver_pdl_dec_refc().

ErlDrvTid
Thread identifier.

See also: erl_drv_thread _create(), erl_drv_thread_exit(), erl_drv_thread join(), erl_drv_thread self(), and
erl_drv_equal_tids().

ErlDrvThreadOpts

Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS) | 219

erl_driver

int suggested_stack_si ze;

Thread options structure passed to erl_drv_thread create(). Currently the following fields exist:

suggested stack size
A suggestion, in kilo-words, on how large stack to use. A value less than zero means default size.

See also: erl_drv_thread opts create(), erl_drv_thread opts destroy(), and erl_drv_thread create().
ErlDrvMutex
Mutual exclusion lock. Used for synchronizing access to shared data. Only one thread at atime can lock amutex.

Seealso: erl_drv_mutex_create(), erl_drv_mutex_destroy(), erl_drv_mutex_lock(), erl_drv_mutex_trylock(), and
erl_drv_mutex_unlock().

ErlDrvCond

Condition variable. Used when threads need to wait for aspecific condition to appear before continuing execution.
Condition variables need to be used with associated mutexes.

See aso: erl_drv_cond_create(), erl_drv_cond_destroy(), erl_drv_cond signal(), erl_drv_cond_broadcast(),
and erl_drv_cond_wait().

ErIDrvRWL ock

Read/write lock. Used to allow multiple threads to read shared data while only allowing one thread to write the
same data. Multiple threads can read lock an rwlock at the same time, while only one thread can read/write lock
an rwlock at atime.

See also: erl_drv_rwlock create(), erl_drv_rwlock_destroy(), erl_drv_rwlock_rlock(),
erl_drv_rwlock_tryrlock(), erl_drv_rwlock runlock(), erl_drv_rwiock_rwiock(), erl_drv_rwlock_tryrwiock(),
and erl_drv_rwlock _rwunlock().

ErlIDrvTSDKey
Key which thread specific data can be associated with.
See also: erl_drv_tsd_key create(), erl_drv_tsd_key destroy(), erl_drv_tsd set(), and erl_drv_tsd_get().

Exports

void driver_systeminfo(ErlDrvSyslinfo *sys info ptr, size t size)

This function will write information about the Erlang runtime system into the ErlDrvSysinfo structure referred
to by the first argument. The second argument should be the size of the ErIDrvSysinfo structure, i.e.,
si zeof (Erl DrvSysl nf o).

See the documentation of the ErlDrvSysinfo structure for information about specific fields.

int driver_output(ErlDrvPort port, char *buf, int |en)

Thedri ver _out put function isused to send data from the driver up to the emulator. The datawill be received as
terms or binary data, depending on how the driver port was opened.

The datais queued in the port owner process message queue. Note that this does not yield to the emulator. (Since the
driver and the emulator runsin the same thread.)

The parameter buf pointsto the datato send, and | en isthe number of bytes.

220 | Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS)

erl_driver

The return value for al output functionsis 0. (Unless the driver is used for distribution, in which case it can fail and
return -1. For normal use, the output function always returns 0.)

int driver_output2(ErlDrvPort port, char *hbuf, int hlen, char *buf, int |en)

Thedri ver _out put 2 function first sends hbuf (lengthin hl en) dataasalist, regardless of port settings. Then
buf issent asabinary or list. E.g. if hl en is 3 then the port owner processwill receive[H1, H2, H3 | T].

The point of sending dataas alist header, isto facilitate matching on the data received.
The return value is O for normal use.

int driver_output_binary(Erl DrvPort port, char *hbuf, int hlen, ErlDrvBinary*
bin, int offset, int Ilen)

This function sends data to port owner process from adriver binary, it has a header buffer (hbuf and hl en) just like
dri ver _out put 2. Thehbuf parameter can be NULL.

The parameter of f set isan offset into the binary and | en isthe number of bytesto send.
Driver binaries are created withdri ver _al | oc_bi nary.

The datain the header is sent as alist and the binary as an Erlang binary in thetail of the list.
E.g.if hl enis2, then the port owner processwill receive[HL, H2 | <<T>>].
Thereturn valueis 0 for normal use.

Note that, using the binary syntax in Erlang, the driver application can match the header directly from the binary, so
the header can be put in the binary, and hlen can be set to 0.

int driver_outputv(ErlDrvPort port, char* hbuf, int hlen, ErllOvec *ev, int
ski p)

This function sends data from an 10 vector, ev, to the port owner process. It has a header buffer (hbuf and hl en),
just likedri ver _out put 2.

The ski p parameter isanumber of bytesto skip of the ev vector from the head.

You get vectors of Er | | OVec type from the driver queue (see below), and the outputv driver entry function. Y ou
can also make them yourself, if you want to send several Er | Dr vBi nary buffers at once. Often it is faster to use
driver_output ordriver_out put_binary.

E.g.if hl enis2andev pointsto an array of three binaries, the port owner processwill receive[HL, H2, <<Bl1>>,
<<B2>> | <<B3>>].

Thereturn valueis O for normal use.

The comment for dri ver _out put _bi nary appliesfordri ver _out put v too.

int driver_vec_to_buf(ErllOvec *ev, char *buf, int |en)

This function collects several segments of data, referenced by ev, by copying them in order to the buffer buf , of
thesizel en.

If the datais to be sent from the driver to the port owner process, it isfaster tousedr i ver _out put v.

The return value is the space left in the buffer, i.e. if the ev contains less than | en bytes it's the difference, and if
ev contains| en bytes or more, it's 0. Thisisfaster if there is more than one header byte, since the binary syntax can
construct integers directly from the binary.

Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS) | 221

erl_driver

int driver_set timer(Erl DrvPort port, unsigned long tine)

This function sets a timer on the driver, which will count down and call the driver when it is timed out. Thet i ne
parameter is the time in milliseconds before the timer expires.

When the timer reaches 0 and expires, the driver entry function timeout is called.
Note that there is only one timer on each driver instance; setting a new timer will replace an older one.
Return valuei 0 (-1 only whenthet i meout driver function isNULL).

int driver_cancel _tiner(ErlDrvPort port)
Thisfunction cancelsatimer set withdri ver _set _ti ner.
The return valueis 0.

int driver_read_tiner(ErlDrvPort port, unsigned long *tinme_left)

This function reads the current time of atimer, and placestheresultint i me_| ef t . Thisisthetimein milliseconds,
before the timeout will occur.

The return valueis 0.

int driver_get_now(Erl DrvNowDat a *now)

This function reads a timestamp into the memory pointed to by the parameter now. See the description of
ErIDrvNowData for specification of its fields.

Thereturn value is 0 unless the now pointer is not valid, in which caseitis< 0.

int driver_select(ErlDrvPort port, ErlDrvEvent event, int node, int on)

Thisfunction is used by driversto provide the emulator with eventsto check for. This enables the emulator to call the
driver when something has happened asynchronously.

Theevent argument identifies an OS-specific event object. On Unix systems, thefunctionssel ect /pol | areused.
The event object must be a socket or pipe (or other object that sel ect /pol | can use). On windows, the Win32
API function Wi t For Mul t i pl eObj ect s isused. This places other restriction on the event object. Refer to the
Win32 SDK documentation.

The on parameter should be 1 for setting events and O for clearing them.

The node argument is bitwise-or combination of ERL_DRV_READ, ERL_DRV_WRI TE and ERL_DRV_USE. The
first two specifies whether to wait for read events and/or write events. A fired read event will call ready_input while
afired write event will call ready_output.

Note:

Some OS (Windows) does not differ between read and write events. The call-back for a fired event then only
depends on the value of nbde.

ERL_DRV_USE specifiesif weareusing the event object or if wewant to closeit. On an emulator with SMP support, it
isnot safeto clear all eventsand then closethe event object after dr i ver _sel ect hasreturned. Another thread may
still be using the event object internally. To safely close an event object call dri ver _sel ect withERL_DRV_USE
and on==0. That will clear all eventsand then call stop_select whenitissafeto closetheevent object. ERL_DRV_USE
should be set together with the first event for an event object. It is harmless to set ERL_DRV_USE even though it

222 | Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS)

erl_driver

already has been done. Clearing all events but keeping ERL_DRV_USE set will indicate that we are using the event
object and probably will set eventsfor it again.

Note:

ERL_DRV_USE was added in OTP release R13. Old drivers will still work as before. But it is recommended to
updatethemtouse ERL_DRV_USE andst op_sel ect tomake surethat event objectsare closed in asafe way.

Thereturn valueis O (Failure, -1, only if ther eady_i nput /r eady_out put isNULL.

void * driver_alloc(size_t size)

Thisfunction allocates amemory block of the size specifiedinsi ze, and returnsit. Thisonly fails on out of memory,
in that case NULL isreturned. (Thisis most often awrapper for nal | oc).

Memory allocated must be explicitly freed with a corresponding call todr i ver _f r ee (unless otherwise stated).
This function is thread-safe.

void * driver_realloc(void *ptr, size_t size)

This function resizes a memory block, either in place, or by allocating a new block, copying the data and freeing the
old block. A pointer is returned to the reallocated memory. On failure (out of memory), NULL is returned. (Thisis
most often awrapper forr eal | oc.)

This function is thread-safe.

void driver_free(void *ptr)

This function frees the memory pointed to by pt r . The memory should have been allocated with dr i ver _al | oc.
All alocated memory should be deallocated, just once. There is no garbage collection in drivers.

This function is thread-safe.

Erl DrvBi nary* driver_alloc_binary(int size)

This function allocates a driver binary with a memory block of at least si ze bytes, and returns a pointer to it, or
NULL on failure (out of memory). When adriver binary has been sent to the emulator, it must not be altered. Every
allocated binary should be freed by a corresponding call todri ver _free_bi nary (unless otherwise stated).

Note that a driver binary has an internal reference counter, this meansthat calling dri ver _free_bi nary it may
not actually dispose of it. If it's sent to the emulator, it may be referenced there.

Thedriver binary has afield, ori g_byt es, which marks the start of the datain the binary.
Thisfunction is thread-safe.

Erl DrvBi nary* driver_realloc_binary(Erl DrvBinary *bin, int size)

This function resizes a driver binary, while keeping the data. The resized driver binary is returned. On failure (out
of memory), NULL is returned.

This function is only thread-safe when the emulator with SMP support is used.

Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS) | 223

erl_driver

void driver_free_binary(Erl DrvBi nary *bin)

This function frees a driver binary bi n, alocated previously with dri ver _al | oc_bi nary. Since binaries in
Erlang are reference counted, the binary may still be around.

This function is only thread-safe when the emulator with SMP support is used.

I ong driver_binary_get_refc(Erl DrvBinary *bin)
Returns current reference count on bi n.
This function is only thread-safe when the emulator with SMP support is used.

long driver_binary_inc_refc(ErlDrvBinary *bin)
Increments the reference count on bi n and returns the reference count reached after the increment.
This function is only thread-safe when the emulator with SMP support is used.

| ong driver_binary dec_refc(ErlDrvBinary *hin)
Decrements the reference count on bi n and returns the reference count reached after the decrement.
Thisfunction is only thread-safe when the emulator with SMP support is used.

Note:

You should normally decrement the reference count of a driver binary by calling driver_free binary().
driver_binary dec_refc() does not free the binary if the reference count reaches zero. Only use
driver_binary_dec_refc() whenyou are sure not to reach areference count of zero.

int driver_enq(ErlDrvPort port, char* buf, int |en)

This function enqueues datain the driver queue. The datain buf is copied (I en bytes) and placed at the end of the
driver queue. The driver queue is normally used in a FIFO way.

The driver queue is available to queue output from the emulator to the driver (data from the driver to the emulator is
gueued by the emulator in normal erlang message queues). This can be useful if the driver hasto wait for slow devices
etc, and wants to yield back to the emulator. The driver queue isimplemented as an ErllOVec.

When the queue contains data, the driver won't close, until the queue is empty.
Thereturn valueisO.

This function can be called from an arbitrary thread if a port data lock associated with the por t is locked by the
calling thread during the call.

int driver_pushq(ErlDrvPort port, char* buf, int |en)

This function puts data at the head of the driver queue. The data in buf is copied (I en bytes) and placed at the
beginning of the queue.

The return valueis 0.

This function can be called from an arbitrary thread if a port data lock associated with the port is locked by the
calling thread during the call.

224 | Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS)

erl_driver

int driver_deq(ErlDrvPort port, int size)

This function dequeues data by moving the head pointer forward in the driver queue by si ze bytes. The datain the
gueue will be deallocated.

The return value is the number of bytes remaining in the queue or -1 on failure.

This function can be called from an arbitrary thread if a port data lock associated with the port is locked by the
calling thread during the call.

int driver_sizeq(ErlDrvPort port)
This function returns the number of bytes currently in the driver queue.

This function can be called from an arbitrary thread if a port data lock associated with the port is locked by the
caling thread during the call.

int driver_eng_bin(ErlDrvPort port, ErlDrvBinary *bin, int offset, int |en)

This function enqueues adriver binary in the driver queue. The datain bi n at of f set with length| en isplaced at
the end of the queue. Thisfunctionismost often faster thandr i ver _enq, because the datadoesn't have to be copied.

This function can be called from an arbitrary thread if a port data lock associated with the port islocked by the
calling thread during the call.

The return valueis 0.

int driver_pushqg_bin(Erl DrvPort port, ErlDrvBinary *bin, int offset, int I|en)

Thisfunction puts datain the binary bi n, at of f set withlength| en at the head of the driver queue. It is most often
faster thandri ver _pushq, because the data doesn't have to be copied.

This function can be called from an arbitrary thread if a port data lock associated with the port is locked by the
calling thread during the call.

The return valueis 0.

Sysl Ovec* driver_peekq(Erl DrvPort port, int *vlen)

Thisfunction retrievesthe driver queue as apointer to an array of Sys| OVecs. It also returns the number of elements
invl en. Thisisthe only way to get data out of the queue.

Nothing is remove from the queue by this function, that must be donewith dri ver _deq.
The returned array is suitable to use with the Unix systemcall wri t ev.

This function can be called from an arbitrary thread if a port data lock associated with the port is locked by the
calling thread during the call.

int driver_enqv(ErlDrvPort port, ErllOvec *ev, int skip)

This function enqueues the datain ev, skipping the first ski p bytes of it, at the end of the driver queue. It is faster
thandri ver _enq, because the data doesn't have to be copied.

The return valueis 0.

This function can be called from an arbitrary thread if a port data lock associated with the port is locked by the
calling thread during the call.

Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS) | 225

erl_driver

int driver_pushqv(Erl DrvPort port, ErllOvec *ev, int skip)

This function puts the datain ev, skipping the first ski p bytes of it, at the head of the driver queue. It is faster than
dri ver _pushq, because the data doesn't have to be copied.

The return valueis 0.

This function can be called from an arbitrary thread if a port data lock associated with the port is locked by the
calling thread during the call.

Erl DrvPDL driver_pdl _create(Erl DrvPort port)

This function creates a port data lock associated with the por t . NOTE: Once a port data lock has been created, it has
to be locked during all operations on the driver queue of the port .

On success a newly created port datalock is returned. On failure NULL isreturned. dri ver _pdl _creat e() will
fail if por t isinvalid or if aport datalock already has been associated with the por t .

voi d driver_pdl _| ock(Erl DrvPDL pdl)
This function locks the port data lock passed as argument (pdl).
Thisfunction is thread-safe.

voi d driver_pdl _unl ock(Erl DrvPDL pdl)
This function unlocks the port datalock passed as argument (pdl).
This function is thread-safe.

| ong driver_pdl _get refc(Erl DrvPDL pdl)
This function returns the current reference count of the port data lock passed as argument (pdl).
This function is thread-safe.

I ong driver_pdl _inc_refc(Erl DrvPDL pdl)

This function increments the reference count of the port data lock passed as argument (pdl).
The current reference count after the increment has been performed is returned.

This function is thread-safe.

| ong driver_pdl _dec_refc(Erl DrvPDL pdl)

This function decrements the reference count of the port data lock passed as argument (pdl).
The current reference count after the decrement has been performed is returned.

This function is thread-safe.

int driver_nonitor_process(Erl DrvPort port, ErlDrvTernData process,
Erl DrvMoni tor *nonitor)

Start monitoring a processfrom adriver. When aprocessis monitored, aprocessexit will result in acall to the provided
process_exit call-back in the ErIDrvEntry structure. The Er | Dr viVbni t or structure isfilled in, for later removal
or compare.

The pr ocess parameter should be the return value of an earlier call to driver_caller or driver_connected call.
The function returns 0 on success, < 0 if no call-back is provided and > O if the processis no longer alive.

226 | Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS)

erl_driver

int driver_denonitor_process(ErlDrvPort port, const Erl DrvMonitor *nonitor)
This function cancels an monitor created earlier.
The function returns 0 if a monitor was removed and > 0 if the monitor did no longer exist.

Erl DrvTernData driver_get_nonitored_process(Erl DrvPort port, const
Erl DrvMoni tor *nonitor)

The function returns the process id associated with aliving monitor. It can be used inthe pr ocess_exi t cal-back
to get the process identification for the exiting process.

Thefunctionreturnsdr i ver _t erm ni | if the monitor no longer exists.

int driver_conpare_nonitors(const ErlDrvMnitor *nmonitorl, const
Erl DrvMoni tor *nonitor2)

This function is used to compare two Er | Dr vivbni t or s. It can also be used to imply some artificial order on
monitors, for whatever reason.

The function returns O if noni t or 1 and noni t or 2 are equal, < 0 if noni t or 1 islessthannoni tor2 and >0
if roni t or 1 isgreater than noni t or 2.

void add_driver_entry(Erl DrvEntry *de)
Thisfunction addsadriver entry to thelist of driversknown by Erlang. Theinit function of the de parameter iscalled.

Note:

To usethisfunction for adding driversresiding in dynamically loaded codeis dangerous. If the driver codefor the
added driver residesin the same dynamically loaded module(i.e. . so file) asanormal dynamically |oaded driver
(loaded with theer | _ddlI | interface), the caller should call driver_lock_driver before adding driver entries.

Use of thisfunction is generally deprecated.

int remove_driver_entry(Erl DrvEntry *de)
This function removes a driver entry de previously added withadd_dri ver _entry.
Driver entries added by theer | _ddl | erlang interface can not be removed by using thisinterface.

char* erl _errno_id(int error)

This function returns the atom name of the erlang error, given the error number iner r or . Error atomsare: ei nval ,
enoent , etc. It can be used to make error terms from the driver.

void set_busy port(Erl DrvPort port, int on)
Thisfunction set and resetsthe busy status of the port. If on is1, theportisset to busy, if it's0the port isset to not busy.

When the port is busy, sending toit withPort ! Dat a or port _comand/ 2, will block the port owner process,
until the port is signaled as not busy.

If the ERL_DRV_FLAG_SOFT BUSY has been set in the driver_entry, data can be forced into the driver via
port_command(Port, Data, [force]) even though the driver has signaled that it is busy.

Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS) | 227

erl_driver

void set_port_control _flags(Erl DrvPort port, int flags)

This function sets flags for how the control driver entry function will return data to the port owner process. (The
control functioniscalledfromport _control /3 inerlang.)

Currently there are only two meaningful values for fl ags: O means that data is returned in a list, and
PORT_CONTROL_FLAG Bl NARY means datais returned as abinary fromcont r ol .

int driver_failure_eof (Erl DrvPort port)

Thisfunction signalsto erlang that the driver has encountered an EOF and should be closed, unlessthe port was opened
with the eof option, in that case eof is sent to the port. Otherwise, the port iscloseand an' EXI T' message is sent
to the port owner process.

Thereturn valueisO.
int driver_failure_atom(ErlDrvPort port, char *string)
int driver_failure_posix(ErlDrvPort port, int error)

int driver_failure(ErlDrvPort port, int error)

These functions signal to Erlang that the driver has encountered an error and should be closed. The port is closed
and the tuple {" EXIT', error, Err}, issent to the port owner process, where error is an error atom
(driver _failure_atomanddriver _failure_posix),oraninteger (dri ver _fail ure).

The driver should fail only when in severe error situations, when the driver cannot possibly keep open, for instance
buffer alocation gets out of memory. Normal errors is more appropriate to handle with sending error codes with
driver _out put.

Thereturn valueisO.

Erl DrvTernData driver_connected(Erl DrvPort port)
This function returns the port owner process.

Erl DrvTernData driver_caller(Erl DrvPort port)

This function returns the process id of the process that made the current call to the driver. The process id can be
used withdr i ver _send_t er mto send back datato the caller. dri ver _cal | er () only return valid data when
currently executing in one of the following driver callbacks:

start

Called fromopen_port/ 2.
output

Calledfromer| ang: send/ 2,ander | ang: port _comrand/ 2
outputv

Calledfromer| ang: send/ 2,ander | ang: port _command/ 2
control

Calledfromer| ang: port _control /3
call

Calledfromer| ang: port _call/3

int driver_output_term ErlDrvPort port, ErlDrvTernData* term int n)

Thisfunctions sends dataiin the special driver term format. Thisisafast way to deliver term datafrom adriver. It also
needs no binary conversion, so the port owner process receives data as normal Erlang terms.

228 | Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS)

erl_driver

Thet er mparameter pointsto an array of Er | Dr vTer nDat a, with n elements. Thisarray contains terms described
in the driver term format. Every term consists of one to four elements in the array. The term first has a term type,
and then arguments.

Tuple and lists (with the exception of strings, see below), are built in reverse polish notation, so that to build atuple,
the elements are given first, and then the tuple term, with a count. Likewise for lists.

A tuple must be specified with the number of elements. (The elements precedesthe ERL_DRV_TUPLE term.)

A list must be specified with the number of elements, including the tail, which is the last term preceding
ERL_DRV_LI ST.

The special term ERL_DRV_STRI NG_CONS is used to "splice" in a string in alist, a string given thisway is not a
list per se, but the elements are elements of the surrounding list.

Term type Ar gunent (' s)

ERL_DRV_NI L

ERL_DRV_ATOM Erl DrvTernData atom (from driver_nk_aton(char *string))
ERL_DRV_| NT Erl DrvSl nt integer

ERL_DRV_UI NT Erl DrvUl nt integer

ERL_DRV_| NT64 Erl DrvSInt 64 *integer_ptr

ERL_DRV_UI NT64 Erl DrvUI nt 64 *integer_ptr

ERL_DRV_PORT Erl DrvTernData port (fromdriver_nk_port(Erl DrvPort port))
ERL_DRV_BI NARY Erl DrvBinary *bin, ErlDrvUInt |en, ErlDrvU nt offset
ERL_DRV_BUF2BI NARY char *buf, ErlDrvU nt |en

ERL_DRV_STRI NG char *str, int len

ERL_DRV_TUPLE int sz

ERL_DRV_LI ST int sz

ERL_DRV_PI D Erl DrvTernData pid (fromdriver_connected(Erl DrvPort port) or driver_caller(ErlDrvPort |
ERL_DRV_STRI NG CONS char *str, int len

ERL_DRV_FLOAT doubl e *dbl

ERL_DRV_EXT2TERM char *buf, ErlDrvU nt |en

The unsigned integer data type Er | Dr vUI nt and the signed integer data type Er | Dr vSI nt are 64 bits wide on
a 64 bit runtime system and 32 bits wide on a 32 bit runtime system. They were introduced in erts version 5.6, and
replaced some of thei nt argumentsin the list above.

The unsigned integer data type Er | Dr vUI nt 64 and the signed integer data type Er | Dr vSI nt 64 are always 64
bits wide. They were introduced in erts version 5.7.4.

Tobuildthetuple{tcp, Port, [100 | Binary]}, thefollowing call could be made.

Erl DrvBi nary* bin = ...
Erl DrvPort port = ...
Erl DrvTer nData spec[] = {
ERL_DRV_ATOM driver_nk_aton("tcp"),
ERL_DRV_PORT, driver_nk_port (port),
ERL_DRV_I NT, 100,
ERL_DRV_BI NARY, bin, 50, O,
ERL_DRV_LI ST, 2,
ERL_DRV_TUPLE, 3,
IE

driver_output_term(port, spec, sizeof(spec) / sizeof(spec[0]));

Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS) | 229

erl_driver

Where bi n isadriver binary of length at least 50 and por t isaport handle. Note that the ERL_DRV_LI ST comes
after the elements of thelist, likewisethe ERL_DRV_TUPLE.

Theterm ERL_DRV_STRI NG_CONSisaway to construct strings. It worksdifferently fromhow ERL_DRV_STRI NG
works. ERL_DRV_STRI NG_CONS bhuildsastring list in reverse order, (as opposed to how ERL_DRV_LI ST works),
concatenating the strings added to alist. The tail must be given before ERL_DRV_STRI NG_CONS.

The ERL_DRV_STRI NG constructs a string, and ends it. (So it's the same as ERL_DRV_NI L followed by
ERL_DRV_STRI NG_CONS.)

/* to send [x, "abc", y] to the port: */

Erl DrvTer nData spec[] = {
ERL_DRV_ATOM driver_nk_aton("x"),
ERL_DRV_STRING (Erl DrvTernData)"abc", 3,
ERL_DRV_ATOM driver_nk_aton("y"),
ERL_DRV_NI L,
ERL_DRV_LI ST, 4

g

driver_output_term(port, spec, sizeof(spec) / sizeof(spec[0]));

/* to send "abcl123" to the port: */

Erl DrvTernData spec[] = {
ERL_DRV_NI L, /* with STRING CONS, the tail conmes first */
ERL_DRV_STRING CONS, (Erl DrvTernData)"123", 3,
ERL_DRV_STRI NG_CONS, (Erl DrvTernbData)"abc", 3,

b

driver_output_term(port, spec, sizeof(spec) / sizeof(spec[0]));

The ERL_DRV_EXT2TERMterm typeis used for passing aterm encoded with the external format, i.e., aterm that has
been encoded by erlang:term to_binary, erl_interface, etc. For example, if bi np isapointertoan Er | Dr vBi nary
that containstheterm {17, 4711} encoded with the external format and you want to wrap it in a two tuple with
thetagny_tag,i.e,{my_tag, {17, 4711}},youcandoasfollows:

Erl DrvTer nData spec[] = {
ERL_DRV_ATOM driver_nk_aton("my_tag"),
ERL_DRV_EXT2TERM (Erl| DrvTer nData) bi np->orig_bytes, binp->orig_size
ERL_DRV_TUPLE, 2,
IE

driver_output_term(port, spec, sizeof(spec) / sizeof(spec[0]));

If you want to pass abinary and doesn't already have the content of the binary inan Er | Dr vBi nar y, you can benefit
from using ERL_DRV_BUF2BI NARY instead of creating an Er | Dr vBi nary viadri ver _al | oc_bi nary()
and then pass the binary via ERL_DRV_BI NARY. The runtime system will often allocate binaries smarter
if ERL_DRV_BUF2BI NARY is used. However, if the content of the binary to pass aready resides in an
Er | DrvBi nary, it is normally better to pass the binary using ERL_DRV_BI NARY and the Er | Dr vBi nary in
question.

TheERL_DRV_UI NT, ERL_DRV_BUF2BI NARY, and ERL_DRV_EXT2TERMterm typeswereintroduced inthe 5.6
version of erts.

Note that this function is not thread-safe, not even when the emulator with SM P support is used.

230 | Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS)

erl_driver

Erl DrvTernData driver_nk_aton{char* string)

This function returns an atom given aname st r i ng. The atom is created and won't change, so the return value may
be saved and reused, which is faster than looking up the atom several times.

Erl DrvTernData driver_nk port(Erl DrvPort port)
This function converts a port handle to the erlang term format, usableinthedr i ver _out put _send function.

int driver_send tern(Erl DrvPort port, ErlDrvTernData receiver,
Erl DrvTernData* term int n)

Thisfunction isthe only way for adriver to send datato other processes than the port owner process. Ther ecei ver
parameter specifies the process to receive the data.

The parameterst er mand n does the same thing asin driver_output_term.
Thisfunction is only thread-safe when the emulator with SMP support is used.

| ong driver_async (ErlDrvPort port, unsigned int* key, void (*async_i nvoke)
(voi d*), void* async_data, void (*async_free)(void*))

This function performs an asynchronous call. The function async_i nvoke isinvoked in a thread separate from
the emulator thread. This enables the driver to perform time-consuming, blocking operations without blocking the
emulator.

Erlang is by default started without an async thread pool. The number of async threads that the runtime system should
use is specified by the + A command line argument of erl(1). If no async thread pool is available, the call is made
synchronoudly in the thread calling dri ver _async() . The current number of async threads in the async thread
pool can be retrieved viadriver_system info().

If thereisathread pool available, athread will be used. If thekey argument isnull, the threads from the pool are used
in around-robin way, each call todr i ver _async usesthe next thread in the pool. With the key argument set, this
behaviour is changed. The two same values of * key aways get the same thread.

To make sure that adriver instance always uses the same thread, the following call can be used:

unsi gned int nyKey = (unsigned int) myPort;

r = driver_async(nyPort, &ryKey, nyData, myFunc);

It isenough to initialize my Key once for each driver instance.

If athread is already working, the callswill be queued up and executed in order. Using the same thread for each driver
instance ensures that the calls will be made in sequence.

Theasync_dat a istheargument to the functionsasync_i nvoke andasync_fr ee. It'stypically apointer to a
structure that contains a pipe or event that can be used to signal that the async operation completed. The data should
befreedinasync_free, becauseit'scalledif dri ver _async_cancel iscalled.

When the async operation is done, ready_async driver entry functioniscalled. If async_r eady isnull in the driver
entry, theasync_fr ee functionis called instead.

Thereturn value is ahandle to the asynchronous task, which can be used asargument todr i ver _async_cancel .

Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS) | 231

erl_driver

Note:

Asof ertsversion 5.5.4.3 the default stack sizefor threadsin the async-thread pool is 16 kilowords, i.e., 64 kilobyte
on 32-hit architectures. This small default size has been chosen since the amount of async-threads might be quite
large. The default stack size is enough for drivers delivered with Erlang/OTP, but might not be sufficiently large
for other dynamically linked in driversthat usethedriver_async() functionality. A suggested stack sizefor threads
in the async-thread pool can be configured via the +a command line argument of erl(1).

int driver_async_cancel (long id)

This function cancels an asynchronous operation, by removing it from the queue. Only functions in the queue can be
cancelled; if afunction is executing, it'stoo late to cancel it. Theasync_f r ee functionisaso called.

Thereturn value is 1 if the operation was removed from the queue, otherwise 0.

int driver_lock_driver(ErlDrvPort port)

This function locks the driver used by the port port in memory for the rest of the emulator process lifetime. After
this call, the driver behaves as one of Erlang's statically linked in drivers.

Erl DrvPort driver_create_port(Erl DrvPort port, ErlDrvTernData owner_pid,
char* nanme, ErlDrvData drv_data)

This function creates a new port executing the same driver code as the port creating the new port. A short description
of the arguments:

port
The port handle of the port (driver instance) creating the new port.

owner _pid
The processid of the Erlang process which will be owner of the new port. This process will be linked to the
new port. You usually wanttousedri ver _cal |l er (port) asowner _pi d.

name
The port name of the new port. Y ou usually want to use the same port name as the driver name (driver_name
field of thedriver_entry).

drv_data
The driver defined handle that will be passed in subsequent callsto driver call-backs. Note, that the driver start
call-back will not be called for this new driver instance. The driver defined handle is normally created in the
driver start call-back when a port is created via erlang: open_port/2.

The caler of driver _create port() is alowed to manipulate the newly created port when
driver_create_port () hasreturned. When port level lockingisused, the creating port is, however, only allowed
to manipulate the newly created port until the current driver call-back that was called by the emulator returns.

Note:

When port level locking is used, the creating port is only allowed to manipulate the newly created port until the
current driver call-back returns.

int erl_drv_thread_create(char *name, ErlDrvTid *tid, void * (*func)(void *),
void *arg, ErlDrvThreadOpts *opts)

Arguments:

232 | Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS)

erl_driver

name
A string identifying the created thread. It will be used to identify the thread in planned future debug
functionality.
tid
A pointer to athread identifier variable.
func
A pointer to afunction to execute in the created thread.
arg
A pointer to argument to the f unc function.
opts
A pointer to thread optionsto use or NULL.
This function creates a new thread. On success O is returned; otherwise, an er r no value is returned to indicate the
error. The newly created thread will begin executing in the function pointed to by f unc, and f unc will be passed
ar g asargument. Whener| _drv_t hread_creat e() returns the thread identifier of the newly created thread
will beavailablein*t i d.opt s canbeeither aNULL pointer, or apointer to an ErlDrvThreadOpts structure. If opt s
isaNULL pointer, default options will be used; otherwise, the passed options will be used.

Warning:

Y ou are not alowed to alocate the Erl DrvThreadOpts structure by yourself. It hasto be alocated and initialized
by erl_drv_thread opts create().

The created thread will terminate either when f unc returnsor if erl_drv_thread exit() iscalled by the thread. The exit
value of the thread is either returned from f unc or passed as argument to erl_drv_thread_exit(). The driver creating
the thread has the responsibility of joining the thread, via erl_drv_thread_join(), before the driver is unloaded. It is
not possible to create "detached" threads, i.e., threads that don't need to be joined.

Warning:

All created threads need to be joined by the driver before it is unloaded. If the driver fails to join all threads
created before it is unloaded, the runtime system will most likely crash when the code of the driver is unloaded.

This function is thread-safe.

Erl DrvThreadOpts * erl _drv_thread_opts_create(char *nane)
Arguments:

nane
A string identifying the created thread options. It will be used to identify the thread optionsin planned future
debug functionality.

This function allocates and initialize a thread option structure. On failure NULL is returned. A thread option
structure is used for passing options to erl_drv_thread_create(). If the structure isn't modified before it is passed to
erl_drv_thread_create(), the default values will be used.

Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS) | 233

erl_driver

Warning:

Y ou are not allowed to allocate the ErlDrvThreadOpts structure by yourself. It has to be allocated and initialized
byerl drv_thread opts create().

This function is thread-safe.

void erl _drv_thread opts_destroy(Erl DrvThreadOpts *opts)
Arguments:

opts
A pointer to thread options to destroy.

This function destroys thread options previously created by erl_drv_thread opts create().
Thisfunction is thread-safe.

void erl _drv_thread exit(void *exit_val ue)
Arguments:

exit_val ue
A pointer to an exit value or NULL.

This function terminates the calling thread with the exit value passed as argument. You are only alowed to
terminate threads created with erl_drv_thread create(). The exit value can later be retrieved by another thread via
erl_drv_thread _join().

This function is thread-safe.

int erl_drv_thread join(ErlIDrvTid tid, void **exit_val ue)
Arguments:
tid

Thethread identifier of the thread to join.

exit_val ue
A pointer to apointer to an exit value, or NULL.

This function joins the calling thread with another thread, i.e., the calling thread is blocked until the thread identified
by ti d has terminated. On success 0 is returned; otherwise, an er r no value is returned to indicate the error. A
thread can only be joined once. The behavior of joining more than once is undefined, an emulator crash is likely. If
exit_val ue == NULL, the exit value of the terminated thread will be ignored; otherwise, the exit value of the
terminated thread will be stored at * exi t _val ue.

This function is thread-safe.

ErlDrvTid erl _drv_thread_sel f(void)
This function returns the thread identifier of the calling thread.
This function is thread-safe.

int erl_drv_equal tids(ErlDrvTid tidl, ErlDrvTid tid2)
Arguments:

234 | Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS)

erl_driver

tidl

A thread identifier.
tid2

A thread identifier.

This function compares two thread identifiers for equality, and returns O it they aren't equal, and a value not equal
to 0 if they are equal.

Note:

A Thread identifier may be reused very quickly after athread hasterminated. Therefore, if athread corresponding
to one of the involved thread identifiers has terminated since the thread identifier was saved, the result of
erl _drv_equal _tids() might not give expected result.

This function is thread-safe.

Erl DrvMutex * erl _drv_nutex_create(char *nane)
Arguments:

name
A string identifying the created mutex. It will be used to identify the mutex in planned future debug
functionality.

This function creates a mutex and returns a pointer to it. On failure NULL is returned. The driver creating the mutex
has the responsibility of destroying it before the driver is unloaded.

This function is thread-safe.

void erl _drv_nmutex_destroy(Erl DrvMut ex *nt x)
Arguments:

nmt x
A pointer to amutex to destroy.

This function destroys a mutex previously created by erl_drv_mutex_create(). The mutex has to be in an unlocked
state before being destroyed.

Thisfunction is thread-safe.

void erl _drv_nutex_| ock(Erl DrvMitex *ntx)
Arguments:

nm x
A pointer to amutex to lock.

This function locks a mutex. The calling thread will be blocked until the mutex has been locked. A thread which
currently has locked the mutex may not lock the same mutex again.

Warning:

If you leave a mutex locked in an emulator thread when you |et the thread out of your control, you will very likely
deadlock the whole emulator.

Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS) | 235

erl_driver

This function is thread-safe.

int erl _drv_nutex_tryl ock(Erl DrvMut ex *nt x)
Arguments:

nm x
A pointer to amutex to try to lock.

Thisfunctiontriesto lock amutex. If successful 0, isreturned; otherwise, EBUSY isreturned. A thread which currently
has locked the mutex may not try to lock the same mutex again.

Warning:

If you leave amutex locked in an emulator thread when you let the thread out of your control, you will very likely
deadlock the whole emulator.

This function is thread-safe.

void erl _drv_mutex_unl ock(Erl DrvMut ex *mt x)
Arguments:

nm x
A pointer to amutex to unlock.

This function unlocks a mutex. The mutex currently has to be locked by the calling thread.
Thisfunction is thread-safe.

Erl DrvCond * erl _drv_cond _create(char *nane)
Arguments:

name
A string identifying the created condition variable. It will be used to identify the condition variable in planned
future debug functionality.

This function creates a condition variable and returns a pointer to it. On failure NULL isreturned. The driver creating
the condition variable has the responsibility of destroying it before the driver is unloaded.

This function is thread-safe.

void erl _drv_cond_destroy(Erl DrvCond *cnd)
Arguments:

cnd
A pointer to a condition variable to destroy.

This function destroys a condition variable previously created by erl_drv_cond create().
Thisfunction is thread-safe.

void erl _drv_cond_signal (Erl DrvCond *cnd)
Arguments:

236 | Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS)

erl_driver

cnd
A pointer to acondition variable to signal on.

This function signals on a condition variable. That is, if other threads are waiting on the condition variable being
signaled, one of them will be woken.

This function is thread-safe.

void erl _drv_cond_broadcast (Erl DrvCond *cnd)
Arguments:

cnd
A pointer to a condition variable to broadcast on.

This function broadcasts on a condition variable. That is, if other threads are waiting on the condition variable being
broadcasted on, all of them will be woken.

This function is thread-safe.

void erl_drv_cond_wait(Erl DrvCond *cnd, Erl DrvMitex *ntx)
Arguments:

cnd

A pointer to a condition variable to wait on.
nt x

A pointer to amutex to unlock while waiting.

This function waits on a condition variable. The calling thread is blocked until another thread wakes it by signaling or
broadcasting on the condition variable. Before the calling thread is blocked it unlocks the mutex passed as argument,
and when the calling thread is woken it locks the same mutex before returning. That is, the mutex currently hasto be
locked by the calling thread when calling this function.

Note:

erl _drv_cond_wait () might return even though no-one has signaled or broadcasted on the condition
variable. Code callinger| _drv_cond_wai t () should always be prepared for er| _drv_cond_wai t ()
returning even though the condition that the thread was waiting for hasn't occurred. That is, when
returning from erl _drv_cond_wai t () aways check if the condition has occurred, and if not call
erl _drv_cond_wait () again.

Thisfunction is thread-safe.

Erl DrvRW.ock * erl _drv_rw ock_create(char *nane)
Arguments:

name
A string identifying the created rwlock. It will be used to identify the rwlock in planned future debug
functionality.

Thisfunction creates an rwlock and returns a pointer to it. On failure NULL isreturned. The driver creating the rwlock
has the responsibility of destroying it before the driver is unloaded.

This function is thread-safe.

Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS) | 237

erl_driver

void erl_drv_rw ock_destroy(Erl DrvRALock *rw ck)
Arguments:

rw ck
A pointer to an rwlock to destroy.

Thisfunction destroys an rwlock previously created by erl_drv_rwlock_create(). The rwlock hasto bein an unlocked
state before being destroyed.

This function is thread-safe.

void erl_drv_rw ock_rl ock(Erl DrvRALock *rw ck)
Arguments:

rw ck
A pointer to an rwlock to read lock.

Thisfunction read locks an rwlock. The calling thread will be blocked until the rwlock has been read locked. A thread
which currently has read or read/write locked the rwlock may not lock the same rwlock again.

Warning:

If you leave an rwlock locked in an emulator thread when you let the thread out of your control, you will very
likely deadlock the whole emulator.

This function is thread-safe.

int erl_drv_rw ock_tryrlock(Erl DrvRAN.ock *rw ck)
Arguments:

rw ck
A pointer to an rwlock to try to read lock.

Thisfunction tries to read lock an rwlock. If successful 0, isreturned; otherwise, EBUSY is returned. A thread which
currently has read or read/write locked the rwlock may not try to lock the same rwlock again.

Warning:

If you leave an rwlock locked in an emulator thread when you let the thread out of your control, you will very
likely deadlock the whole emulator.

This function is thread-safe.

void erl _drv_rw ock_runl ock(Erl Dr vRW.ock *rw ck)
Arguments:

rw ck
A pointer to an rwlock to read unlock.

This function read unlocks an rwlock. The rwlock currently has to be read locked by the calling thread.
Thisfunction is thread-safe.

238 | Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS)

erl_driver

void erl_drv_rw ock_rw ock(Erl DrvRAN.ock *rw ck)
Arguments:

rw ck
A pointer to an rwlock to read/write lock.

This function read/write locks an rwlock. The calling thread will be blocked until the rwlock has been read/write
locked. A thread which currently has read or read/write locked the rwlock may not lock the same rwlock again.

Warning:

If you leave an rwlock locked in an emulator thread when you let the thread out of your control, you will very
likely deadlock the whole emulator.

Thisfunction is thread-safe.

int erl_drv_rw ock_tryrw ock(Erl DrvRALock *rw ck)
Arguments:

rw ck
A pointer to an rwlock to try to read/write lock.

This function tries to read/write lock an rwlock. If successful 0, is returned; otherwise, EBUSY is returned. A thread
which currently has read or read/write locked the rwlock may not try to lock the same rwlock again.

Warning:

If you leave an rwlock locked in an emulator thread when you let the thread out of your control, you will very
likely deadlock the whole emulator.

This function is thread-safe.

void erl _drv_rw ock_rwunl ock(Erl Dr vRAN.ock *rw ck)
Arguments:

rw ck
A pointer to an rwlock to read/write unlock.

This function read/write unlocks an rwlock. The rwlock currently has to be read/write locked by the calling thread.
This function is thread-safe.

int erl_drv_tsd _key create(char *nane, Erl DrvTSDKey *key)
Arguments:

name

A string identifying the created key. It will be used to identify the key in planned future debug functionality.
key

A pointer to athread specific data key variable.

Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS) | 239

erl_driver

This function creates a thread specific data key. On success 0 is returned; otherwise, an er r no value is returned to
indicate the error. The driver creating the key has the responsibility of destroying it before the driver is unloaded.

Thisfunction is thread-safe.

void erl _drv_tsd_key_destroy(Erl DrvTSDKey key)
Arguments:

key
A thread specific data key to destroy.

This function destroys a thread specific data key previously created by erl drv_tsd key create(). All thread
specific data using this key in al threads have to be cleared (see erl_drv tsd set()) prior to the cal to
erl _drv_tsd key destroy().

Warning:

A destroyed key isvery likely to be reused soon. Therefore, if you fail to clear the thread specific data using this
key in athread prior to destroying the key, you will very likely get unexpected errorsin other parts of the system.

This function is thread-safe.

void erl _drv_tsd set (Erl DrvTSDKey key, void *data)
Arguments:

key
A thread specific data key.
dat a
A pointer to data to associate with key in calling thread.

This function sets thread specific data associated with key for the calling thread. Y ou are only allowed to set thread
specific datafor threads while they are fully under your control. For example, if you set thread specific datain athread
calling a driver call-back function, it has to be cleared, i.e. set to NULL, before returning from the driver call-back
function.

Warning:

If you fail to clear thread specific datain an emulator thread before letting it out of your control, you might not
ever be able to clear this data with later unexpected errors in other parts of the system as aresult.

This function is thread-safe.

void * erl _drv_tsd_get(Erl DrvTSDKey key)
Arguments:

key
A thread specific data key.

Thisfunction returns the thread specific data associated with key for the calling thread. If no data has been associated
with key for the calling thread, NULL is returned.

240 | Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS)

erl_driver

This function is thread-safe.

int erl_drv_putenv(char *key, char *val ue)
Arguments:

key
A null terminated string containing the name of the environment variable.
val ue
A null terminated string containing the new value of the environment variable.

This function sets the value of an environment variable. It returns O on success, and avalue! = 0 on failure.

Note:

The result of passing the empty string (*") as avalue is platform dependent. On some platforms the value of the
variableis set to the empty string, on others, the environment variable is removed.

Warning:

Do not use libc's put env or similar C library interfaces from a driver.

This function is thread-safe.

int erl_drv_getenv(char *key, char *val ue, size_t *val ue_size)
Arguments:

key
A null terminated string containing the name of the environment variable.
val ue
A pointer to an output buffer.
val ue_si ze
A pointer to an integer. The integer is both used for passing input and output sizes (see below).

This function retrieves the value of an environment variable. When called, * val ue_si ze should contain the size
of theval ue buffer. On success 0 isreturned, the value of the environment variable has been written to the val ue
buffer, and * val ue_si ze contains the string length (excluding the terminating null character) of the value written
totheval ue buffer. On failure, i.e., no such environment variable was found, a value less than 0 is returned. When
the size of the val ue buffer istoo small, avalue greater than 0 is returned and * val ue_si ze has been set to the
buffer size needed.

Warning:
Do not uselibc'sget env or similar C library interfaces from a driver.

This function is thread-safe.

Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS) | 241

erl_driver

SEE ALSO
driver_entry(3), erl_ddlI(3), erlang(3)
An Alternative Distribution Driver (ERTS User's Guide Ch. 3)

242 | Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS)

driver_entry

driver_entry
C Library

As of erts version 5.5.3 the driver interface has been extended (see extended marker). The extended interface
introduces ver sion management, the possibility to pass capability flags (seedriver flags) to the runtime system at driver
initialization, and some new driver API functions.

Note:

Old drivers (compiled withan er| _dri ver. h from an earlier erts version than 5.5.3) have to be recompiled
(but do not have to use the extended interface).

Thedri ver _ent ry structureisaC struct that all erlang drivers define. It contains entry points for the erlang driver
that are called by the erlang emulator when erlang code accesses the driver.

Theerl_driver driver API functions need a port handle that identifies the driver instance (and the port in the emul ator).
This is only passed to the st art function, but not to the other functions. The st art function returns a driver-
defined handle that is passed to the other functions. A common practiceisto havethe st ar t function allocate some
application-defined structure and stash thepor t handlein it, to use it later with the driver API functions.

The driver call-back functions are called synchronously from the erlang emulator. If they take too long before
completing, they can cause timeouts in the emulator. Use the queue or asynchronous calls if necessary, since the
emulator must be responsive.

Thedriver structure containsthe name of the driver and some 15 function pointers. These pointersare called at different
times by the emulator.

The only exported function from the driver is dri ver _i nit. This function returns the dri ver _entry
structure that points to the other functions in the driver. The dri ver _i nit function is declared with a macro
DRI VER | NI T(dri ver nane) . (Thisisbecause different OS's have different names for it.)

When writing a driver in C++, the driver entry should be of " C" linkage. One way to do this is to put this line
somewhere before the driver entry: extern "C' DRI VER_I NI T(dri ver nane); .

When the driver has passed the dri ver _ent ry over to the emulator, the driver is not alowed to modify the
driver_entry.

Note:

Do not declare the dri ver _ent ryconst . This since the emulator needs to modify the handl e, and the
handl e2 fields. A statically alocated, and const declared dri ver _entry may be located in read only
memory which will cause the emulator to crash.

DATA TYPES
ErIDrvEntry

typedef struct erl_drv_entry {
int (*init)(void); /* called at systemstart up for statically

Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS) | 243

driver_entry

linked drivers, and after |oading for
dynam cal |l y | oaded drivers */

#i f ndef ERL_SYS_DRV
Erl DrvData (*start)(Erl DrvPort port, char *command);
/* call ed when open_port/2 is invoked.
return value -1 neans failure. */
#el se
Erl DrvData (*start)(ErlDrvPort port, char *command, SysDriverOpts* opts);
/* special options, only for systemdriver */
#endi f
voi d (*stop)(Erl DrvData drv_data);
/* called when port is closed, and when the
emul ator is halted. */
voi d (*output)(Erl DrvData drv_data, char *buf, int len);
/* call ed when we have output fromerlang to
the port */
void (*ready_input)(Erl DrvData drv_data, ErlDrvEvent event);
/* call ed when we have input from one of
the driver's handl es) */
voi d (*ready_output) (Erl DrvData drv_data, ErlDrvEvent event);
/* called when output is possible to one of
the driver's handl es */

char *driver_naneg; /* nanme supplied as comrand
in open_port XXX ? */

void (*finish)(void); /* called before unloading the driver -
DYNAM C DRI VERS ONLY */

voi d *handl e; /* Reserved -- Used by enulator internally */

int (*control)(Erl DrvData drv_data, unsigned int command, char *buf,
int len, char **rbuf, int rlen);

/* "ioctl" for drivers - invoked by
port _control/3) */
void (*timeout) (Erl DrvData drv_data); /* Handling of timeout in driver

voi d (*outputv)(ErlDrvData drv_data, ErllOVec *ev);
/* call ed when we have output from erl ang
to the port */
voi d (*ready_async)(Erl DrvData drv_data, ErlDrvThreadData thread_data);
void (*flush)(ErlDrvData drv_data);
/* called when the port is about to be
closed, and there is data in the
driver queue that needs to be flushed
before 'stop' can be called */
int (*call)(ErlDrvData drv_data, unsigned int comnmand, char *buf,
int len, char **rbuf, int rlen, unsigned int *flags);
/* Works nostly like 'control', a syncronous
call into the driver. */
void (*event)(ErlDrvData drv_data, ErlDrvEvent event,
Er| DrvEvent Dat a event _dat a) ;
/* Call ed when an event sel ected by
driver_event () has occurred */

int extended_marker; /* ERL_DRV_EXTENDED MARKER */

int maj or_version; /* ERL_DRV_EXTENDED MAJOR_VERSI ON */

int mnor_version; /* ERL_DRV_EXTENDED M NOR_VERSI ON */

int driver_flags; /* ERL_DRV_FLAGs */

voi d *handl e2; /* Reserved -- Used by ermulator internally */

voi d (*process_exit)(Erl DrvData drv_data, ErlDrvMonitor *nonitor);
/* Called when a process nonitor fires */
voi d (*stop_sel ect)(Erl DrvEvent event, void* reserved);
/* Called to close an event object */
} ErlDrvEntry;

244 | Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS)

*/

driver_entry

int (*init)(void)

Thisis called directly after the driver has been loaded by er | _ddl | : | oad_dri ver/ 2. (Actualy when the
driver is added to the driver list.) The driver should return O, or if the driver can't initialize, -1.

ErlDrvData (* start)(ErlDrvPort port, char* command)

Thisis called when the driver isinstantiated, when open_port / 2 iscalled. Thedriver should return a number
>= 0 or apointer, or if the driver can't be started, one of three error codes should be returned:

ERL_DRV_ERROR_GENERAL - genera error, no error code
ERL_DRV_ERROR_ERRNO - error with error code in erl_errno
ERL_DRV_ERROR_BADARG - error, badarg

If an error code is returned, the port isn't started.

void (* stop)(ErlDrvData drv_data)

This is called when the port is closed, with port _cl ose/1orPort ! {self(), close}. Notethat
terminating the port owner processalso closesthe port. If dr v_dat a isapointer to memory allocatedinst ar t
then st op isthe place to deallocate that memory.

void (* output)(ErlDrvData drv_data, char *buf, int [en)

Thisis called when an erlang process has sent data to the port. The datais pointed to by buf , and is| en bytes.
Datais sent to the port with Port ! {self(), {comrand, Data}}, or with port_command/ 2.
Depending on how the port was opened, it should be either a list of integers 0..255 or a binary. See
open_port/3andport_conmand/ 2.

void (*ready_input)(ErlIDrvDatadrv_data, ErlDrvEvent event)
void (*ready_output)(ErlDrvData drv_data, ErlDrvEvent event)

Thisiscalled when adriver event (givenintheevent parameter) issignaled. Thisis used to help asynchronous
drivers "wake up" when something happens.

On unix theevent isapipe or socket handle (or something that the sel ect system call understands).

On Windowsthe event isan Event or Semaphore (or something that the Wi t For Mul t i pl eCbj ect s API
function understands). (Some trickery in the emulator allows more than the built-in limit of 64 Event s to be
used.)

To use this with threads and asynchronous routines, create a pipe on unix and an Event on Windows. When
the routine completes, write to the pipe (use Set Event on Windows), this will make the emulator call
ready_i nput orready_out put.

Spurious events may happen. That is, callstor eady_i nput or r eady_out put even though no rea events
are signaled. In redlity it should be rare (and OS dependant), but a robust driver must nevertheless be able to
handle such cases.

char *driver_name

This is the name of the driver, it must correspond to the atom used in open_por t , and the name of the driver
library file (without the extension).

void (*finish)(void)

Thisfunctioniscalled by theer | _ddl | driver whenthedriverisunloaded. (Itisonly called in dynamic drivers.)
The driver is only unloaded as aresult of calling unl oad_dri ver/ 1, or when the emulator halts.

void *handle

Thisfield isreserved for the emulator'sinternal use. The emulator will modify thisfield; therefore, it isimportant
that thedri ver _entry isn'tdeclared const .

Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS) | 245

driver_entry

int (*control)(ErlDrvDatadrv_data, unsigned int command, char *buf, int len, char **rbuf, int rlen)

Thisis a specia routine invoked with the erlang function port _cont r ol / 3. It works a little like an "ioctl"
for erlang drivers. The data given to port _control / 3 arrivesin buf and | en. The driver may send data
back, using *r buf andr| en.

This is the fastest way of calling a driver and get a response. It won't make any context switch in the erlang
emulator, and requires no message passing. It is suitable for calling C function to get faster execution, when
erlang istoo slow.

If the driver wantsto return data, it should returnitinr buf . Whencont r ol iscaled, * r buf pointsto adefault
buffer of r | en bytes, which can be used to return data. Data is returned different depending on the port control
flags (those that are set with set_port_control_flags).

If theflag is set to PORT_CONTROL_FLAG BI NARY, abinary will be returned. Small binaries can be returned
by writing the raw data into the default buffer. A binary can also be returned by setting *r buf to point
to a binary allocated with driver_alloc_binary. This binary will be freed automatically after cont r ol has
returned. The driver can retain the binary for read only accesswith driver_binary_inc_refc to be freed later with
driver_free binary. It isnever allowed to alter the binary after cont r ol hasreturned. If *r buf issetto NULL,
an empty list will be returned.

If theflagissetto 0, dataisreturned as alist of integers. Either use the default buffer or set * r buf to pointtoa
larger buffer allocated with driver_alloc. The buffer will be freed automatically after cont r ol has returned.

Using binariesis faster if more than afew bytes are returned.
The return value is the number of bytesreturned in * r buf .
void (*timeout)(ErIDrvData drv_data)

This function is called any time after the driver's timer reaches 0. The timer is activated with
driver_set _timer. Thereare no priorities or ordering among drivers, so if several drivers time out at the
sametime, any one of themis called first.

void (*outputv)(ErlDrvData drv_data, ErllOVec *ev)

Thisfunction is called whenever the port iswritten to. If it isNULL, the out put functioniscalled instead. This
function is faster than out put , becauseit takesan Er | | OVec directly, which requires no copying of the data.
The port should be in binary mode, seeopen_port/ 2.

The Er | | OVec contains both a Sys| OVec, suitable for wr i t ev, and one or more binaries. If these binaries
should be retained, when the driver returns from out put v, they can be queued (using driver_enq bin for
instance), or if they are kept in a static or global variable, the reference counter can be incremented.

void (*ready_async)(ErIDrvData drv_data, ErlDrvThreadData thread data)

This function is caled after an asynchronous call has completed. The asynchronous call is started with
driver_async. This function is called from the erlang emulator thread, as opposed to the asynchronous function,
whichis called in somethread (if multithreading is enabled).

int (*call)(ErIDrvData drv_data, unsigned int command, char *buf, int len, char **rbuf, int rlen, unsigned int
*flags)

Thisfunctioniscaled fromer | ang: port _cal | / 3. It worksalot likethecont r ol call-back, but usesthe
external term format for input and output.

comrand isan integer, obtained from the call from erlang (the second argumenttoer | ang: port _cal |/ 3).

buf and| en provide the arguments to the call (the third argument to er | ang: port _cal | / 3). They can be
decoded using ei functions.

r buf points to a return buffer, r| en bytes long. The return data should be a valid erlang term in the
external (binary) format. Thisis converted to an erlang term and returned by er | ang: port _cal | / 3 to the

246 | Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS)

driver_entry

caller. If more space than r | en bytes is needed to return data, *r buf can be set to memory allocated with
driver _al | oc. Thismemory will be freed automatically after cal | has returned.

The return value is the number of bytes returned in *r buf . If ERL_DRV_ERROR_GENERAL isreturned (or in
fact, anything < 0), er | ang: port _cal | / 3 will throw aBAD_ARG.

void (*event)(ErlDrvDatadrv_data, ErlDrvEvent event, ErlDrvEventData event_data)
Intentionally left undocumented.
int extended _marker

This field should either be equal to ERL_DRV_EXTENDED MARKER or 0. An old driver (not aware of the
extended driver interface) should set thisfield to 0. If thisfield is equal to 0, al the fields following this field
aso haveto beO, or NULL in caseit isapointer field.

int major_version

This field should equal ERL_DRV_EXTENDED MAJOR_VERSI ON if the ext ended_nar ker field equals
ERL_DRV_EXTENDED MARKER.

int minor_version

This field should equal ERL_DRV_EXTENDED M NOR_VERSI ON if the ext ended_mar ker field equals
ERL_DRV_EXTENDED MARKER.

int driver_flags

Thisfield is used to pass driver capability information to the runtime system. If the ext ended_mar ker field
equalsERL_DRV_EXTENDED MARKER, it should contain O or driver flags (ERL_DRV_FLAG _*) ored bitwise.
Currently the following driver flags exist:

ERL_DRV_FLAG_USE_PORT_LOCKI NG

The runtime system will use port level locking on al ports executing this driver instead of driver level locking
when the driver isrun in aruntime system with SMP support. For more information see the erl_driver
documentation.

ERL_DRV_FLAG_SOFT_BUSY

Marks that driver instances can handle being called in the output and/or outputv callbacks even though a driver
instance has marked itself as busy (see set_busy port()). Since erts version 5.7.4 this flag is required for drivers
used by the Erlang distribution (the behaviour has always been required by drivers used by the distribution).

void *handle2

Thisfield isreserved for the emulator'sinternal use. The emulator will modify thisfield; therefore, it isimportant
that thedri ver _ent ry isn't declared const .

void (*process_exit)(ErlDrvData drv_data, ErlDrvMonitor * monitor)

This callback is called when a monitored process exits. The drv_dat a is the data associated with the
port for which the process is monitored (using driver_monitor_process) and the noni t or corresponds
to the Er| DrvMoni t or structure filled in when creating the monitor. The driver interface function
driver_get monitored_process can be used to retrieve the process id of the exiting process as an
Er | DrvTer nDat a.

void (* stop_select)(ErIDrvEvent event, void* reserved)

Thisfunction is called on behaf of driver_select when it is safe to close an event object.
A typical implementation on Unix istodo cl ose((i nt)event).

Argument r eser ved isintended for future use and should be ignored.

In contrast to most of the other call-back functions, st op_sel ect is called independent of any port. No
Er | Dr vDat a argument is passed to the function. No driver lock or port lock is guaranteed to be held. The port

Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS) | 247

driver_entry

that called dri ver _sel ect might even be closed at thetime st op_sel ect iscalled. But it could also be
the case that st op_sel ect iscalled directly by dri ver _sel ect .

It is not allowed to call any functionsin the driver API from st op_sel ect . Thisstrict limitation is due to the
volatile context that st op_sel ect may becalled.

SEE ALSO
erl_driver(3), erl_ddlI(3), erlang(3), kernel(3)

248 | Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS)

erts_alloc

erts_alloc
C Library

erts_al | oc isan Erlang Run-Time System internal memory allocator library. ert s_al | oc provides the Erlang
Run-Time System with a number of memory alocators.

Allocators
Currently the following allocators are present:

tenp_all oc
Allocator used for temporary allocations.
eheap_al | oc
Allocator used for Erlang heap data, such as Erlang process heaps.
bi nary_al | oc
Allocator used for Erlang binary data.
ets_alloc
Allocator used for ETS data.
driver_alloc
Allocator used for driver data.

sl _alloc
Allocator used for memory blocks that are expected to be short-lived.
I1_alloc

Allocator used for memory blocks that are expected to be long-lived, for example Erlang code.
fix_alloc
A very fast allocator used for some fix-sized data. f i x_al | oc manages a set of memory pools from which
memory blocks are handed out. f i x_al | oc alocates memory poolsfrom| | _al | oc. Memory pools that
have been allocated are never deallocated.
std_all oc
Allocator used for most memory blocks not alocated via any of the other allocators described above.
sys_all oc
Thisis normally the default mal | oc implementation used on the specific OS.
nseg_al | oc
A memory segment allocator. nseg_al | oc isused by other allocators for allocating memory segments and is
currently only available on systems that have the mmap system call. Memory segments that are deallocated are
kept for awhile in a segment cache before they are destroyed. When segments are allocated, cached segments
are used if possible instead of creating new segments. Thisin order to reduce the number of system calls made.

sys_alloc andfi x_al | oc are dways enabled and cannot be disabled. nseg_al | oc is aways enabled if it
is available and an allocator that uses it is enabled. All other alocators can be enabled or disabled. By default all
allocators are enabled. When an allocator isdisabled, sys_al | oc isused instead of the disabled allocator.

The main idea with the ert s_al | oc library is to separate memory blocks that are used differently into different
memory areas, and by thisachieving lessmemory fragmentation. By putting lesseffort in finding agood fit for memory
blocks that are frequently allocated than for those less frequently allocated, a performance gain can be achieved.

The alloc_util framework

Internally a framework called al | oc_uti | isused for implementing allocators. sys_al | oc, fi x_al | oc, and
nseg_al | oc do not use this framework; hence, the following does not apply to them.

An alocator manages multiple areas, caled carriers, in which memory blocks are placed. A carrier is either placed
in a separate memory segment (allocated vianseg_al | oc) or in the heap segment (allocated viasys_al | oc).

Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS) | 249

erts_alloc

Multiblock carriersare used for storage of several blocks. Singleblock carriersare used for storage of oneblock. Blocks
that are larger than the value of the singleblock carrier threshold (sbct) parameter are placed in singleblock carriers.
Blocks smaller than the value of the sbct parameter are placed in multiblock carriers. Normally an allocator creates
a"main multiblock carrier". Main multiblock carriers are never deallocated. The size of the main multiblock carrier
is determined by the value of the mmbcs parameter.

Sizes of multiblock carriers allocated vianseg_al | oc are decided based on the values of the largest multiblock
carrier size (Imbcs), the smallest multiblock carrier size (smbcs), and the multiblock carrier growth stages (mbcgs)
parameters. If nc is the current number of multiblock carriers (the main multiblock carrier excluded) managed by
an allocator, the size of the next nseg_al | oc multiblock carrier allocated by this alocator will roughly be snbcs
+nc* (| mbcs-snbcs) / nbcgs whennc <= nbcgs, and| nbcs whennc > nbcgs. If thevaue of thesbct

parameter should belarger than the value of thel mbcs parameter, the allocator may haveto create multiblock carriers
that are larger than the value of the | nmbcs parameter, though. Singleblock carriers allocated vianseg_al | oc are
sized to whole pages.

Sizes of carriers adlocated via sys_al | oc are decided based on the value of the sys_al | oc carrier size (ycs)
parameter. The size of a carrier is the least number of multiples of the value of the ycs parameter that satisfies the
request.

Coalescing of free blocks are always performed immediately. Boundary tags (headers and footers) in free blocks are
used which makes the time complexity for coalescing constant.

The memory allocation strategy used for multiblock carriers by an allocator is configurable via the as parameter.
Currently the following strategies are available:

Best fit
Strategy: Find the smallest block that satisfies the requested block size.

Implementation: A balanced binary search tree is used. The time complexity is proportional to log N, where N
isthe number of sizes of free blocks.

Address order best fit

Strategy: Find the smallest block that satisfies the requested block size. If multiple blocks are found, choose the
one with the lowest address.

Implementation: A balanced binary search tree is used. The time complexity is proportional to log N, where N
is the number of free blocks.

Good fit
Strategy: Try to find the best fit, but settle for the best fit found during alimited search.

Implementation: The implementation uses segregated free lists with a maximum block search depth (in each list)
in order to find agood fit fast. When the maximum block search depth is small (by default 3) thisimplementation
has atime complexity that is constant. The maximum block search depth is configurable viathe mbsd parameter.

A fit

Strategy: Do not search for afit, inspect only one free block to seeif it satisfies the request. This strategy isonly
intended to be used for temporary allocations.

Implementation: Inspect the first block in afree-list. If it satisfies the request, it is used; otherwise, anew carrier
is created. The implementation has a time complexity that is constant.

Asof ertsversion 5.6.1 the emulator will refuse to use this strategy on other allocatorsthant enp_al | oc. This
since it will only cause problems for other alocators.

250 | Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS)

erts_alloc

System Flags Effecting erts_alloc

Warning:

Only use these flags if you are absolutely sure what you are doing. Unsuitable settings may cause serious
performance degradation and even a system crash at any time during operation.

Memory allocator system flags have the following syntax: +MkS><P> <V> where <S> is a letter identifying a
subsystem, <P> is a parameter, and <V> is the value to use. The flags can be passed to the Erlang emulator (erl) as
command line arguments.

System flags effecting specific alocators have an upper-case letter as <S>. The following letters are used for the
currently present allocators:

« B binary_alloc
« D std_ alloc

e E ets alloc

« F: fix_alloc

« H eheap_alloc
« L: Il_alloc

e M nseg alloc

e« R driver_alloc
« S sl_alloc

e« T: tenp_alloc

* Y: sys_alloc

The following flags are available for configuration of mseg_al | oc:

+Mvanchbf <size>
Absolute max cache bad fit (in kilobytes). A segment in the memory segment cache is not reused if its size
exceeds the requested size with more than the value of this parameter. Default value is 4096.

+MM ncbf <rati o>
Relative max cache bad fit (in percent). A segment in the memory segment cacheis not reused if its size
exceeds the requested size with more than relative max cache bad fit percent of the requested size. Default
valueis 20.

+MViits <anount >
Max cached segments. The maximum number of memory segments stored in the memory segment cache. Valid
range is 0-30. Default value is 5.

+MMEci <tine>
Cache check interval (in milliseconds). The memory segment cache is checked for segments to destroy at an
interval determined by this parameter. Default value is 1000.

Thefollowing flags are available for configuration of f i x_al | oc:

+MFe true
Enablefi x_al | oc. Note: fi x_al | oc cannot be disabled.

The following flags are available for configuration of sys_al | oc:

+MYe true
Enablesys_al | oc. Note: sys_al | oc cannot be disabled.

Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS) | 251

erts_alloc

+Mym | i be
mal | oc library to use. Currently only | i bc isavailable. | i bc enablesthe standard | i bc malloc
implementation. By default | i bc isused.

+Mytt <size>
Trim threshold size (in kilobytes). Thisis the maximum amount of free memory at the top of the heap
(allocated by sbr k) that will be kept by mal | oc (not released to the operating system). When the amount of
free memory at the top of the heap exceeds the trim threshold, mal | oc will releaseit (by calling sbr k). Trim
threshold is given in kilobytes. Default trim threshold is 128. Note: This flag will only have any effect when the
emulator has been linked with the GNU C library, and usesits mal | oc implementation.

+MYtp <size>
Top pad size (in kilobytes). Thisisthe amount of extramemory that will be allocated by mal | oc when
sbr k is called to get more memory from the operating system. Default top pad size is 0. Note: Thisflag
will only have any effect when the emulator has been linked with the GNU C library, and usesitsnal | oc
implementation.

The following flags are available for configuration of allocators based onal | oc_uti | . If u isused as subsystem
identifier (i.e.,, <S> = u) all alocatorsbasedonal | oc_uti | will beeffected. If B,D,E,H, L, R, S, or T isused
as subsystem identifier, only the specific allocator identified will be effected:

+M<S>as bf | aobf | gf | af
Allocation strategy. Valid strategies are bf (best fit), aobf (address order best fit), gf (good fit), and af (a
fit). See the description of allocation strategiesin "theal | oc_uti | framework" section.

+M<S>asbcst <si ze>
Absolute singleblock carrier shrink threshold (in kilobytes). When ablock located inannmseg_al | oc
singleblock carrier is shrunk, the carrier will be left unchanged if the amount of unused memory isless than this
threshold; otherwise, the carrier will be shrunk. See also rsbest.

+MkS>e true| fal se
Enable allocator <S>.

+M<S>| nbecs <si ze>
Largest (mseg_al | oc) multiblock carrier size (in kilobytes). See the description on how sizes for mseg_alloc
multiblock carriersare decided in "theal | oc_uti | framework" section.

+MkS>nbegs <rati o>
(mseg_al | oc) multiblock carrier growth stages. See the description on how sizes for mseg_alloc multiblock
carriersaredecided in"theal | oc_ut i | framework" section.

+McS>nmbsd <dept h>
Max block search depth. This flag has effect only if the good fit strategy has been selected for allocator <S>.
When the good fit strategy is used, free blocks are placed in segregated free-lists. Each freelist contains blocks
of sizesin a specific range. The max block search depth sets alimit on the maximum number of blocks to
inspect in afreelist during a search for suitable block satisfying the request.

+McS>mbces <si ze>
Main multiblock carrier size. Sets the size of the main multiblock carrier for allocator <S>. The main
multiblock carrier isallocated viasys_al | oc and is never deall ocated.

+McS>mmbce <anount >
Max mseg_al | oc multiblock carriers. Maximum number of multiblock carriers allocated vianseg_al | oc
by allocator <S>. When this limit has been reached, new multiblock carriers will be allocated via
sys_al l oc.

+M<S>msbe <anount >
Max mseg_al | oc singleblock carriers. Maximum number of singleblock carriers allocated via
nmseg_al | oc by allocator <S>. When this limit has been reached, new singleblock carriers will be allocated
viasys_al | oc.

+MS>ranv <bool >
Realloc always moves. When enabled, reallocate operations will more or less be translated into an allocate,
copy, free sequence. This often reduce memory fragmentation, but costs performance.

252 | Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS)

erts_alloc

+MS>rnbent <rati o>
Relative multiblock carrier move threshold (in percent). When a block located in a multiblock carrier is shrunk,
the block will be moved if the ratio of the size of the returned memory compared to the previous sizeis more
than this threshold; otherwise, the block will be shrunk at current location.

+McS>rsbenmt <rati o>
Relative singleblock carrier move threshold (in percent). When a block located in a singleblock carrier is
shrunk to a size smaller than the value of the shct parameter, the block will be left unchanged in the singleblock
carrier if theratio of unused memory is less than this threshold; otherwise, it will be moved into a multiblock
carrier.

+M<S>rsbest <rati o>
Relative singleblock carrier shrink threshold (in percent). When ablock located inannseg_al | oc
singleblock carrier is shrunk, the carrier will be left unchanged if the ratio of unused memory islessthan this
threshold; otherwise, the carrier will be shrunk. See a so asbcst.

+McS>sbct <si ze>
Singleblock carrier threshold. Blocks larger than this threshold will be placed in singleblock carriers. Blocks
smaller than this threshold will be placed in multiblock carriers.

+McS>snbcs <si ze>
Smallest (nseg_al | oc) multiblock carrier size (in kilobytes). See the description on how sizes for
mseg_alloc multiblock carriersare decided in "theal | oc_ut i | framework" section.

+McS>t true| fal se| <anount >
Multiple, thread specific instances of the allocator. This option will only have any effect on the runtime system
with SMP support. Default behaviour on the runtime system with SMP support (N equals the number of
scheduler threads):

tenp_al |l oc

N + 1 instances.

Il _alloc

1 instance.

Other allocators

N instances when Nislessthan or equal to 16. 16 instances when Nis greater than 16.

tenp_al | oc will dwaysuse N + 1 instances when this option has been enabled regardless of the amount
passed. Other allocators will use the same amount of instances as the amount passed aslong asit isn't greater
than N.

Currently the following flags are available for configuration of all oc_util, i.e. al alocators based on
al l oc_util will be effected:

+Muycs <size>
sys_al | oc carrier size. Carriers allocated viasys_al | oc will be allocated in sizes which are multiples
of thesys_al | oc carrier size. Thisis not true for main multiblock carriers and carriers allocated during a
memory shortage, though.

+Mumt <anount >
Max mseg_al | oc carriers. Maximum number of carriers placed in separate memory segments. When this
limit has been reached, new carrierswill be placed in memory retrieved from sys_al | oc.

Instrumentation flags:

+M mtrue|fal se
A map over current allocations is kept by the emulator. The alocation map can be retrieved viathe
i nstrurment module. +M m t rue implies+M s true.+M m true isthesameas-instr.
+M s true|fal se
Status over allocated memory is kept by the emulator. The allocation status can be retrieved viathe
i nstrument module.
+Mt X
Reserved for future use. Do not use this flag.

Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS) | 253

erts_alloc

Note:

When instrumentation of the emulator is enabled, the emulator uses more memory and runs slower.

Other flags:

+Mea min| max| r9c| r10b|r1lb| config
nn
Disables all allocators that can be disabled.
max
Enables all alocators (currently default).
r9c| r10bjr11b
Configures all allocators as they were configured in respective OTP release. These will eventually be removed.
config
Disables features that cannot be enabled while creating an allocator configuration with erts_alloc_config(3).
Note, this option should only be used whilerunningert s_al | oc_conf i g, not when using the created
configuration.

Only some default valueshave been presented here. erlang: system info(allocator), and erlang: system _info({allocator,
Alloc}) can be used in order to obtain currently used settings and current status of the allocators.

Note:

Most of these flags are highly implementation dependent, and they may be changed or removed without prior
notice.

erts_al | oc isnot obliged to strictly use the settings that have been passed to it (it may even ignore them).

erts alloc_config(3) is atool that can be used to aid creation of anert s_al | oc configuration that is suitable for
alimited number of runtime scenarios.

SEE ALSO
erts alloc_config(3), erl(1), instrument(3), erlang(3)

254 | Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS)

erl_nif

erl_nif
C Library

Note:

The NIF concept is officially supported from R14B. NIF source code written for earlier experimental versions
might need adaption to run on R14B.

No incompatible changes between R14B and R14A.
Incompatible changes between R14A and R13B04:

e Environment argument removed for enif_alloc, enif realloc, enif free,
eni f _all oc_binary, eni f _realloc_binary, eni f _rel ease_hinary,
eni f _all oc_resource, eni f _rel ease_resource, enif _is_identical and
eni f _conpare.

e Character encoding argument addedtoeni f _get _at omandeni f _make_exi sti ng_at om

 Moduleargument addedtoeni f _open_r esour ce_t ype whilechanging name spaces of resourcetypes
from global to module local.

Incompatible changes between R13B04 and R13B03:

» Thefunction prototypes of the NIFs have changed to expect ar gc and ar gv arguments. The arity of aNIF
is by that no longer limited to 3.

e enif_get datarenamedasenif priv_data.

« enif_make_string got athird argument for character encoding.

A NIF library contains native implementation of some functions of an Erlang module. The native implemented
functions (NIFs) are called like any other functions without any difference to the caller. Each NIF must also
have an implementation in Erlang that will be invoked if the function is called before the NIF library has been
successfully loaded. A typical such stub implementation isto throw an exception. But it can also be used as afallback
implementation if the NIF library is not implemented for some architecture.

A minimal example of aNIF library can look like this:

/* niftest.c */
#i nclude "erl _nif.h"

static ERL_NIF_TERM hel | o(Er|I Ni f Env* env, int argc, const ERL_NF_TERM argv[])
{

}

static ErINifFunc nif_funcs[] =

return enif_make_string(env, "Hello world!", ERL_N F_LATINL);

{"hello", 0, hello}
iE
ERL_NIF_I NI T(ni ftest, ni f_funcs, NULL, NULL, NULL, NULL)

and the Erlang module would have to look something like this:

Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS) | 255

erl_nif

-modul e(ni ftest)
-export([init/0, hello/0])

init() ->
erlang:load_nif("./niftest", 0).

hello() ->
“"NIF library not | oaded"

and compile and test something like this (on Linux):

$> gcc -fPIC -shared -0 niftest.so niftest.c -1 $ERL_ROOT/ usr/i ncl ude/
$> erl

1> c(niftest).

{ok, niftest}

2> niftest:hello().

"NIF library not | oaded"
3> niftest:init().

ok
4> niftest:hello().
"Hell o world!"

A better solution for areal module is to take advantage of the new directive on_load to automatically load the NIF
library when the module is loaded.

Note:

A NIF does not have to be exported, it can be local to the module. Note however that unused local stub functions
will be optimized away by the compiler causing loading of the NIF library to fail.

A loaded NIF library istied to the Erlang module code version that loaded it. If the module is upgraded with a new
version, the new Erlang code will have to load its own NIF library (or maybe choose not to). The new code version
can however choose to load the exact same NIF library asthe old codeif it wantsto. Sharing the same dynamic library
will mean that static data defined by the library will be shared as well. To avoid unintentionally shared static data,
each Erlang module code can keep its own private data. This private data can be set when the NIF library is loaded
and then retrieved by calling enif_priv_data.

There is no way to explicitly unload a NIF library. A library will be automatically unloaded when the module code
that it belongs to is purged by the code server. A NIF library will also be unloaded if it is replaced by another version
of thelibrary by asecond call toer | ang: | oad_ni f/ 2 from the same module code.

FUNCTIONALITY

All functions that a NIF library needs to do with Erlang are performed through the NIF API functions. There are
functions for the following functionality:

Read and write Erlang terms

Any Erlang terms can be passed to a NIF as function arguments and be returned as function return values.
The terms are of C-type ERL_NIF_TERM and can only be read or written using API functions. Most functions
to read the content of a term are prefixed eni f _get _ and usualy return true (or false) if the term was

256 | Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS)

erl_nif

of the expected type (or not). The functions to write terms are al prefixed eni f_nake_ and usualy
return the created ERL_NI F_TERM There are also some functions to query terms, like eni f _i s_atom
enif _is identical andenif_conpare.

All terms of type ERL_NI F_TERM belong to an environment of type ErINifEnv. The lifetime of a term is
controlled by thelifetime of itsenvironment object. All API functionsthat read or writeterms hasthe environment,
that the term belongs to, as the first function argument.

Binaries
Terms of type binary are accessed with the help of the struct type ErINifBinary that contains a pointer (dat a) to
the raw binary data and the length (si ze) of the datain bytes. Both dat a and si ze are read-only and should

only bewritten using callsto API functions. Instances of Er | Ni f Bi nar y are however always allocated by the
user (usualy aslocal variables).

The raw data pointed to by dat a is only mutable after a call to enif_alloc_binary or enif_realloc_binary. All
other functionsthat operates on abinary will leave the data as read-only. A mutable binary must in the end either
be freed with enif_release_binary or made read-only by transferring it to an Erlang term with enif _make_binary.
But it does not have to happen in the same NIF call. Read-only binaries do not have to be released.

enif_make _new_binary can be used as a shortcut to allocate and return a binary in the same NIF call.
Binaries are sequences of whole bytes. Bitstrings with an arbitrary bit length have no support yet.
Resource objects

The use of resource objects is a way to return pointers to native data structures from a NIF in a safe way.
A resource object is just a block of memory allocated with enif alloc_resource. A handle ("safe pointer") to
this memory block can then be returned to Erlang by the use of enif _make resource. The term returned by
eni f _make_r esour ce istotally opaquein nature. It can be stored and passed between processes on the same
node, but the only real end usageisto passit back asan argument toaNIF. The NIF canthen call enif_get_resource
and get back a pointer to the memory block that is guaranteed to still be valid. A resource object will not be
deallocated until the last handle term has been garbage collected by the VM and the resource has been released
with enif_release resource (not necessarily in that order).

All resource objects are created asinstances of some resour ce type. This makes resources from different modules
to be distinguishable. A resource type is created by calling enif_open_resource_type when a library is loaded.
Objects of that resource type can then later be alocated and eni f _get _r esour ce verifies that the resource
is of the expected type. A resource type can have a user supplied destructor function that is automatically called
when resources of that type are released (by either the garbage collector or eni f _r el ease_resour ce).
Resource types are uniquely identified by a supplied name string and the name of the implementing module.

Here is atemplate example of how to create and return a resource object.

ERL_NI F_TERM term
MyStruct* ptr = enif_alloc_resource(ny_resource_type, sizeof(MStruct));

/* initialize struct ... */
term = enif_make_resource(env, ptr);

if (keep_a_reference_of _our_own) {
/* store 'ptr' in static variable, private data or other resource object */
}

el se {
eni f _rel ease_resource(obj);
/* resource now only owned by "Erlang" */

}

return term

Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS) | 257

erl_nif

Notethat onceeni f _make_r esour ce createstheterm to return to Erlang, the code can choose to either keep
its own native pointer to the allocated struct and release it later, or release it immediately and rely solely on the
garbage collector to eventually deallocate the resource object when it collects the term.

Another usage of resource objects is to create binary terms with user defined memory management.
enif_make resource_binary will create abinary term that is connected to a resource object. The destructor of the
resource will be called when the binary is garbage collected, at which time the binary data can be released. An
example of this can be abinary term consisting of datafrom anmap'ed file. The destructor can then do munmap
to release the memory region.

Resource types support upgrade in runtime by allowing a loaded NIF library to takeover an already existing
resourcetypeand thereby "inherit" all existing objectsof that type. The destructor of the new library will thereafter
be called for theinherited objects and the library with the old destructor function can be safely unloaded. Existing
resource objects, of amodule that is upgraded, must either be deleted or taken over by the new NIF library. The
unloading of alibrary will be postponed as long as there exist resource objects with a destructor function in the
library.

Threads and concurrency

A NIF isthread-safe without any explicit synchronization aslong asit acts as a pure function and only reads the
supplied arguments. As soon as you write towards a shared state either through static variables or enif _priv_data
you need to supply your own explicit synchronization. Thisincludes termsin process independent environments
that are shared between threads. Resource objects will also require synchronization if you treat them as mutable.

Thelibrary initiaization callbacks| oad, r el oad and upgr ade are al thread-safe even for shared state data.

Avoid doing lengthy work in NIF calls asthat may degrade the responsiveness of theVM. NIFsarecalled directly
by the same scheduler thread that executed the calling Erlang code. The calling scheduler will thus be blocked
from doing any other work until the NIF returns.

INITIALIZATION
ERL_NIF_INIT(MODULE, ErINifFunc funcg[], load, reload, upgrade, unload)
Thisisthe magic macro to initialize a NIF library. It should be evaluated in global file scope.

MODULE is the name of the Erlang module as an identifier without string quotations. It will be stringified by
the macro.

f uncs isastatic array of function descriptors for all theimplemented NIFsin thislibrary.

| oad, r el oad,upgr ade and unl oad are pointersto functions. One of | oad, r el oad or upgr ade will be
called toinitializethe library. unl oad iscalled to release the library. They are al described individually below.

int (*load)(ErINifEnv* env, void** priv_data, ERL_NIF_TERM load_info)
| oad iscaled when the NIF library isloaded and there is no previously loaded library for this module.

*priv_dat a can be set to point to some private data that the library needs in order to keep a state between
NIF cals. eni f _priv_dat a will return this pointer. * pri v_dat a will beinitialized to NULL when | oad
iscalled.

| oad_i nf o isthe second argument to erlang:load_nif/2.

The library will fail to load if | oad returns anything other than 0. | oad can be NULL in case no initialization
is needed.

258 | Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS)

erl_nif

int (*reload)(ErINifEnv* env, void** priv_data, ERL_NIF_TERM load_info)

r el oad iscalled when the NIF library isloaded and there is already a previously loaded library for this module
code.

Worksthesameas| oad. Theonly differenceisthat* pri v_dat a already containsthe value set by the previous
call tol oad orr el oad.

The library will fail toload if r el oad returns anything other than O or if r el oad isNULL.
int (*upgrade)(ErINifEnv* env, void** priv_data, void** old_priv_data, ERL_NIF_TERM load_info)

upgr ade iscaled when the NIF library isloaded and there is no previously loaded library for this module code,
BUT thereisold code of this module with aloaded NIF library.

Worksthe same as| oad. Theonly differenceisthat * ol d_pri v_dat a already contains the value set by the
last call tol oad orr el oad fortheold modulecode. * pri v_dat a will beinitializedto NULL whenupgr ade
iscalled. Itisalowed to write to both *priv_dataand *old_priv_data.

Thelibrary will fail to load if upgr ade returns anything other than O or if upgr ade isNULL.
void (* unload)(ErINifEnv* env, void* priv_data)

unl oad is called when the module code that the NIF library belongs to is purged as old. New code of the same
module may or may not exist. Notethat unl oad isnot called for areplaced library asaconsequence of r el oad.

DATA TYPES
ERL_NIF_TERM

Variablesof type ERL_NI F_TERMcan refer to any Erlang term. Thisis an opaque type and values of it can only
by used either as argumentsto API functions or asreturn valuesfrom NIFs. All ERL_NI F_ TERMs belong to an
environment (ErINifEnv). A term can not be destructed individually, it isvalid until its environment is destructed.

ErINifEnv

Er | Ni f Env represents an environment that can host Erlang terms. All terms in an environment are valid as
long as the environment isvalid. Er I Ni f Env isan opague type and pointers to it can only be passed on to API
functions. There are two types of environments; process bound and process independent.

A process bound environment is passed as the first argument to all NIFs. All function arguments passed to a
NIF will belong to that environment. The return value from a NIF must also be a term belonging to the same
environment. In addition a process bound environment contains transient information about the calling Erlang
process. The environment is only valid in the thread where it was supplied as argument until the NIF returns. It
is thus useless and dangerous to store pointers to process bound environments between NIF calls.

A process independent environment is created by calling enif_alloc_env. It can be used to store terms between
NIF calls and to send terms with enif_send. A process independent environment with all its termsis valid until
you explicitly invalidates it with enif free envoreni f _send.

All elements of a list/tuple must belong to the same environment as the list/tuple itself. Terms can be copied
between environments with enif_make_copy.

ErINifFunc

typedef struct {

const char* ;

unsi gned ;

ERL_NIF_TERM (*) (Erl Ni f Env* env, int argc, const ERL_NF_TERM argv[]);
} Erl N fFunc;

Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS) | 259

erl_nif

Describes a NIF by its name, arity and implementation. f pt r is a pointer to the function that implements the
NIF. Theargument ar gv of aNIF will contain the function arguments passed to the NIF and ar gc isthelength
of the array, i.e. the function arity. ar gv[N- 1] will thus denote the Nth argument to the NIF. Note that the
ar gc argument allows for the same C function to implement several Erlang functions with different arity (but
same name probably).

ErINifBinary

typedef struct {
unsi gned ;
unsi gned char* ;
} ErINfBinary;

Er | Ni f Bi nary contains transient information about an inspected binary term. dat a is a pointer to a buffer
of si ze byteswith the raw content of the binary.

Notethat Er | Ni f Bi nar y isasemi-opague type and you are only allowed to read fields si ze and dat a.
ErINifPid

Er | Ni f Pi disaprocessidentifier (pid). Incontrast to pidterms(instancesof ERL_NI F_TERM), Er | Ni f Pi d's
are self contained and not bound to any environment. Er | Ni f Pi d is an opague type.

ErINifResourceType

Each instance of Er | Ni f Resour ceType represent a class of memory managed resource objects that can be
garbage collected. Each resource type has a unique name and a destructor function that is called when objects
of itstype are released.

ErINifResourceDtor

typedef void Erl N f ResourceDtor(Erl Ni f Env* env, void* obj);

The function prototype of aresource destructor function. A destructor function is not allowed to call any term-
making functions.

ErINifCharEncoding

t ypedef enum {
ERL_NI F_LATI N1
}Erl Ni f Char Encodi ng;

The character encoding used in strings and atoms. The only supported encoding iscurrently ERL_NI F_LATI N1
for iso-latin-1 (8-bit ascii).

ErINifSysinfo

Used by enif_system info to return information about the runtime system. Contains currently the exact same
content as ErlDrvSysinfo.

ErINifSInt64
A native signed 64-bit integer type.

260 | Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS)

erl_nif

ErINifUInt64
A native unsigned 64-bit integer type.

Exports

voi d* enif_alloc(size_t size)
Allocate memory of si ze bytes. Return NULL if allocation failed.

int enif_alloc_binary(size_ t size, ErlN fBinary* bin)

Allocate a new binary of size si ze bytes. Initialize the structure pointed to by bi n to refer to the allocated
binary. The binary must either be released by enif release binary or ownership transferred to an Erlang term with
enif_make binary. An allocated (and owned) Er | Ni f Bi nary can be kept between NIF calls.

Return true on success or false if allocation failed.

Erl Ni f Env* enif_alloc_env()

Allocate a new process independent environment. The environment can be used to hold terms that is not bound to
any process. Such terms can later be copied to a process environment with enif_make _copy or be sent to a process
as amessage with enif_send.

Return pointer to the new environment.

voi d* enif_alloc_resource(Erl N fResourceType* type, unsigned size)
Allocate a memory managed resource object of typet ype and size si ze bytes.

void enif_clear_env(Erl N f Env* env)
Freeall termsin an environment and clear it for reuse. The environment must have been allocated with enif_alloc_env.

int enif_conpare(ERL_NF TERM | hs, ERL_NI F_TERM r hs)

Return an integer lessthan, equal to, or greater than zero if | hs isfound, respectively, to belessthan, equal, or greater
thanr hs. Corresponds to the Erlang operators ==, / =, =<, <, >=and > (but not =: = or =/ =).

void enif_cond_broadcast (Erl Ni f Cond *cnd)
Sameaserl_drv_cond_broadcast.

Erl Ni f Cond* enif_cond_create(char *nane)
Sameaserl_drv_cond create.

void enif_cond_destroy(Erl Ni f Cond *cnd)
Sameaserl_drv_cond_destroy.

void enif_cond_signal (Erl Ni f Cond *cnd)
Same aserl_drv_cond_signal.

Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS) | 261

erl_nif

void enif_cond_wait(Erl N fCond *cnd, Erl N fMitex *mx)
Sameaserl_drv_cond wait.

int enif_equal _tids(ErINifTid tidl, ErINfTid tid2)
Sameaserl_drv_equal_tids.

void enif _free(void* ptr)
Free memory alocated by eni f _al | oc.

void enif_free_env(Erl N f Env* env)

Free an environment allocated with enif_alloc_env. All terms created in the environment will be freed as well.

int enif_get_aton(Erl N fEnv* env, ERL_NIF_TERM term char* buf, unsigned
size, Erl N fCharEncodi ng encode)

Write a null-terminated string, in the buffer pointed to by buf of size si ze, consisting of the string representation
of the atom t er mwith encoding encode. Return the number of bytes written (including terminating null character)
or 0if t er misnot an atom with maximum length of si ze- 1.

int enif _get _atomlength(Erl N fEnv* env, ERL_NF TERM term unsigned* |en,
Er | Ni f Char Encodi ng encode)

Set *| en to the length (number of bytes excluding terminating null character) of the atom t er mwith encoding
encode. Return true on success or falseif t er mis not an atom.

int enif_get_doubl e(Erl Ni f Env* env, ERL_NF_TERMterm doubl e* dp)
Set * dp to the floating point value of t er m Return true on success or false if t er mis not afloat.

int enif_get_int(ErlNifEnv* env, ERL_NF_TERMterm int* ip)

Set *i p totheinteger value of t er m Return true on success or falseif t er misnot aninteger or is outside the bounds
of typei nt .

int enif_get int64(ErlINifEnv* env, ERL_ NNF TERMterm Erl N fSlnt64* ip)
Set*i p totheinteger value of t er m Return true on success or falseif t er misnot an integer or is outside the bounds

of asigned 64-hit integer.
int enif_get _local _pid(Erl N fEnv* env, ERL_ NNF_TERMterm Erl N fPid* pid)

If t er misthe pid of anode local process, initialize the pid variable * pi d from it and return true. Otherwise return
false. No check if the processis aiveis done.

int enif_get_list_cell (ErlN fEnv* env, ERL_NIF_TERM Iist, ERL_N F_TERM head,
ERL_NIF_TERM tail)

Set*head and*tai | from| i st and returntrue, or return falseif I i st isnot anon-empty list.

int enif _get list Iength(ErlNifEnv* env, ERL_NF TERM term unsigned* |en)
Set *| en tothe length of list t er mand return true, or return false if t er misnot alist.

262 | Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS)

erl_nif

int enif_get long(Erl NifEnv* env, ERL_NIF_TERMterm long int* ip)

Set *i p to the long integer value of t er mand return true, or return false if t er mis not an integer or is outside the
bounds of typel ong i nt.

int enif_get_resource(ErlI N fEnv* env, ERL_NIF_TERM term Erl N fResourceType*
type, void** objp)

Set * obj p to point to the resource object referredto by t er m
Return true on success or falseif t er misnot a handle to aresource object of typet ype.

int enif _get string(ErlIN fEnv* env, ERL_ NNF TERM I|ist, char* buf, unsigned
size, Erl N fCharEncodi ng encode)

Write anull-terminated string, in the buffer pointed to by buf withsizesi ze, consisting of the charactersin the string
| i st . The characters are written using encoding encode. Return the number of bytes written (including terminating
null character), or - si ze if the string was truncated due to buffer space, or 0 if | i st is not a string that can be
encoded with encode or if si ze wasless than 1. The written string is always null-terminated unless buffer si ze
islessthan 1.

int enif_get tuple(Erl NifEnv* env, ERL_NIF_TERMterm int* arity, const
ERL_NI F_TERMF* array)

Ift er misatuple, set* ar r ay to point to an array containing the elements of thetupleand set * ar i t y to the number
of elements. Note that the array isread-only and (*ar ray) [N- 1] will be the Nth element of the tuple. * ar r ay
isundefined if the arity of the tupleis zero.

Return true on success or falseif t er misnot atuple.

int enif_get _uint(Erl N fEnv* env, ERL_NIF_TERMterm unsigned int* ip)

Set *i p to the unsigned integer value of t er mand return true, or return false if t er mis not an unsigned integer or
is outside the bounds of type unsi gned i nt.

int enif_get_uint64(ErlI NifEnv* env, ERL_NIF_TERM term Erl N fU nt64* ip)

Set *i p to the unsigned integer value of t er mand return true, or return false if t er mis not an unsigned integer or
is outside the bounds of an unsigned 64-hit integer.

int enif_get ulong(Erl NifEnv* env, ERL_NIF TERM term unsigned |ong* ip)

Set *i p to the unsigned long integer value of t er mand return true, or return falseif t er misnot an unsigned integer
or is outside the bounds of typeunsi gned | ong.

int enif_inspect_binary(Erl N fEnv* env, ERL_NIF_TERM bin_term Erl N fBinary*

bi n)

Initialize the structure pointed to by bi n with information about the binary term bi n_t er m Return true on success
or falseif bi n_t er misnot abinary.

Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS) | 263

erl_nif

int enif_inspect_iolist_as_binary(Erl N fEnv* env, ERL_NIF_TERM term
Er |l Ni f Bi nary* bin)

Initialize the structure pointed to by bi n with one continuous buffer with the same byte content asi ol i st . Aswith
inspect_binary, the data pointed to by bi n is transient and does not need to be released. Return true on success or
faseifi ol i st isnotaniolist.

int enif_is_aton(Erl N fEnv* env, ERL_NIF_TERM term
Return trueif t er misan atom.

int enif _is binary(Erl NifEnv* env, ERL_ NNF TERM term
Return trueif t er misabinary

int enif_is enpty list(ErlNfEnv* env, ERL_NF_TERMtermn
Return trueif t er misan empty list.

int enif_is_fun(Erl N fEnv* env, ERL_NIF_TERM term
Return trueif t er misafun.

int enif is identical (ERL_NIF_TERM I hs, ERL_N F_TERM r hs)
Return true if the two terms are identical. Corresponds to the Erlang operators =: = and =/ =.

int enif _is pid(Erl N fEnv* env, ERL_NIF_TERM term
Return trueif t er misapid.

int enif_is_port(ErlNfEnv* env, ERL_NF_TERM term
Return trueif t er misaport.

int enif _is ref(ErINfEnv* env, ERL_NIF_TERM term
Return trueif t er misareference.

int enif_is tuple(Erl N fEnv* env, ERL_NIF_TERM term
Return trueif t er misatuple.

int enif_is_list(ErlNifEnv* env, ERL_NIF_TERM term
Return trueif t er misalist.

int enif_keep_resource(voi d* obj)

Add a reference to resource object obj obtained from enif_alloc_resource. Each call to eni f _keep_r esour ce
for an object must be balanced by acall to enif release resource before the object will be destructed.

ERL_N F_TERM eni f _make_at on(Er| Ni f Env* env, const char* nane)
Create an atom term from the null-terminated C-string nanme with iso-latin-1 encoding.

264 | Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS)

erl_nif

ERL_N F TERM eni f _nake_atom | en(Erl Ni f Env* env, const char* nane, size_t |en)

Create an atom term from the string nane with length | en. Null-characters are treated as any other characters.

ERL_NI F_TERM eni f _make_badar g(Erl Ni f Env* env)
Make a badarg exception to be returned from aNIF.

ERL_ NI F_TERM eni f _nmake_bi nary(Erl Ni f Env* env, Erl N fBi nary* bin)

Make a binary term from bi n. Any ownership of the binary data will be transferred to the created term and bi n
should be considered read-only for the rest of the NIF call and then as released.

ERL_N F_TERM eni f _nake_copy(Erl Ni f Env* dst_env, ERL_NIF_TERM src_term

Makeacopy of termsr ¢c_t er m The copy will becreatedin environment dst _env. The sourceterm may belocated
in any environment.

ERL_NI F_TERM eni f _make_doubl e(Er|I Ni f Env* env, doubl e d)
Create afloating-point term fromadoubl e.

int enif_make existing aton(Erl N f Env* env, const char* nane, ERL_N F_TERW
atom Erl N f Char Encodi ng encode)

Try to create the term of an already existing atom from the null-terminated C-string nane with encoding encode. If
the atom already exists store the termin * at omand return true, otherwise return false.

int enif_make_existing _atomlen(Erl N fEnv* env, const char* nane, size_t |en,
ERL_N F_TERM atom Erl Ni f Char Encodi ng encodi ng)

Try to create the term of an already existing atom from the string nanme with length | en and encoding encode. Null-
characters are treated as any other characters. If the atom already exists store the term in * at omand return true,
otherwise return false.

ERL_NIF_TERM eni f _make_int (ErlI Ni f Env* env, int i)
Create an integer term.

ERL NNF TERM eni f_nmake_int64(Erl Ni f Env* env, ErINfSInt64 i)
Create an integer term from a signed 64-bit integer.

ERL_NIF TERM eni f _make_list(Erl N fEnv* env, unsigned cnt, ...)

Create an ordinary list term of length cnt . Expects cnt number of arguments (after cnt) of type ERL_NIF_TERM
asthe elements of thelist. An empty listisreturned if cnt isO.

Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS) | 265

erl_nif

ERL_NIF TERM eni f _make_list1(Erl Ni f Env* env, ERL_N F_TERM el)

ERL_N F_TERM eni f _make |ist2(Erl Ni fEnv* env, ERL_NIF_TERM el, ERL_N F_TERM
e2)

ERL_NIF_TERM eni f _make_|ist3(Erl N fEnv* env, ERL_NIF_TERM el, ERL_NI F_TERM
e2, ERL_NIF_TERM e3)

ERL NNF TERM eni f _nmake |ist4(Erl N fEnv* env, ERL_ NNF_TERM el, ...,
ERL_NI F_TERM e4)

ERL_NIF TERM eni f _make_l|ist5(Erl Ni f Env* env, ERL_NIF_TERM el, ...,
ERL_NI F_TERM e5)

ERL NNF TERM eni f _nake |ist6(Erl N fEnv* env, ERL_ NIF_TERM el, ...,
ERL_NI F_TERM €6)

ERL_ NNF TERM eni f _make_list7(Erl Ni f Env* env, ERL_NIF_TERM el, ...,
ERL_NI F_TERM e7)

ERL NNF TERM eni f _nmake |ist8(Erl N fEnv* env, ERL_ NIF_TERM el, ...,
ERL_NI F_TERM €8)

ERL_NNF TERM eni f _nmake_|ist9(Erl Ni f Env* env, ERL_NIF_TERM el, ...,
ERL_NI F_TERM €9)

Create an ordinary list term with length indicated by the function name. Prefer these functions (macros) over the
variadiceni f _make_|i st to get acompiletime error if the number of arguments does not match.

ERL_NIF_TERM eni f _rmake_list_cell (Erl Ni fEnv* env, ERL_N F_TERM head,
ERL_NIF_TERM tail)

Createalistcell [head | tail].

ERL NNF TERM eni f _nmake list _fromarray(Erl N fEnv* env, const ERL_N F_TERM
arr[], unsigned cnt)

Create an ordinary list containing the elements of array ar r of length cnt . An empty listisreturnedif cnt isO.

ERL_NI F_TERM eni f _make_l| ong(Erl Ni f Env* env, long int i)
Create an integer term fromal ong i nt.

unsi gned char* enif_nake_new _bi nary(Erl Ni f Env* env, size_t size,
ERL_NI F_TERMW ternp)

Allocate a binary of size si ze bytes and create an owning term. The binary data is mutable until the calling NIF
returns. Thisis a quick way to create a new binary without having to use ErINifBinary. The drawbacks are that the
binary can not be kept between NIF calls and it can not be reallocated.

Return a pointer to the raw binary dataand set *t er np to the binary term.

266 | Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS)

erl_nif

ERL_N F_TERM eni f _nmake_pi d(Erl Ni f Env* env, const Erl N fPid* pid)
Make a pid term from * pi d.

ERL_NI F_TERM eni f _make_ref (Erl N f Env* env)
Create areference like erlang: make_ref/0.

ERL_ NI F TERM eni f _nmake_resource(Erl N f Env* env, void* obj)

Create an opaque handle to a memory managed resource object obtained by enif alloc_resource. No ownership
transfer is done, as the resource object still needs to be released by enif _release resource, but note that the call to
eni f _rel ease_resour ce can occur immediately after obtaining the term from eni f _make_r esour ce, in
which case the resource object will be deallocated when the term is garbage collected. See the example of creating
and returning a resour ce object for more details.

Note that the only defined behaviour of using a resource term in an Erlang program is to store it and send it between
processes on the same node. Other operations such as matching or t er m t o_bi nar y will have unpredictable (but
harmless) results.

ERL_NI F_TERM eni f _nake_resource_bi nary(Erl Ni f Env* env, void* obj, const void*
data, size_t size)

Create abinary term that is memory managed by aresource object obj obtained by enif _alloc_resource. The returned
binary term will consist of si ze bytespointed to by dat a. Thisraw binary datamust be kept readable and unchanged
until the destructor of the resource is called. The binary data may be stored external to the resource object in which
caseit isthe responsibility of the destructor to release the data.

Severa binary terms may be managed by the same resource object. The destructor will not be called until the last
binary is garbage collected. This can be useful as away to return different parts of alarger binary buffer.

As with enif_make resource, no ownership transfer is done. The resource still needs to be released with
enif_release resource.

ERL_NI F_TERM eni f _nmake_string(Erl Ni f Env* env, const char* string,
Er | Ni f Char Encodi ng encodi ng)

Create alist containing the characters of the null-terminated string st r i ng with encoding encoding.

ERL_NIF TERM eni f _make_string_l en(Erl Ni f Env* env, const char* string, size_t
Il en, ErlNifChar Encodi ng encodi ng)

Create alist containing the characters of the string st r i ng with length | en and encoding encoding. Null-characters
are treated as any other characters.

ERL_ NI F TERM eni f _nmake_sub_binary(ErlI Ni f Env* env, ERL NIF_TERM bin_term
size_ t pos, size_t size)

Make asubbinary of binary bi n_t er m starting at zero-based position pos with alength of si ze bytes. bi n_t erm
must be a binary or bitstring and pos+si ze must be less or equal to the number of whole bytesinbi n_t erm

ERL_NI F_TERM eni f _nmake_tupl e(Erl Ni f Env* env, unsigned cnt, ...)

Create atuple term of arity cnt . Expects cnt number of arguments (after cnt) of type ERL_NIF_TERM as the
elements of the tuple.

Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS) | 267

erl_nif

ERL_N F_TERM eni f _make_tupl el(Erl Ni fEnv* env, ERL_N F_TERM el)

ERL_ NI F TERM eni f _nake_tupl e2(Erl NifEnv* env, ERL_NIF TERM el, ERL N F_TERM
e2)

ERL_NI F_TERM eni f _nmake_tupl e3(Erl Ni f Env* env, ERL_NIF_TERM el, ERL_NI F_TERM
e2, ERL_NIF_TERM e3)

ERL_ NIF TERM eni f _nmake_tupl e4(Erl NifEnv* env, ERL_NIF_TERM el, ...,
ERL_NI F_TERM e4)

ERL_N F_TERM eni f _make_tupl e5(ErlI Ni fEnv* env, ERL_NIF_TERM el, ...,
ERL_NI F_TERM e5)

ERL_ NIF TERM eni f _nmake_tupl e6(Erl Ni fEnv* env, ERL_NIF_TERM el, ...,
ERL_NI F_TERM €6)

ERL_N F_TERM eni f _make_tupl e7(Erl Ni fEnv* env, ERL_NIF_TERM el, ...,
ERL_NI F_TERM e7)

ERL_ NIF TERM eni f _nmake_tupl e8(Erl Ni fEnv* env, ERL_NIF_TERM el, ...,
ERL_NI F_TERM €8)

ERL_N F_TERM eni f _make_tupl e9(ErlI Ni f Env* env, ERL_NIF_TERM el, ...,
ERL_NI F_TERM €9)

Create a tuple term with length indicated by the function name. Prefer these functions (macros) over the variadic
eni f _make_t upl e to get acompiletime error if the number of arguments does not match.

ERL_NIF_TERM eni f _make_tuple_fromarray(Erl Ni f Env* env, const ERL_N F_TERM
arr[], unsigned cnt)

Create atuple containing the elements of array ar r of lengthcnt .

ERL_NIF TERM eni f _make_ui nt (Erl Ni f Env* env, unsigned int i)
Create an integer term from anunsi gned i nt .

ERL_N F_TERM eni f _make_ui nt 64(ErI Ni f Env* env, ErINifu nt64 i)
Create an integer term from an unsigned 64-bit integer.

ERL_NI F_TERM eni f _make_ul ong(Erl Ni f Env* env, unsigned long i)
Create an integer term fromanunsi gned | ong i nt.

Erl Ni f Mutex* enif_nutex_create(char *nane)
Sameaserl_drv_mutex_create.

void enif_rnutex_destroy(Erl Ni f Mutex *ntx)
Sameaserl_drv_mutex_destroy.

268 | Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS)

erl_nif

void enif_rmutex | ock(Erl Ni f Mutex *m x)
Sameaserl_drv_mutex_lock.

int enif_mutex_trylock(Erl N fMitex *ntx)
Same aserl_drv_mutex_trylock.

void enif_nutex_unl ock(Erl Ni f Mutex *ntx)
Sameaserl_drv_mutex_unlock.

Erl Ni f Resour ceType* enif_open_resource_type(Erl Ni f Env* env, const char*
nmodul e_str, const char* name, Erl N fResourceDtor* dtor, Erl N fResourceFl ags
flags, Erl N fResourceFl ags* tried)

Create or takeover aresource type identified by the string nane and give it the destructor function pointed to by dtor.
Argument f | ags can have the following values:

ERL_NI F_RT_CREATE
Create a new resource type that does not already exist.

ERL_NI F_RT_TAKEOVER
Open an existing resource type and take over ownership of all itsinstances. The supplied destructor dt or will
be called both for existing instances as well as new instances not yet created by the calling NIF library.

The two flag values can be combined with bitwise-or. The name of the resource type is local to the calling module.
Argument modul e_st r isnot (yet) used and must beNULL. Thedt or may beNULL in caseno destructor isneeded.

On success, return a pointer to the resource type and *t ri ed will be set to either ERL_NI F_RT_CREATE or
ERL_NI F_RT_TAKEOVERto indicate what was actually done. On failure, return NULL andset*tri ed tof | ags.
Itisalowedtosettri ed to NULL.

Note that eni f _open_r esource_t ype is only alowed to be called in the three callbacks load, reload and
upgrade.

void* enif_priv_data(Erl N fEnv* env)
Return the pointer to the private data that was set by | oad, r el oad or upgr ade.
Was previously named eni f _get _dat a.

int enif_realloc_binary(Erl N fBinary* bin, size_t size)

Change the size of a binary bi n. The source binary may be read-only, in which case it will be left untouched and a
mutable copy is allocated and assigned to * bi n. Return true on success, false if memory allocation failed.

voi d enif_rel ease_bi nary(Erl N fBi nary* bin)
Release a binary obtained fromeni f _al | oc_bi nary.

void enif_rel ease_resource(voi d* obj)

Remove areference to resource object obj obtained from enif_alloc_resource. The resource object will be destructed
when the last reference is removed. Each call to eni f _r el ease_r esour ce must correspond to a previous call
toeni f _al | oc_r esour ce orenif_keep resource. References made by enif_make resource can only be removed
by the garbage collector.

Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS) | 269

erl_nif

Erl Ni f RlLock* enif_rw ock_create(char *nane)

Sameaserl_drv_rwlock create.

void enif_rw ock_destroy(Erl N f RMLock *rw ck)
Sameaserl_drv_rwlock destroy.

void enif_rwl ock_rlock(Erl N fRALock *rw ck)
Sameaserl_drv_rwlock rlock.

void enif_rw ock_runl ock(Erl N f RALock *rwl ck)
Sameaserl_drv_rwlock runlock.

void enif_rw ock_rw ock(Erl Nl f RMLock *rw ck)
Sameaserl_drv_rwlock rwlock.

void enif_rw ock_rwunl ock(Erl Ni f RMLock *rw ck)
Sameaserl_drv_rwlock rwunlock.

int enif_rw ock_tryrlock(Erl N fRMock *rw ck)
Sameaserl_drv_rwlock tryrlock.

int enif_rw ock_tryrw ock(Erl N f RMLock *rw ck)
Sameaserl_drv_rwlock_tryrwlock.

ErINifPid* enif_self(ErlI N fEnv* caller_env, ErlNfPid* pid)
Initialize the pid variable * pi d to represent the calling process. Return pi d.

int enif_send(Erl N fEnv* env, ErINifPid* to_pid, ErlN fEnv* nsg_env,
ERL_N F_TERM nsg)

Send a message to a process.

env
The environment of the calling process. Must be NULL if and only if calling from a created thread.
*to pid
The pid of the receiving process. The pid should refer to a process on the local node.
nsg_env
The environment of the message term. Must be a process independent environment allocated with
enif_alloc_env.
Mg
The message term to send.

Return true on success, or falseif *t o_pi d does not refer to an alive local process.

The message environment msg_env with all its terms (including msg) will be invalidated by a successful call to
eni f _send. The environment should either be freed with enif free env of cleared for reuse with enif _clear_env.

This function is only thread-safe when the emulator with SMP support is used. It can only be used in a non-SMP
emulator from a NIF-calling thread.

270 | Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS)

erl_nif

unsi gned eni f_si zeof _resource(voi d* obj)

Get the byte size of aresource object obj obtained by enif_alloc_resource.

void enif_systeminfo(Erl N fSysinfo *sys info _ptr, size t size)
Same as driver_system info.

int enif thread create(char *nane, ErINfTid *tid,void * (*func)(void *),void
*args, Erl Ni f ThreadOpts *opts)

Sameaserl_drv_thread_create.

void enif_thread_exit(void *resp)

Sameaserl_drv_thread exit.

int enif_thread_join(ErlINifTid, void **respp)
Sameaserl_drv_thread_join.

Erl Ni f ThreadOpts* enif_thread opts_create(char *nane)
Sameaserl_drv_thread opts create.

void enif_thread_opts_destroy(Erl Ni f ThreadOpts *opts)
Sameaserl_drv_thread opts destroy.

ErINifTid enif_thread_sel f(void)
Sameaserl_drv_thread_self.

int enif_tsd key create(char *nane, Erl N f TSDKey *key)
Sameaserl_drv_tsd key create.

void enif_tsd_key destroy(Erl N f TSDKey key)
Sameaserl_drv_tsd key destroy.

voi d* enif_tsd_get (Erl Ni f TSDKey key)
Sameaserl_drv_tsd get.

void enif_tsd set(Erl N fTSDKey key, void *data)
Sameaserl_drv_tsd set.

SEE ALSO

erlang:load_nif/2

Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS) | 271

	Erlang Run-Time System Application (ERTS)
	User's Guide
	Match specifications in Erlang
	Grammar
	Function descriptions
	Functions allowed in all types of match specifications
	Functions allowed only for tracing

	Variables and literals
	Execution of the match
	Differences between match specifications in ETS and tracing
	Examples

	How to interpret the Erlang crash dumps
	General information
	Reasons for crash dumps (slogan)
	Number of atoms

	Memory information
	Internal table information
	Allocated areas
	Allocator
	Process information
	Port information
	ETS tables
	Timers
	Distribution information
	Loaded module information
	Fun information
	Process Data
	Atoms
	Disclaimer

	How to implement an alternative carrier for the Erlang distribution
	Introduction
	The driver
	Drivers in general
	The distribution driver's data structures
	Selected parts of the distribution driver implementation

	Putting it all together

	The Abstract Format
	Module declarations and forms
	Record fields
	Representation of parse errors and end of file

	Atomic literals
	Patterns
	Expressions
	Generators and filters
	Binary element type specifiers

	Clauses
	Guards
	The abstract format after preprocessing

	tty - A command line interface
	Normal Mode
	Shell Break Mode

	How to implement a driver
	Introduction
	Sample driver
	Compiling and linking the sample driver
	Calling a driver as a port in Erlang
	Sample asynchronous driver
	An asynchronous driver using driver_async

	Inet configuration
	Introduction
	Configuration Data
	User Configuration Example

	External Term Format
	Introduction
	Distribution header
	ATOM_CACHE_REF
	SMALL_INTEGER_EXT
	INTEGER_EXT
	FLOAT_EXT
	ATOM_EXT
	REFERENCE_EXT
	PORT_EXT
	PID_EXT
	SMALL_TUPLE_EXT
	LARGE_TUPLE_EXT
	NIL_EXT
	STRING_EXT
	LIST_EXT
	BINARY_EXT
	SMALL_BIG_EXT
	LARGE_BIG_EXT
	NEW_REFERENCE_EXT
	SMALL_ATOM_EXT
	FUN_EXT
	NEW_FUN_EXT
	EXPORT_EXT
	BIT_BINARY_EXT
	NEW_FLOAT_EXT

	Distribution Protocol
	EPMD Protocol
	Register a node in the EPMD
	Unregister a node from the EPMD
	Get the distribution port of another node
	Get all registered names from EPMD
	Dump all data from EPMD
	Kill the EPMD
	STOP_REQ (Not Used)

	Handshake
	Protocol between connected nodes
	New Ctrlmessages for distrvsn = 1 (OTP R4)
	New Ctrlmessages for distrvsn = 2
	New Ctrlmessages for distrvsn = 3 (OTP R5C)
	New Ctrlmessages for distrvsn = 4 (OTP R6)

	Reference Manual
	erl_prim_loader
	start/3
	get_file/1
	get_path/0
	list_dir/1
	read_file_info/1
	set_path/1

	erlang
	abs/1
	adler32/1
	adler32/2
	adler32_combine/3
	append_element/2
	apply/2
	apply/3
	atom_to_binary/2
	atom_to_list/1
	binary_part/2
	binary_part/3
	binary_to_atom/2
	binary_to_existing_atom/2
	binary_to_list/1
	binary_to_list/3
	bitstring_to_list/1
	binary_to_term/1
	binary_to_term/2
	bit_size/1
	bump_reductions/1
	byte_size/1
	cancel_timer/1
	check_process_code/2
	concat_binary/1
	crc32/1
	crc32/2
	crc32_combine/3
	date/0
	decode_packet/3
	delete_module/1
	demonitor/1
	demonitor/2
	disconnect_node/1
	display/1
	element/2
	erase/0
	erase/1
	error/1
	error/2
	exit/1
	exit/2
	float/1
	float_to_list/1
	fun_info/1
	fun_info/2
	fun_to_list/1
	function_exported/3
	garbage_collect/0
	garbage_collect/1
	get/0
	get/1
	get_cookie/0
	get_keys/1
	get_stacktrace/0
	group_leader/0
	group_leader/2
	halt/0
	halt/1
	hash/2
	hd/1
	hibernate/3
	integer_to_list/1
	integer_to_list/2
	iolist_to_binary/1
	iolist_size/1
	is_alive/0
	is_atom/1
	is_binary/1
	is_bitstring/1
	is_boolean/1
	is_builtin/3
	is_float/1
	is_function/1
	is_function/2
	is_integer/1
	is_list/1
	is_number/1
	is_pid/1
	is_port/1
	is_process_alive/1
	is_record/2
	is_record/3
	is_reference/1
	is_tuple/1
	length/1
	link/1
	list_to_atom/1
	list_to_binary/1
	list_to_bitstring/1
	list_to_existing_atom/1
	list_to_float/1
	list_to_integer/1
	list_to_integer/2
	list_to_pid/1
	list_to_tuple/1
	load_module/2
	load_nif/2
	loaded/0
	localtime/0
	localtime_to_universaltime/1
	localtime_to_universaltime/2
	make_ref/0
	make_tuple/2
	make_tuple/3
	max/2
	md5/1
	md5_final/1
	md5_init/0
	md5_update/2
	memory/0
	memory/1
	min/2
	module_loaded/1
	monitor/2
	monitor_node/2
	monitor_node/3
	nif_error/1
	nif_error/2
	node/0
	node/1
	nodes/0
	nodes/1
	now/0
	open_port/2
	phash/2
	phash2/1
	pid_to_list/1
	port_close/1
	port_command/2
	port_command/3
	port_connect/2
	port_control/3
	port_call/3
	port_info/1
	port_info/2
	port_to_list/1
	ports/0
	pre_loaded/0
	process_display/2
	process_flag/2
	process_flag/3
	process_info/1
	process_info/2
	processes/0
	purge_module/1
	put/2
	raise/3
	read_timer/1
	ref_to_list/1
	register/2
	registered/0
	resume_process/1
	round/1
	self/0
	send/2
	send/3
	send_after/3
	send_nosuspend/2
	send_nosuspend/3
	set_cookie/2
	setelement/3
	size/1
	spawn/1
	spawn/2
	spawn/3
	spawn/4
	spawn_link/1
	spawn_link/2
	spawn_link/3
	spawn_link/4
	spawn_monitor/1
	spawn_monitor/3
	spawn_opt/2
	spawn_opt/3
	spawn_opt/4
	spawn_opt/5
	split_binary/2
	start_timer/3
	statistics/1
	suspend_process/2
	suspend_process/1
	system_flag/2
	system_info/1
	system_monitor/0
	system_monitor/1
	system_monitor/2
	system_profile/0
	system_profile/2
	term_to_binary/1
	term_to_binary/2
	throw/1
	time/0
	tl/1
	trace/3
	trace_delivered/1
	trace_info/2
	trace_pattern/2
	trace_pattern/3
	trunc/1
	tuple_size/1
	tuple_to_list/1
	universaltime/0
	universaltime_to_localtime/1
	unlink/1
	unregister/1
	whereis/1
	yield/0

	init
	boot/1
	get_args/0
	get_argument/1
	get_arguments/0
	get_plain_arguments/0
	get_status/0
	reboot/0
	restart/0
	script_id/0
	stop/0
	stop/1

	zlib
	open/0
	close/1
	deflateInit/1
	deflateInit/2
	deflateInit/6
	deflate/2
	deflate/3
	deflateSetDictionary/2
	deflateReset/1
	deflateParams/3
	deflateEnd/1
	inflateInit/1
	inflateInit/2
	inflate/2
	inflateSetDictionary/2
	inflateReset/1
	inflateEnd/1
	setBufSize/2
	getBufSize/1
	crc32/1
	crc32/2
	crc32/3
	crc32_combine/4
	adler32/2
	adler32/3
	adler32_combine/4
	compress/1
	uncompress/1
	zip/1
	unzip/1
	gzip/1
	gunzip/1

	epmd
	erl
	erlc
	werl
	escript
	erlsrv
	start_erl
	erl_set_memory_block
	erl_set_memory_block()

	erl_memory_show()

	erl_mem_info_get()

	run_erl
	start
	erl_driver
	driver_system_info()

	driver_output()

	driver_output2()

	driver_output_binary()

	driver_outputv()

	driver_vec_to_buf()

	driver_set_timer()

	driver_cancel_timer()

	driver_read_timer()

	driver_get_now()

	driver_select()

	driver_alloc()

	driver_realloc()

	driver_free()

	driver_alloc_binary()

	driver_realloc_binary()

	driver_free_binary()

	driver_binary_get_refc()

	driver_binary_inc_refc()

	driver_binary_dec_refc()

	driver_enq()

	driver_pushq()

	driver_deq()

	driver_sizeq()

	driver_enq_bin()

	driver_pushq_bin()

	driver_peekq()

	driver_enqv()

	driver_pushqv()

	driver_pdl_create()

	driver_pdl_lock()

	driver_pdl_unlock()

	driver_pdl_get_refc()

	driver_pdl_inc_refc()

	driver_pdl_dec_refc()

	driver_monitor_process()

	driver_demonitor_process()

	driver_get_monitored_process()

	driver_compare_monitors()

	add_driver_entry()

	remove_driver_entry()

	erl_errno_id()

	set_busy_port()

	set_port_control_flags()

	driver_failure_eof()

	driver_failure_atom()

	driver_failure_posix()

	driver_failure()

	driver_connected()

	driver_caller()

	driver_output_term()

	driver_mk_atom()

	driver_mk_port()

	driver_send_term()

	driver_async ()

	driver_async_cancel()

	driver_lock_driver()

	driver_create_port()

	erl_drv_thread_create()

	erl_drv_thread_opts_create()

	erl_drv_thread_opts_destroy()

	erl_drv_thread_exit()

	erl_drv_thread_join()

	erl_drv_thread_self()

	erl_drv_equal_tids()

	erl_drv_mutex_create()

	erl_drv_mutex_destroy()

	erl_drv_mutex_lock()

	erl_drv_mutex_trylock()

	erl_drv_mutex_unlock()

	erl_drv_cond_create()

	erl_drv_cond_destroy()

	erl_drv_cond_signal()

	erl_drv_cond_broadcast()

	erl_drv_cond_wait()

	erl_drv_rwlock_create()

	erl_drv_rwlock_destroy()

	erl_drv_rwlock_rlock()

	erl_drv_rwlock_tryrlock()

	erl_drv_rwlock_runlock()

	erl_drv_rwlock_rwlock()

	erl_drv_rwlock_tryrwlock()

	erl_drv_rwlock_rwunlock()

	erl_drv_tsd_key_create()

	erl_drv_tsd_key_destroy()

	erl_drv_tsd_set()

	erl_drv_tsd_get()

	erl_drv_putenv()

	erl_drv_getenv()

	driver_entry
	erts_alloc
	erl_nif
	enif_alloc()

	enif_alloc_binary()

	enif_alloc_env()

	enif_alloc_resource()

	enif_clear_env()

	enif_compare()

	enif_cond_broadcast()

	enif_cond_create()

	enif_cond_destroy()

	enif_cond_signal()

	enif_cond_wait()

	enif_equal_tids()

	enif_free()

	enif_free_env()

	enif_get_atom()

	enif_get_atom_length()

	enif_get_double()

	enif_get_int()

	enif_get_int64()

	enif_get_local_pid()

	enif_get_list_cell()

	enif_get_list_length()

	enif_get_long()

	enif_get_resource()

	enif_get_string()

	enif_get_tuple()

	enif_get_uint()

	enif_get_uint64()

	enif_get_ulong()

	enif_inspect_binary()

	enif_inspect_iolist_as_binary()

	enif_is_atom()

	enif_is_binary()

	enif_is_empty_list()

	enif_is_fun()

	enif_is_identical()

	enif_is_pid()

	enif_is_port()

	enif_is_ref()

	enif_is_tuple()

	enif_is_list()

	enif_keep_resource()

	enif_make_atom()

	enif_make_atom_len()

	enif_make_badarg()

	enif_make_binary()

	enif_make_copy()

	enif_make_double()

	enif_make_existing_atom()

	enif_make_existing_atom_len()

	enif_make_int()

	enif_make_int64()

	enif_make_list()

	enif_make_list1()

	enif_make_list2()

	enif_make_list3()

	enif_make_list4()

	enif_make_list5()

	enif_make_list6()

	enif_make_list7()

	enif_make_list8()

	enif_make_list9()

	enif_make_list_cell()

	enif_make_list_from_array()

	enif_make_long()

	enif_make_new_binary()

	enif_make_pid()

	enif_make_ref()

	enif_make_resource()

	enif_make_resource_binary()

	enif_make_string()

	enif_make_string_len()

	enif_make_sub_binary()

	enif_make_tuple()

	enif_make_tuple1()

	enif_make_tuple2()

	enif_make_tuple3()

	enif_make_tuple4()

	enif_make_tuple5()

	enif_make_tuple6()

	enif_make_tuple7()

	enif_make_tuple8()

	enif_make_tuple9()

	enif_make_tuple_from_array()

	enif_make_uint()

	enif_make_uint64()

	enif_make_ulong()

	enif_mutex_create()

	enif_mutex_destroy()

	enif_mutex_lock()

	enif_mutex_trylock()

	enif_mutex_unlock()

	enif_open_resource_type()

	enif_priv_data()

	enif_realloc_binary()

	enif_release_binary()

	enif_release_resource()

	enif_rwlock_create()

	enif_rwlock_destroy()

	enif_rwlock_rlock()

	enif_rwlock_runlock()

	enif_rwlock_rwlock()

	enif_rwlock_rwunlock()

	enif_rwlock_tryrlock()

	enif_rwlock_tryrwlock()

	enif_self()

	enif_send()

	enif_sizeof_resource()

	enif_system_info()

	enif_thread_create()

	enif_thread_exit()

	enif_thread_join()

	enif_thread_opts_create()

	enif_thread_opts_destroy()

	enif_thread_self()

	enif_tsd_key_create()

	enif_tsd_key_destroy()

	enif_tsd_get()

	enif_tsd_set()

