lorisplay — renders a stored set of bandwidth-enhanced partials using the method of Bandwidth-Enhanced Additive Synthesis implemented in the Loris software, applying control-rate frequency, amplitude, and bandwidth scaling envelopes.
lorisplay renders a stored set of bandwidth-enhanced partials using the method of Bandwidth-Enhanced Additive Synthesis implemented in the Loris software, applying control-rate frequency, amplitude, and bandwidth scaling envelopes.
istoreidx, ireadidx, isrcidx, itgtidx are labels that identify a stored set of bandwidth-enhanced partials. lorisread imports partials from a SDIF file and stores them with the integer label istoreidx. lorismorph morphs sets of partials labeled isrcidx and itgtidx, and stores the resulting partials with the integer label istoreidx. lorisplay renders the partials stored with the label ireadidx. The labels are used only at initialization time, and may be reused without any cost or benefit in efficiency, and without introducing any interaction between instruments or instances.
lorisplay implements signal reconstruction using Bandwidth-Enhanced Additive Synthesis. The control data is obtained from a stored set of bandwidth-enhanced partials imported from an SDIF file using lorisread or constructed by another unit generator such as lorismorph. kfreqenv is a control-rate transposition factor: a value of 1 incurs no transposition, 1.5 transposes up a perfect fifth, and .5 down an octave. kampenv is a control-rate scale factor that is applied to all partial amplitude envelopes. kbwenv is a control-rate scale factor that is applied to all partial bandwidth or noisiness envelopes. The bandwidth-enhanced partial data is stored in memory with a specified label for future access by another generator.
This implementation of the Loris unit generators was written by Kelly Fitz (loris@cerlsoundgroup.org). It is patterned after a prototype implementation of the lorisplay unit generator written by Corbin Champion, and based on the method of Bandwidth-Enhanced Additive Synthesis and on the sound morphing algorithms implemented in the Loris library for sound modeling and manipulation. The opcodes were further adapted as a plugin for Csound 5 by Michael Gogins.