00001 // Multiset implementation -*- C++ -*- 00002 00003 // Copyright (C) 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010 00004 // Free Software Foundation, Inc. 00005 // 00006 // This file is part of the GNU ISO C++ Library. This library is free 00007 // software; you can redistribute it and/or modify it under the 00008 // terms of the GNU General Public License as published by the 00009 // Free Software Foundation; either version 3, or (at your option) 00010 // any later version. 00011 00012 // This library is distributed in the hope that it will be useful, 00013 // but WITHOUT ANY WARRANTY; without even the implied warranty of 00014 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 00015 // GNU General Public License for more details. 00016 00017 // Under Section 7 of GPL version 3, you are granted additional 00018 // permissions described in the GCC Runtime Library Exception, version 00019 // 3.1, as published by the Free Software Foundation. 00020 00021 // You should have received a copy of the GNU General Public License and 00022 // a copy of the GCC Runtime Library Exception along with this program; 00023 // see the files COPYING3 and COPYING.RUNTIME respectively. If not, see 00024 // <http://www.gnu.org/licenses/>. 00025 00026 /* 00027 * 00028 * Copyright (c) 1994 00029 * Hewlett-Packard Company 00030 * 00031 * Permission to use, copy, modify, distribute and sell this software 00032 * and its documentation for any purpose is hereby granted without fee, 00033 * provided that the above copyright notice appear in all copies and 00034 * that both that copyright notice and this permission notice appear 00035 * in supporting documentation. Hewlett-Packard Company makes no 00036 * representations about the suitability of this software for any 00037 * purpose. It is provided "as is" without express or implied warranty. 00038 * 00039 * 00040 * Copyright (c) 1996 00041 * Silicon Graphics Computer Systems, Inc. 00042 * 00043 * Permission to use, copy, modify, distribute and sell this software 00044 * and its documentation for any purpose is hereby granted without fee, 00045 * provided that the above copyright notice appear in all copies and 00046 * that both that copyright notice and this permission notice appear 00047 * in supporting documentation. Silicon Graphics makes no 00048 * representations about the suitability of this software for any 00049 * purpose. It is provided "as is" without express or implied warranty. 00050 */ 00051 00052 /** @file stl_multiset.h 00053 * This is an internal header file, included by other library headers. 00054 * You should not attempt to use it directly. 00055 */ 00056 00057 #ifndef _STL_MULTISET_H 00058 #define _STL_MULTISET_H 1 00059 00060 #include <bits/concept_check.h> 00061 #include <initializer_list> 00062 00063 _GLIBCXX_BEGIN_NESTED_NAMESPACE(std, _GLIBCXX_STD_D) 00064 00065 /** 00066 * @brief A standard container made up of elements, which can be retrieved 00067 * in logarithmic time. 00068 * 00069 * @ingroup associative_containers 00070 * 00071 * Meets the requirements of a <a href="tables.html#65">container</a>, a 00072 * <a href="tables.html#66">reversible container</a>, and an 00073 * <a href="tables.html#69">associative container</a> (using equivalent 00074 * keys). For a @c multiset<Key> the key_type and value_type are Key. 00075 * 00076 * Multisets support bidirectional iterators. 00077 * 00078 * The private tree data is declared exactly the same way for set and 00079 * multiset; the distinction is made entirely in how the tree functions are 00080 * called (*_unique versus *_equal, same as the standard). 00081 */ 00082 template <typename _Key, typename _Compare = std::less<_Key>, 00083 typename _Alloc = std::allocator<_Key> > 00084 class multiset 00085 { 00086 // concept requirements 00087 typedef typename _Alloc::value_type _Alloc_value_type; 00088 __glibcxx_class_requires(_Key, _SGIAssignableConcept) 00089 __glibcxx_class_requires4(_Compare, bool, _Key, _Key, 00090 _BinaryFunctionConcept) 00091 __glibcxx_class_requires2(_Key, _Alloc_value_type, _SameTypeConcept) 00092 00093 public: 00094 // typedefs: 00095 typedef _Key key_type; 00096 typedef _Key value_type; 00097 typedef _Compare key_compare; 00098 typedef _Compare value_compare; 00099 typedef _Alloc allocator_type; 00100 00101 private: 00102 /// This turns a red-black tree into a [multi]set. 00103 typedef typename _Alloc::template rebind<_Key>::other _Key_alloc_type; 00104 00105 typedef _Rb_tree<key_type, value_type, _Identity<value_type>, 00106 key_compare, _Key_alloc_type> _Rep_type; 00107 /// The actual tree structure. 00108 _Rep_type _M_t; 00109 00110 public: 00111 typedef typename _Key_alloc_type::pointer pointer; 00112 typedef typename _Key_alloc_type::const_pointer const_pointer; 00113 typedef typename _Key_alloc_type::reference reference; 00114 typedef typename _Key_alloc_type::const_reference const_reference; 00115 // _GLIBCXX_RESOLVE_LIB_DEFECTS 00116 // DR 103. set::iterator is required to be modifiable, 00117 // but this allows modification of keys. 00118 typedef typename _Rep_type::const_iterator iterator; 00119 typedef typename _Rep_type::const_iterator const_iterator; 00120 typedef typename _Rep_type::const_reverse_iterator reverse_iterator; 00121 typedef typename _Rep_type::const_reverse_iterator const_reverse_iterator; 00122 typedef typename _Rep_type::size_type size_type; 00123 typedef typename _Rep_type::difference_type difference_type; 00124 00125 // allocation/deallocation 00126 /** 00127 * @brief Default constructor creates no elements. 00128 */ 00129 multiset() 00130 : _M_t() { } 00131 00132 /** 00133 * @brief Creates a %multiset with no elements. 00134 * @param comp Comparator to use. 00135 * @param a An allocator object. 00136 */ 00137 explicit 00138 multiset(const _Compare& __comp, 00139 const allocator_type& __a = allocator_type()) 00140 : _M_t(__comp, __a) { } 00141 00142 /** 00143 * @brief Builds a %multiset from a range. 00144 * @param first An input iterator. 00145 * @param last An input iterator. 00146 * 00147 * Create a %multiset consisting of copies of the elements from 00148 * [first,last). This is linear in N if the range is already sorted, 00149 * and NlogN otherwise (where N is distance(first,last)). 00150 */ 00151 template<typename _InputIterator> 00152 multiset(_InputIterator __first, _InputIterator __last) 00153 : _M_t() 00154 { _M_t._M_insert_equal(__first, __last); } 00155 00156 /** 00157 * @brief Builds a %multiset from a range. 00158 * @param first An input iterator. 00159 * @param last An input iterator. 00160 * @param comp A comparison functor. 00161 * @param a An allocator object. 00162 * 00163 * Create a %multiset consisting of copies of the elements from 00164 * [first,last). This is linear in N if the range is already sorted, 00165 * and NlogN otherwise (where N is distance(first,last)). 00166 */ 00167 template<typename _InputIterator> 00168 multiset(_InputIterator __first, _InputIterator __last, 00169 const _Compare& __comp, 00170 const allocator_type& __a = allocator_type()) 00171 : _M_t(__comp, __a) 00172 { _M_t._M_insert_equal(__first, __last); } 00173 00174 /** 00175 * @brief %Multiset copy constructor. 00176 * @param x A %multiset of identical element and allocator types. 00177 * 00178 * The newly-created %multiset uses a copy of the allocation object used 00179 * by @a x. 00180 */ 00181 multiset(const multiset& __x) 00182 : _M_t(__x._M_t) { } 00183 00184 #ifdef __GXX_EXPERIMENTAL_CXX0X__ 00185 /** 00186 * @brief %Multiset move constructor. 00187 * @param x A %multiset of identical element and allocator types. 00188 * 00189 * The newly-created %multiset contains the exact contents of @a x. 00190 * The contents of @a x are a valid, but unspecified %multiset. 00191 */ 00192 multiset(multiset&& __x) 00193 : _M_t(std::forward<_Rep_type>(__x._M_t)) { } 00194 00195 /** 00196 * @brief Builds a %multiset from an initializer_list. 00197 * @param l An initializer_list. 00198 * @param comp A comparison functor. 00199 * @param a An allocator object. 00200 * 00201 * Create a %multiset consisting of copies of the elements from 00202 * the list. This is linear in N if the list is already sorted, 00203 * and NlogN otherwise (where N is @a l.size()). 00204 */ 00205 multiset(initializer_list<value_type> __l, 00206 const _Compare& __comp = _Compare(), 00207 const allocator_type& __a = allocator_type()) 00208 : _M_t(__comp, __a) 00209 { _M_t._M_insert_equal(__l.begin(), __l.end()); } 00210 #endif 00211 00212 /** 00213 * @brief %Multiset assignment operator. 00214 * @param x A %multiset of identical element and allocator types. 00215 * 00216 * All the elements of @a x are copied, but unlike the copy constructor, 00217 * the allocator object is not copied. 00218 */ 00219 multiset& 00220 operator=(const multiset& __x) 00221 { 00222 _M_t = __x._M_t; 00223 return *this; 00224 } 00225 00226 #ifdef __GXX_EXPERIMENTAL_CXX0X__ 00227 /** 00228 * @brief %Multiset move assignment operator. 00229 * @param x A %multiset of identical element and allocator types. 00230 * 00231 * The contents of @a x are moved into this %multiset (without copying). 00232 * @a x is a valid, but unspecified %multiset. 00233 */ 00234 multiset& 00235 operator=(multiset&& __x) 00236 { 00237 // NB: DR 1204. 00238 // NB: DR 675. 00239 this->clear(); 00240 this->swap(__x); 00241 return *this; 00242 } 00243 00244 /** 00245 * @brief %Multiset list assignment operator. 00246 * @param l An initializer_list. 00247 * 00248 * This function fills a %multiset with copies of the elements in the 00249 * initializer list @a l. 00250 * 00251 * Note that the assignment completely changes the %multiset and 00252 * that the resulting %multiset's size is the same as the number 00253 * of elements assigned. Old data may be lost. 00254 */ 00255 multiset& 00256 operator=(initializer_list<value_type> __l) 00257 { 00258 this->clear(); 00259 this->insert(__l.begin(), __l.end()); 00260 return *this; 00261 } 00262 #endif 00263 00264 // accessors: 00265 00266 /// Returns the comparison object. 00267 key_compare 00268 key_comp() const 00269 { return _M_t.key_comp(); } 00270 /// Returns the comparison object. 00271 value_compare 00272 value_comp() const 00273 { return _M_t.key_comp(); } 00274 /// Returns the memory allocation object. 00275 allocator_type 00276 get_allocator() const 00277 { return _M_t.get_allocator(); } 00278 00279 /** 00280 * Returns a read-only (constant) iterator that points to the first 00281 * element in the %multiset. Iteration is done in ascending order 00282 * according to the keys. 00283 */ 00284 iterator 00285 begin() const 00286 { return _M_t.begin(); } 00287 00288 /** 00289 * Returns a read-only (constant) iterator that points one past the last 00290 * element in the %multiset. Iteration is done in ascending order 00291 * according to the keys. 00292 */ 00293 iterator 00294 end() const 00295 { return _M_t.end(); } 00296 00297 /** 00298 * Returns a read-only (constant) reverse iterator that points to the 00299 * last element in the %multiset. Iteration is done in descending order 00300 * according to the keys. 00301 */ 00302 reverse_iterator 00303 rbegin() const 00304 { return _M_t.rbegin(); } 00305 00306 /** 00307 * Returns a read-only (constant) reverse iterator that points to the 00308 * last element in the %multiset. Iteration is done in descending order 00309 * according to the keys. 00310 */ 00311 reverse_iterator 00312 rend() const 00313 { return _M_t.rend(); } 00314 00315 #ifdef __GXX_EXPERIMENTAL_CXX0X__ 00316 /** 00317 * Returns a read-only (constant) iterator that points to the first 00318 * element in the %multiset. Iteration is done in ascending order 00319 * according to the keys. 00320 */ 00321 iterator 00322 cbegin() const 00323 { return _M_t.begin(); } 00324 00325 /** 00326 * Returns a read-only (constant) iterator that points one past the last 00327 * element in the %multiset. Iteration is done in ascending order 00328 * according to the keys. 00329 */ 00330 iterator 00331 cend() const 00332 { return _M_t.end(); } 00333 00334 /** 00335 * Returns a read-only (constant) reverse iterator that points to the 00336 * last element in the %multiset. Iteration is done in descending order 00337 * according to the keys. 00338 */ 00339 reverse_iterator 00340 crbegin() const 00341 { return _M_t.rbegin(); } 00342 00343 /** 00344 * Returns a read-only (constant) reverse iterator that points to the 00345 * last element in the %multiset. Iteration is done in descending order 00346 * according to the keys. 00347 */ 00348 reverse_iterator 00349 crend() const 00350 { return _M_t.rend(); } 00351 #endif 00352 00353 /// Returns true if the %set is empty. 00354 bool 00355 empty() const 00356 { return _M_t.empty(); } 00357 00358 /// Returns the size of the %set. 00359 size_type 00360 size() const 00361 { return _M_t.size(); } 00362 00363 /// Returns the maximum size of the %set. 00364 size_type 00365 max_size() const 00366 { return _M_t.max_size(); } 00367 00368 /** 00369 * @brief Swaps data with another %multiset. 00370 * @param x A %multiset of the same element and allocator types. 00371 * 00372 * This exchanges the elements between two multisets in constant time. 00373 * (It is only swapping a pointer, an integer, and an instance of the @c 00374 * Compare type (which itself is often stateless and empty), so it should 00375 * be quite fast.) 00376 * Note that the global std::swap() function is specialized such that 00377 * std::swap(s1,s2) will feed to this function. 00378 */ 00379 void 00380 swap(multiset& __x) 00381 { _M_t.swap(__x._M_t); } 00382 00383 // insert/erase 00384 /** 00385 * @brief Inserts an element into the %multiset. 00386 * @param x Element to be inserted. 00387 * @return An iterator that points to the inserted element. 00388 * 00389 * This function inserts an element into the %multiset. Contrary 00390 * to a std::set the %multiset does not rely on unique keys and thus 00391 * multiple copies of the same element can be inserted. 00392 * 00393 * Insertion requires logarithmic time. 00394 */ 00395 iterator 00396 insert(const value_type& __x) 00397 { return _M_t._M_insert_equal(__x); } 00398 00399 /** 00400 * @brief Inserts an element into the %multiset. 00401 * @param position An iterator that serves as a hint as to where the 00402 * element should be inserted. 00403 * @param x Element to be inserted. 00404 * @return An iterator that points to the inserted element. 00405 * 00406 * This function inserts an element into the %multiset. Contrary 00407 * to a std::set the %multiset does not rely on unique keys and thus 00408 * multiple copies of the same element can be inserted. 00409 * 00410 * Note that the first parameter is only a hint and can potentially 00411 * improve the performance of the insertion process. A bad hint would 00412 * cause no gains in efficiency. 00413 * 00414 * See http://gcc.gnu.org/onlinedocs/libstdc++/manual/bk01pt07ch17.html 00415 * for more on @a hinting. 00416 * 00417 * Insertion requires logarithmic time (if the hint is not taken). 00418 */ 00419 iterator 00420 insert(iterator __position, const value_type& __x) 00421 { return _M_t._M_insert_equal_(__position, __x); } 00422 00423 /** 00424 * @brief A template function that tries to insert a range of elements. 00425 * @param first Iterator pointing to the start of the range to be 00426 * inserted. 00427 * @param last Iterator pointing to the end of the range. 00428 * 00429 * Complexity similar to that of the range constructor. 00430 */ 00431 template<typename _InputIterator> 00432 void 00433 insert(_InputIterator __first, _InputIterator __last) 00434 { _M_t._M_insert_equal(__first, __last); } 00435 00436 #ifdef __GXX_EXPERIMENTAL_CXX0X__ 00437 /** 00438 * @brief Attempts to insert a list of elements into the %multiset. 00439 * @param list A std::initializer_list<value_type> of elements 00440 * to be inserted. 00441 * 00442 * Complexity similar to that of the range constructor. 00443 */ 00444 void 00445 insert(initializer_list<value_type> __l) 00446 { this->insert(__l.begin(), __l.end()); } 00447 #endif 00448 00449 #ifdef __GXX_EXPERIMENTAL_CXX0X__ 00450 // _GLIBCXX_RESOLVE_LIB_DEFECTS 00451 // DR 130. Associative erase should return an iterator. 00452 /** 00453 * @brief Erases an element from a %multiset. 00454 * @param position An iterator pointing to the element to be erased. 00455 * @return An iterator pointing to the element immediately following 00456 * @a position prior to the element being erased. If no such 00457 * element exists, end() is returned. 00458 * 00459 * This function erases an element, pointed to by the given iterator, 00460 * from a %multiset. Note that this function only erases the element, 00461 * and that if the element is itself a pointer, the pointed-to memory is 00462 * not touched in any way. Managing the pointer is the user's 00463 * responsibility. 00464 */ 00465 iterator 00466 erase(iterator __position) 00467 { return _M_t.erase(__position); } 00468 #else 00469 /** 00470 * @brief Erases an element from a %multiset. 00471 * @param position An iterator pointing to the element to be erased. 00472 * 00473 * This function erases an element, pointed to by the given iterator, 00474 * from a %multiset. Note that this function only erases the element, 00475 * and that if the element is itself a pointer, the pointed-to memory is 00476 * not touched in any way. Managing the pointer is the user's 00477 * responsibility. 00478 */ 00479 void 00480 erase(iterator __position) 00481 { _M_t.erase(__position); } 00482 #endif 00483 00484 /** 00485 * @brief Erases elements according to the provided key. 00486 * @param x Key of element to be erased. 00487 * @return The number of elements erased. 00488 * 00489 * This function erases all elements located by the given key from a 00490 * %multiset. 00491 * Note that this function only erases the element, and that if 00492 * the element is itself a pointer, the pointed-to memory is not touched 00493 * in any way. Managing the pointer is the user's responsibility. 00494 */ 00495 size_type 00496 erase(const key_type& __x) 00497 { return _M_t.erase(__x); } 00498 00499 #ifdef __GXX_EXPERIMENTAL_CXX0X__ 00500 // _GLIBCXX_RESOLVE_LIB_DEFECTS 00501 // DR 130. Associative erase should return an iterator. 00502 /** 00503 * @brief Erases a [first,last) range of elements from a %multiset. 00504 * @param first Iterator pointing to the start of the range to be 00505 * erased. 00506 * @param last Iterator pointing to the end of the range to be erased. 00507 * @return The iterator @a last. 00508 * 00509 * This function erases a sequence of elements from a %multiset. 00510 * Note that this function only erases the elements, and that if 00511 * the elements themselves are pointers, the pointed-to memory is not 00512 * touched in any way. Managing the pointer is the user's responsibility. 00513 */ 00514 iterator 00515 erase(iterator __first, iterator __last) 00516 { return _M_t.erase(__first, __last); } 00517 #else 00518 /** 00519 * @brief Erases a [first,last) range of elements from a %multiset. 00520 * @param first Iterator pointing to the start of the range to be 00521 * erased. 00522 * @param last Iterator pointing to the end of the range to be erased. 00523 * 00524 * This function erases a sequence of elements from a %multiset. 00525 * Note that this function only erases the elements, and that if 00526 * the elements themselves are pointers, the pointed-to memory is not 00527 * touched in any way. Managing the pointer is the user's responsibility. 00528 */ 00529 void 00530 erase(iterator __first, iterator __last) 00531 { _M_t.erase(__first, __last); } 00532 #endif 00533 00534 /** 00535 * Erases all elements in a %multiset. Note that this function only 00536 * erases the elements, and that if the elements themselves are pointers, 00537 * the pointed-to memory is not touched in any way. Managing the pointer 00538 * is the user's responsibility. 00539 */ 00540 void 00541 clear() 00542 { _M_t.clear(); } 00543 00544 // multiset operations: 00545 00546 /** 00547 * @brief Finds the number of elements with given key. 00548 * @param x Key of elements to be located. 00549 * @return Number of elements with specified key. 00550 */ 00551 size_type 00552 count(const key_type& __x) const 00553 { return _M_t.count(__x); } 00554 00555 // _GLIBCXX_RESOLVE_LIB_DEFECTS 00556 // 214. set::find() missing const overload 00557 //@{ 00558 /** 00559 * @brief Tries to locate an element in a %set. 00560 * @param x Element to be located. 00561 * @return Iterator pointing to sought-after element, or end() if not 00562 * found. 00563 * 00564 * This function takes a key and tries to locate the element with which 00565 * the key matches. If successful the function returns an iterator 00566 * pointing to the sought after element. If unsuccessful it returns the 00567 * past-the-end ( @c end() ) iterator. 00568 */ 00569 iterator 00570 find(const key_type& __x) 00571 { return _M_t.find(__x); } 00572 00573 const_iterator 00574 find(const key_type& __x) const 00575 { return _M_t.find(__x); } 00576 //@} 00577 00578 //@{ 00579 /** 00580 * @brief Finds the beginning of a subsequence matching given key. 00581 * @param x Key to be located. 00582 * @return Iterator pointing to first element equal to or greater 00583 * than key, or end(). 00584 * 00585 * This function returns the first element of a subsequence of elements 00586 * that matches the given key. If unsuccessful it returns an iterator 00587 * pointing to the first element that has a greater value than given key 00588 * or end() if no such element exists. 00589 */ 00590 iterator 00591 lower_bound(const key_type& __x) 00592 { return _M_t.lower_bound(__x); } 00593 00594 const_iterator 00595 lower_bound(const key_type& __x) const 00596 { return _M_t.lower_bound(__x); } 00597 //@} 00598 00599 //@{ 00600 /** 00601 * @brief Finds the end of a subsequence matching given key. 00602 * @param x Key to be located. 00603 * @return Iterator pointing to the first element 00604 * greater than key, or end(). 00605 */ 00606 iterator 00607 upper_bound(const key_type& __x) 00608 { return _M_t.upper_bound(__x); } 00609 00610 const_iterator 00611 upper_bound(const key_type& __x) const 00612 { return _M_t.upper_bound(__x); } 00613 //@} 00614 00615 //@{ 00616 /** 00617 * @brief Finds a subsequence matching given key. 00618 * @param x Key to be located. 00619 * @return Pair of iterators that possibly points to the subsequence 00620 * matching given key. 00621 * 00622 * This function is equivalent to 00623 * @code 00624 * std::make_pair(c.lower_bound(val), 00625 * c.upper_bound(val)) 00626 * @endcode 00627 * (but is faster than making the calls separately). 00628 * 00629 * This function probably only makes sense for multisets. 00630 */ 00631 std::pair<iterator, iterator> 00632 equal_range(const key_type& __x) 00633 { return _M_t.equal_range(__x); } 00634 00635 std::pair<const_iterator, const_iterator> 00636 equal_range(const key_type& __x) const 00637 { return _M_t.equal_range(__x); } 00638 00639 template<typename _K1, typename _C1, typename _A1> 00640 friend bool 00641 operator==(const multiset<_K1, _C1, _A1>&, 00642 const multiset<_K1, _C1, _A1>&); 00643 00644 template<typename _K1, typename _C1, typename _A1> 00645 friend bool 00646 operator< (const multiset<_K1, _C1, _A1>&, 00647 const multiset<_K1, _C1, _A1>&); 00648 }; 00649 00650 /** 00651 * @brief Multiset equality comparison. 00652 * @param x A %multiset. 00653 * @param y A %multiset of the same type as @a x. 00654 * @return True iff the size and elements of the multisets are equal. 00655 * 00656 * This is an equivalence relation. It is linear in the size of the 00657 * multisets. 00658 * Multisets are considered equivalent if their sizes are equal, and if 00659 * corresponding elements compare equal. 00660 */ 00661 template<typename _Key, typename _Compare, typename _Alloc> 00662 inline bool 00663 operator==(const multiset<_Key, _Compare, _Alloc>& __x, 00664 const multiset<_Key, _Compare, _Alloc>& __y) 00665 { return __x._M_t == __y._M_t; } 00666 00667 /** 00668 * @brief Multiset ordering relation. 00669 * @param x A %multiset. 00670 * @param y A %multiset of the same type as @a x. 00671 * @return True iff @a x is lexicographically less than @a y. 00672 * 00673 * This is a total ordering relation. It is linear in the size of the 00674 * maps. The elements must be comparable with @c <. 00675 * 00676 * See std::lexicographical_compare() for how the determination is made. 00677 */ 00678 template<typename _Key, typename _Compare, typename _Alloc> 00679 inline bool 00680 operator<(const multiset<_Key, _Compare, _Alloc>& __x, 00681 const multiset<_Key, _Compare, _Alloc>& __y) 00682 { return __x._M_t < __y._M_t; } 00683 00684 /// Returns !(x == y). 00685 template<typename _Key, typename _Compare, typename _Alloc> 00686 inline bool 00687 operator!=(const multiset<_Key, _Compare, _Alloc>& __x, 00688 const multiset<_Key, _Compare, _Alloc>& __y) 00689 { return !(__x == __y); } 00690 00691 /// Returns y < x. 00692 template<typename _Key, typename _Compare, typename _Alloc> 00693 inline bool 00694 operator>(const multiset<_Key,_Compare,_Alloc>& __x, 00695 const multiset<_Key,_Compare,_Alloc>& __y) 00696 { return __y < __x; } 00697 00698 /// Returns !(y < x) 00699 template<typename _Key, typename _Compare, typename _Alloc> 00700 inline bool 00701 operator<=(const multiset<_Key, _Compare, _Alloc>& __x, 00702 const multiset<_Key, _Compare, _Alloc>& __y) 00703 { return !(__y < __x); } 00704 00705 /// Returns !(x < y) 00706 template<typename _Key, typename _Compare, typename _Alloc> 00707 inline bool 00708 operator>=(const multiset<_Key, _Compare, _Alloc>& __x, 00709 const multiset<_Key, _Compare, _Alloc>& __y) 00710 { return !(__x < __y); } 00711 00712 /// See std::multiset::swap(). 00713 template<typename _Key, typename _Compare, typename _Alloc> 00714 inline void 00715 swap(multiset<_Key, _Compare, _Alloc>& __x, 00716 multiset<_Key, _Compare, _Alloc>& __y) 00717 { __x.swap(__y); } 00718 00719 _GLIBCXX_END_NESTED_NAMESPACE 00720 00721 #endif /* _STL_MULTISET_H */