Potrace Library API

Copyright(© 2001-2011 Peter Selinger. This file is part of Potrace. ltdethsed under
the GNU General Public License. See the file COPYING for Betai

1 Scope
The Potrace library provides:

e tracing, i.e., conversion of bitmaps to a vector represeEmtégBezier curves and
straight line segments).

It does not provide frontend functionality such as:

e preparation of bitmaps (e.g. reading a bitmap from a fileparieg a bitmap by
thresholding/scaling/filtering a greyscale image etc)

And it does not provide backend functionality such as:

e post-processing of the vector representation (e.g. ceioreto a file format such
as PostScript or SVG, scaling + rotation, quantization. etc)

2 Datarepresentation

2.1 Bitmaps
2.1.1 Coordinate system

For Potrace, a bitmap of size x h is embedded in a cartesian coordinate system
where each pixel takes up the space of one unit square. Thés@ire positioned so
that thecornersof pixels (and not their centers) lie at points with integeoinates,

as illustrated in Figure 1. The origin of the coordinate systs at thdower leftcorner

of the bitmap. The four corners of the bitmaps have coordsi(@t 0), (0, i), (w, h),
and(w, 0).

Sometimes we need to refer to a specific pixel (as opposeddmaip the plane).
When we speak of “pixeli, j]”, we mean the pixel whose corners have coordinates
(4,7), (i, 7+ 1), (i + 1,5+ 1), (i + 1,7) in Potrace’s coordinate system. Thus, pixel
[, 7] is the pixel whose center is at coordinates- 0.5, 7 + 0.5). To avoid confusion,
we use square brackets to refer to the pixef], and round brackets to refer to the

point(z, 7).

(0.3)
(1,1)
(0.1)

(0,0) (1,0) (2,0)
Figure 1: The Potrace coordinate system

2.1.2 Bitmap representation

The Potrace library expects bitmaps in the following forndafined in potracelib.h:

struct potrace_bitmap_s {

int w, h; /* width and height, in pixels */
int dy; /+ scanline offset in words */
potrace_word *map; /* pixel data, dy+rh words =/

i

typedef struct potrace_bitmap_s potrace_bitnmap_t;

Here,pot race_wor d is an unsigned integer type defined in potracelib.h. It is
usually equal to a native machine word (i.e., 32 bits on ai82+chitecture). In the
following explanation, we assume that the typs® r ace_wor d holds NV bits.

A bitmap of dimensions x h is divided, bottom to top, inté horizontal scanlines.
Each scanline is divided, left to right, into blocks &fpixels. Each such block a¥
pixels is stored as a singfeot r ace_wor d, with the leftmost pixels of the block
corresponding to the most significant bit of the word, andrigbtmost pixel of the
block corresponding to the least significant bit of the word.

Pixels that are “on” (or “black” or “foreground”) are repeded by bit valudl.
Pixels that are “off” (of “white” or “background”) are repgented by bit valué.

If the number of bits in a scanline is not divisible B then the rightmost word of
the scanline is padded on the right with zeros.

The data for scanline (the bottom-most scanline) begingatp[0] . The data for
scanlinel begins atrap[dy] . The data for scanling begins atrap[2+ dy] , and so
forth. Note thatly can be either positive or negative, depending on how ancgijun
wishes to lay out the image data in memory.

In summary, the pixel with coordinatés j] can be accessed by the following C
formula:

pixel (i,j) = ((map + j*xdy)[i/N & (1 << (N-1-i%)) ? 1 : 0.

2.1.3 Example

Figure 2 shows an example bitmap of siz@ x 12. Shaded pixels are “on” and
white pixels are “off”. Figure 3 shows a possible represgéoeof this bitmap in the
potrace_bi t map_t data structure. Note that the data is stored innthp array in
a bottom-to-top and left-to-right fashion.

214 Aremark on byteorder

It is important to keep in mind that bitmaps are stored asyarcd words,not as ar-
rays of bytes. While this distinction makes no differencebaprendian architectures,
it makes a significant difference on little-endian architees such as the Intel-based
architecture. For instance, when the integer word Ox1f@®fs accessed as a byte-
array on a little-endian machine, then the bytes appeaniarse order 0x02, Oxfc,
0x80, 0x1f. Therefore, special care must be taken when ctingea bitmap from a
byte-based format to Potrace’s word-based format.

2.1.5 Coordinateindependence

The vector data that is the output of Potrace is taken witheetdo the same coordinate
system as the input bitmap, i.e., the coordinate system Figure 1. In principle, it is
immaterial whether an application puts the coordinateiotiigthe bottom-left corner
or the top-left corner of an image, as long as it interpregsaihitput coordinates in the
same way as the input coordinates.

However, a reversal of the coordinate system will upset thamng of the words
“clockwise” and “counterclockwise” in the specification wéctor images below (see
Section 2.2.5), and will also affect the meaning of Potmdainpolicies (see Sec-
tion 2.3). We therefore assume, for definiteness, that tledawate origin is in the
lower left corner. Applications that wish to follow a differentrmgention have to com-
pensate accordingly.

2.2 Vector format
2.2.1 Points

A point (z,y) in the Euclidean plane is represented in Potrace by a valugpef
potrace_dpoint _t.

struct potrace_dpoint_s {
doubl e x, vy;
b

typedef struct potrace_dpoint_s potrace_dpoint _t;

2.2.2 Segments

Curves in Potrace are composed of the following two typesgfrents:

Figure 2: Sample bitmap

oxfffOofc02;
Ox7ff1f e02;
Ox3ff3ff07;
Ox1ff7ff 87;
OxOf f 7cf 8f ;
0x07f 7878f ;
0x03f 7879f ;
0x01f 7cf of ;
0x00f 7f f bf ;
0x0073f f 3f ;
0x0031f e7f;
0x0010f c7f ;

map[23]
map[21]
map[19]
map[17]
map[15]
map[13]
map[11]
mapl[9]
map[7]
map| 5]
map| 3]
map[1]

0x00000000;
0x00000000;
0x00000000;
0x00000000;
0x80000000;
0x80000000;
0xc0000000;
0xc0000000;
0xe0000000;
0xe0000000;
0xf 0000000;
0xf 0000000;

Figure 3: Sample bitmap representation

Figure 4: (a) A Bezier curve segment. (b) A corner segment

Figure 5: A closed curve consisting of 4 segments

e Bezier curve segments. A Bezier curve segment is given inusii@l way by
a starting point, two control points: andw, and an endpoin, as shown in
Figure 4(a).

e Corner segments. A corner segment is given by a startind poavertexy, and
an endpoinb. A corner segment is drawn as two straight lines: one facimo,
and one fromv to b, as shown in Figure 4(b).

2.2.3 Curves

A curve in Potrace is a sequence of segments, such that tipeiehdf each segment
coincides with the starting point of the next one. All curie®otrace are closed, and
therefore the endpoint of the final segment also coincidéstive starting point of the
first one. Figure 5 shows an example of a curve consisting @fgfnents: 3 Bezier
curve segments and 1 corner segment. For clarity, the ataftendpoints of segments
have been marked with dots™

Curves are represented as values of fgper ace_cur ve_t, which is defined

as follows:

struct potrace_curve_s {

int n; /* nunber of segnents =/

int xtag; [+ array of segment types x/
potrace_dpoint _t (*c)[3]; /+ array of control points. =/
}

typedef struct potrace_curve_s potrace_curve_t;

Heren > 1 is the number of segments in the curve. Fer0,...,n—1,tag[i]
is the type of the-th segment, which iPOTRACE_CURVETOfor a Bezier curve seg-
ment andPOTRACE_CORNER for a corner segment: is an array of sizer x 3 that
holds the control points of the curve segments in the folhgwnanner:

o Ifthei-th segmentis a Bezier curve segment, tbpn] [0] = wandc[i][1] =
w are the two control points of that segment, afid] [2] = b is its endpoint.

(a) b

(b)

€

Figure 6: (a) A vector image. (b) Its boundary decomposition

e Ifthe i-th segmentis a corner segment, tiegm] [O] isunusede[i][1] =
is the vertex of the segment, aofli] [2] = b is its endpoint.

Note that, since the starting poinbf each segment coincides with the endpoiot
the preceding segment (and the starting poiof the first segment coincides with the
endpoint of the last segment), there is no need to store the startimgsaoexplicitly.
Also, note that regardless of the type of segment, the entipbihei-th segment is
c[i][2],and the starting point of theth segmentis[i ? i-1 : n-1][2].

The curve from Figure 5 is therefore represented by thevatig data:

n = 4;

tag[0] = POTRACE_CURVETO,

c[0][0] = wup; c[O0][1] = wo; c[O][2] = by = ay;
tag[1] = POTRACE_CURVETO

c[1][0] = wuy; c[1][1] = wi; c[1][2] = b1 = as;
tag[2] = POTRACE_CURVETO

c[2][0] = wuo; c[2][1] = we; c¢[2][2] = by = as;

tag[3] = POTRACE_CORNER;
c[3][0] = wnused; c[3]][1]

V3, C[3][2] = bg = aop,

2.2.4 Boundary decomposition of bitonal vector images

In Potrace, a bitonal (i.e. black-and-white) vector imaagein Figure 6(a), is decom-
posed into a collection of closed boundary curves, showrua and red and labeled
A-TI in Figure 6(b).

We introduce some terminology. A closed curvssisipleif it does not intersect
itself. Each simple closed curve, taken by itself, divides plane into two regions,
called theinsideand and theoutsideof the curve. IfC; andC, are simple closed
curves, we say that; is containedn Cs, written C; < Cs, if Cy lies entirely within
the inside ofC,. For example, in Figure 6(b), the curvés-E are contained i,
wheread-I are not.

In a decomposition of a vector image as in Figure 6, we sayatatrveC, is a
child of Cs if Cy < Cs and there exists no other curgg betweenC; andCs (i.e., no
curveCs such that’; < C3 < (5). In this case, we also say th@t is aparentof Cs.
Since boundary curves do not intersect, each curve has aomeparent. Two curves
are said to beiblingsif they are either both parentless, or else they have a parent
common. Note that the “child” relation naturally defineseetstructure on the set of
curves (more precisely, it defines a “forest”, since therelmamore than one root).

For example, in Figure 6(b), the curvkehas no parent, and has childrBrand E.
The curveFE has no children, and the cunie has childrenC' and D. A and F' are
siblings,B and E are siblings, and” and D are siblings. The curves from Figure 6(b)
form the following forest under the “child” relation:

A F
/A |
B E G

I\

I
C D H

I

|

We can assign each curves@gn by calling a curvepositiveif it encloses a “fore-
ground” region, anchegativeif it encloses a “background” region (or “hole”). For
example, in Figure 6(b), positive curves are shown in blukreggative curves in red.

Since foreground and background regions alternate, ioviallthat the sign of
curves also alternates, i.e., parentless curves are apemjtve, and all other curves
have the opposite sign of their parent. It follows that, ie ttee structure, curves that
appear at even levels are positive and those that appead &\als are negative. In
particular, siblings share a common sign.

2.2.5 Representation of vector images

In Potrace, a vector image is represented as a linked doltecf zero or more struc-
tures of typepot r ace_pat h_t , which is defined as follows:

struct potrace_path_s {

int area; /* encl osed area =*/
int sign; ["+ or '-' */
potrace_curve_t curve; /* vector data */
struct potrace_path_s =*next; [+ list structure x/

struct potrace_path_s *childlist; /* tree structure =/
struct potrace_path_s =sibling; [+ tree structure =/

struct potrace_privpath_s *priv; /[/* private state =/
b

typedef struct potrace_path_s potrace_path_t;

Each such structure holds a single curve, and the strucivedmked to each other
viathenext , chi | dl i st, andsi bl i ng pointers.

e Thesi gn field holds the sign of the curvé ¢’ or’ -’ in ASCII).

e Thecur ve field contains the curve’s vector data as described in Seétid.3.
Potrace additionally follows the convention that positu@ves run counter-
clockwise and negative curves run clockwise; this fadéisarendering in en-
vironments (such as PostScript or PDF) that have a “fill” hdsed on winding
number.

e Thear ea field gives the approximate magnitude of the area encloseithdoy
curve. (In fact, it is the precise integer area of the origimatraced “jaggy”
curve). Some clients use this information to improve intéva rendering speeds
by ignoring very small areas in a first rendering pass. Seethésdescription of
thet ur dsi ze parameter in Section 2.3 below.

e Thepri v field is used internally by Potrace, and is not accessibledica-
tions.

e Thenext field is used to link all the curves of a given vector image entimked
list. Each member points to the next one vianext field, and the last member
of the list hasnext ==NULL. The order of the elements of this list is unspecified,
but is guaranteed to satisfy the following constraints:

(a) outer curves appear before inner ones, s6;if< Cj, thenCy always
appears sometime befofg in the linked list, and

(b) each positive curve is immediately followed by all ofétsildren.

These two constraints make it easy for clients to renderrtrege by simply

processing the linked list in sequential order. Constr@htnakes it possible to
fill each curve with solid black or white color, allowing lateurves to paint over
parts of earlier ones. Constraint (b) further allows a ¢lierfill a positive curve,

minus its negative children, in a single paint operatioayieg a “hole” for each

of the negative children.

e Thechil dlist andsi bl i ng fields define a forest structure on the set of
curves, which can be used independently of the linked Iisicatre. For each
curvechi | dl i st isa pointertoits first child, okULL if there are no children.
Also, si bl i ng is a pointer to the next sibling, ™ULL if there are no further
siblings. The relative order of siblings is unspecified. Thet node of the tree
structure always coincides with the root node of the linksidstructure.

An image consisting of zero curves is representedidld. pointer.

2.2.6 Intersecting curves

While in the above discussion we have assumed a set of nersétting curves, in
practice it can happen that the curves output by Potracesetteslightly. Clients

should therefore carefully choose their rendering paramsde.g., the non-zero wind-
ing number rule is preferable to the odd winding number rtdegvoid undesirable
artifacts.

2.2.7 Example

The image from Figure 6 can be represented by the popitest , whereA-l are
structures of typgot race_pat h_t, as follows. We do not show ther ea and
cur ve fields.

potrace_path_t =*plist = &A;

ER

Asign ="+ ; B.sign = '-"; E.sign ="'-";

A next = &B; B. next = &E; E. next = &C,
A.childlist = &B; B.childlist = &C; E.childlist = NULL;
A sibling = &F; B.sibling = &E; E.sibling = NULL;
C.sign ="+, D.sign ="+ ; F.sign ="+ ;

C. next = &DO; D. next = &F; F. next = &G
C.childlist = NULL; D.childlist = NULL; F.childlist = &G
C.sibling = &b; D.sibling = NULL; F.sibling = NULL;
Gsign ="'-"; Hsign ="+ ; l.sign ="-";

G next = &H; H next = &l; I . next = NULL;

G childlist = &H; H childlist = &l ; I.childlist = NULL;
G sibling = NULL; H.sibling = NULL; I.sibling = NULL;

2.3 Tracing parameters

The tracing operation of Potrace is controlled by a small beinof parameters. The
parameter structure is defined in potracelib.h as:

struct potrace_params {

int turdsize;

int turnpolicy;

doubl e al phanex;

int opticurve;

doubl e opttol erance;

potrace_progress_t progress;
}s

typedef struct potrace_params potrace_paramt;

For most practical purposes, the default parameters giadlent results. The func-

tion potrace_par am def aul t () (see Section 3.3) returns the set of default pa-
rameters. Applications must always start from these defawrhmeters before chang-

Before: After:

Figure 7: Despeckling with turdsize=3.

EE H i
B0 0 m0 EOC

Figure 8: Path decomposition

ing any parameters. This will increase backward compéiibit case additional pa-
rameters are added in the future.
231 Turdsize

Thet ur dsi ze parameter can be used to “despeckle” the bitmap to be trdmed,
removing all curves whose enclosed area is below the giveshiold. Figure 7 shows
the result of applying turdsize=3 to a bitmap. The currerfadl for the turdsize
parameter is 2; its useful range is from 0 to infinity.

2.3.2 Turnpolicy

The turnpolicy parameter determines how to resolve amtigduring decomposition
of bitmaps into paths. The ambiguity arises in the last sitmashown in Figure 8. The
possible choices for theur npol i cy parameter are:

e POTRACE_TURNPOLI CY_BLACK: prefers to connect black (foreground) com-
ponents.

e POTRACE_TURNPOLI CY_WHI TE: prefers to connect white (background) com-
ponents.

e POTRACE_TURNPOLI CY_LEFT: always take a left turn.
e POTRACE_TURNPOLI CY_RI GHT: always take a right turn.

10

DDDD

Qmaz = 0.0 Omaz = 0.6 Qmaz = 1.0 Qmaz = 1.2 Omaz = 1.3

Figure 9: The alphamax parameter

e POTRACE_TURNPOLI CY_M NORI TY: prefers to connect the color (black or
white) that occurs least frequently in a local neighborhafdtie current position.

e POTRACE_TURNPOLI CY_MAJCRI TY: prefers to connect the color (black or
white) that occurs most frequently in a local neighborhobthe current posi-
tion.

e POTRACE_TURNPCLI CY_RANDOM choose pseudo-randomly.

The current default policy IBOTRACE_TURNPOLI CY_M NORI TY, which tends
to keep visual lines connected.

2.3.3 Alphamax

Theal phamax parameter is a threshold for the detection of corners. Itrotsithe
smoothness of the traced curve, as shown in Figure 9. Therdwtefault is 1.0. The
useful range of this parameter is from 0.0 (polygon) to 13@® corners).

2.3.4 Opticurveand opttolerance

Theopti cur ve parameter is a boolean flag that controls whether Potradeatwil
tempt to “simplify” the final curve by reducing the number ofBer curve segments.
Opticurve=1 turns on optimization, and opticurve=0 tutreffi. The current default is
on.

Theopt t ol er ance parameter defines the amount of error allowed in this sim-
plification. The current default is 0.2. Larger values temdiécrease the number of
segments, at the expense of less accuracy. The useful mfigen 0 to infinity, al-
though in practice one would hardly choose values greatar thor so. For most
purposes, the default value is a good tradeoff between spataccuracy.

235 Progressreporting

Since tracing a large bitmap can be time consuming, Potrashle option of reporting
progress to the calling application. This is typically useéhteractive applications to
implement a progress bar. Progress reporting is contrbijetiepr ogr ess parame-
ter, which is a structure of tygeot r ace_pr ogr ess_t , defined as follows:

11

struct potrace_progress_s {

voi d (=*cal |l back) (doubl e progress, void *privdata);
voi d *dat a;

doubl e mn, nax;

doubl e epsil on;

1

typedef struct potrace_progress_s potrace_progress_t;

If cal | back is not NULL, then progress reporting is enabled. In this case
cal | back is the address of a function to be called for progress repangdat a
is a pointer to that function’s private data. Progress restake the form of a function
callcal | back(d, data),wheredisanumberrepresenting the amount of relative
progress in the rang@ n...max.

The parameteepsi | on is a hint that tells Potrace what amount of progress the
application considers “too small to report”. Whenever canient, Potrace will feel
free to suppress progress reports if the increment sinceréhgous report has been
less tharepsi | on. As a special case, @psi | on = 0, then the maximal number of
progress reports are sent. In any case, the applicatioidshandle progress reports
very efficiently, as there may be a large number of reports.

The defaults areal | back = NULL, dat a = NULL, mi n = 0.0, max = 1.0,
andepsi | on = 0.

2.4 Potracestate

A Potrace state holds the result of a tracing operation.defhed as follows:

struct potrace_state_s {
int status;
potrace_path_t =plist; [+ vector data =*/
struct potrace_privstate_s *priv; /* private state =/
b

typedef struct potrace_state_s potrace_state_t;

The fields are as follows:

e Thest at us field is eitherPOTRACE_STATUS_ (X, to indicate that the tracing
operation was successful, BOTRACE_STATUS | NCOVPLETE, to indicate
that it was unsuccessful.

¢ In the event of succesp] i st points to the representation of the bitonal traced
vector image as described in Section 2.2.5. In the evenilofdéapl i st points
to a data structure whose properties are undefined, excgphtn Potrace state
can still be freed witlpot race_state_free().

e Thepri v field is used internally by Potrace, and is not accessibleppjica-
tions.

12

3 API functions

There is no global or static state in potracelib; all API ftioes are reentrant and
thread-safe.

3.1 potrace_trace

potrace_state_t *potrace_trace(const potrace_paramt =*param
const potrace_bitmap_t *bm;

Inputs:

e bm a bitmap (see Section 2.1).

e par am a set of tracing parameters (see Section 2.3).
Output:

e a Potrace state (see Section 2.4).

This function attempts to trace the given bitmap using tvemjitracing parame-
ters. In the event of success, it returns a valid Potrace stilh thest at us field set
to POTRACE_STATUS_(X. In the event of failure, it setsr r no to an error number,
and either returnSIULL, or else it returns an incomplete Potrace state, which bpidefi
tion has the status field set ROTRACE_STATUS_| NCOVPLETE. Any Potrace state
returned bypot race_trace() (whether it is valid or invalid) can be freed using
thepotrace_stat e_free() function below.

3.2 potrace _state free
voi d potrace_state_free(potrace_state_t =*st);
Input:

e st: a Potrace state previously returneddnt r ace_trace().

This function frees the memory and other resources (if aggpaated with the
Potrace state.

3.3 potrace_param_default
potrace_paramt =*potrace_paramdefaul t();
Output:

e a set of tracing parameters (see Section 2.3).

This function returns a fresh set of tracing parametersalized to defaults. Appli-
cations must always use this function to create an objegpeidot r ace_param t,
and they must always start from the default parameters éefmdifying any param-
eters. This will help increase backward compatibility wiselditional parameters are
added in the future. The parameter set returned by thisitunctn later be freed by
potrace_param free().

13

3.4 potrace_param_free()
voi d potrace_param free(potrace_paramt =*p);
Input:
e tracing parameters previously returneddnt r ace_par am defaul t ().

This function frees the memory occupied by a set of tracingipaters as returned
by pot race_par am def aul t (). Only the fields initialized by Potrace are freed,
not any fields set by the application itself (suctpa®gr ess. dat a).

3.5 potrace_version()

This function returns a static human-readable text striteniifying this version of
potracelib.

14

