
Kerberos Administration System
KADM5 API Functional Specifications∗

Barry Jaspan

January 30, 2012

Contents

1 Introduction 2

2 Versions of the API 2

3 Policies and Password Quality 3

4 Data Structures 4
4.1 Principals, kadm5 principal ent t . 4
4.2 Policies, kadm5 policy ent t . 8
4.3 Configuration parameters . 9
4.4 Principal keys . 11
4.5 Field masks . 12

5 Constants, Header Files, Libraries 14

6 Error Codes 15

7 Authentication and Authorization 18

8 Functions 19
8.1 Overview . 19
8.2 kadm5 init * . 21
8.3 kadm5 flush . 24
8.4 kadm5 destroy . 25
8.5 kadm5 create principal . 25

∗api-funcspec.tex 17363 2005-08-29 19:22:52Z hartmans

1

8.6 kadm5 delete principal . 27
8.7 kadm5 modify principal . 27
8.8 kadm5 rename principal . 29
8.9 kadm5 chpass principal . 29
8.10 kadm5 chpass principal util . 31
8.11 kadm5 randkey principal . 33
8.12 kadm5 setkey principal . 35
8.13 kadm5 get principal . 36
8.14 kadm5 decyrpt key . 37
8.15 kadm5 get principals . 37
8.16 kadm5 create policy . 38
8.17 kadm5 delete policy . 39
8.18 kadm5 modify policy . 39
8.19 kadm5 get policy . 40
8.20 kadm5 get policies . 41
8.21 kadm5 free principal ent, policy ent . 41
8.22 kadm5 free name list . 42
8.23 kadm5 free key data . 42
8.24 kadm5 get privs . 42

1 Introduction

This document describes the Admin API that can be used to maintain principals and policies.
It describes the data structures used for each function and the interpretation of each data
type field, the semantics of each API function, and the possible return codes.

The Admin API is intended to be used by remote clients using an RPC interface. It is
implemented by the admin server running on the Kerberos master server. It is also possible
for a program running on the Kerberos master server to use the Admin API directly, without
going through the admin server.

2 Versions of the API

The versions of this API and a brief description of the changes for each are:

KADM5 API VERSION 1 The initial version of this API, written by OpenVision Tech-
nologies and donated to MIT for including in the public release. Originally called
OVSEC KADM API VERSION 1. Most everything has been renamed in one way or

2

another, including functions, header files, and data structures. Where possible, the
old OVSEC KADM names have been left behind for compatibility with version 1,
and KADM5 API VERSION 1 is compatible with OVSEC KADM API VERSION 1
at compile-, link-, and run-time.

The OVSEC KADM name compatibility will not be extended to new functionality in
future versions because no existing OVSEC KADM clients will use that functionality;
new clients should be written to the KADM5 API.

KADM5 API VERSION 2 This version contains the initial changes necessary to make
the OpenVision administration system work with the mid-1996 MIT version of Ker-
beros 5. Changes include

1. The kadm5 init functions now take a structure of parameters instead of just a
realm name, allowing the calling program to specify non-default values for various
configuration options. See section 4.3 for details.

2. The KADM5 API has been extended to support new features of the Kerberos
database, including multiple encryption and salt types per principal. See section
4.4 for details.

3. kadm5 get principal now allows a principal’s keys to be retrieved by local clients
only. This is necessary in order for the kadm5 API to provide the primary Ker-
beros database interface.

4. The KADM5 authorization system has been completely changed.

5. The functions kadm5 flush, kadm5 get principals, and kadm5 get policies have
been added.

6. The KADM5 API now obeys a caller-allocates rather than callee-allocates system.
kadm5 get principal and kadm5 get policy are affected.

3 Policies and Password Quality

The Admin API Password Quality mechanism provides the following controls. Note that
two strings are defined to be “significantly different” if they differ by at least one character.
The compare is not case sensitive.

• A minimum length can be required; a password with fewer than the specified number
of characters will not be accepted.

• A minimum number of character classes can be required; a password that does not
contain at least one character from at least the specified number of character classes
will not be accepted. The character classes are defined by islower(), isupper(), isdigit(),
ispunct(), and other.

3

• Passwords can be required to be different from previous passwords; a password that
generates the same encryption key as any of the principal’s specified previous number
of passwords will not be accepted. This comparison is performed on the encryption
keys generated from the passwords, not on the passwords themselves.

• A single “forbidden password” dictionary can be specified for all users; a password that
is not significantly different from every word in the dictionary will not be accepted.

4 Data Structures

This section describes the data structures used by the Admin API. They are defined in
<kadm5/admin.h>.

4.1 Principals, kadm5 principal ent t

A Kerberos principal entry is represented by a kadm5 principal ent t. It contains a subset of
the information stored in the master Kerberos database as well as the additional information
maintained by the admin system. In the current version, the only additional information is
the principal’s policy and the aux attributes flags.

The principal may or may not have a policy enforced on it. If the POLICY bit (see section
4.5) is set in aux attributes, the policy field names the principal’s policy. If the POLICY
bit is not set in aux attributes, no policy is enforced on the principal and the value of the
policy field is undefined.

The fields of an kadm5 principal ent t are interpreted as follows.

principal The name of the principal; must conform to Kerberos naming specifications.

princ expire time The expire time of the principal as a Kerberos timestamp. No Kerberos
tickets will be issued for a principal after its expire time.

last pwd change The time this principal’s password was last changed, as a Kerberos times-
tamp.

pw expiration The expire time of the user’s current password, as a Kerberos timestamp.
No application service tickets will be issued for the principal once the password expire
time has passed. Note that the user can only obtain tickets for services that have the
PW CHANGE SERVICE bit set in the attributes field.

max life The maximum lifetime of any Kerberos ticket issued to this principal.

4

typedef struct _kadm5_principal_ent_t {

krb5_principal principal;

krb5_timestamp princ_expire_time;

krb5_timestamp last_pwd_change;

krb5_timestamp pw_expiration;

krb5_deltat max_life;

krb5_principal mod_name;

krb5_timestamp mod_date;

krb5_flags attributes;

krb5_kvno kvno;

krb5_kvno mkvno;

char * policy;

u_int32 aux_attributes;

krb5_deltat max_renewable_life;

krb5_timestamp last_success;

krb5_timestamp last_failed;

krb5_kvno fail_auth_count;

krb5_int16 n_key_data;

krb5_int16 n_tl_data;

krb5_tl_data *tl_data;

krb5_key_data *key_data;

} kadm5_principal_ent_rec, *kadm5_principal_ent_t;

Figure 1: Definition of kadm5 principal ent t.

5

attributes A bitfield of attributes for use by the KDC. The symbols and constant values
are defined below; their interpretation appears in the libkdb functional specification.

Name Value
KRB5 KDB DISALLOW POSTDATED 0x00000001

KRB5 KDB DISALLOW FORWARDABLE 0x00000002
KRB5 KDB DISALLOW TGT BASED 0x00000004
KRB5 KDB DISALLOW RENEWABLE 0x00000008
KRB5 KDB DISALLOW PROXIABLE 0x00000010
KRB5 KDB DISALLOW DUP SKEY 0x00000020

KRB5 KDB DISALLOW ALL TIX 0x00000040
KRB5 KDB REQUIRES PRE AUTH 0x00000080
KRB5 KDB REQUIRES HW AUTH 0x00000100

KRB5 KDB REQUIRES PWCHANGE 0x00000200
KRB5 KDB DISALLOW SVR 0x00001000

KRB5 KDB PWCHANGE SERVICE 0x00002000
KRB5 KDB SUPPORT DESMD5 0x00004000

KRB5 KDB NEW PRINC 0x00008000

mod name The name of the Kerberos principal that most recently modified this principal.

mod date The time this principal was last modified, as a Kerberos timestamp.

kvno The version of the principal’s current key.

mkvno The version of the Kerberos Master Key in effect when this principal’s key was last
changed. In KADM5 API VERSION 2, this field is always zero.

policy If the POLICY bit is set in aux attributes, the name of the policy controlling this
principal.

aux attributes A bitfield of flags for use by the administration system. Currently, the
only valid flag is POLICY, and it indicates whether or not the principal has a policy
enforced on it.

max renewable life The maximum renewable lifetime of any Kerberos ticket issued to or
for this principal. This field only exists in KADM5 API VERSION 2.

last success The KDC time of the last successful AS REQ. This is only updated if KR-
BCONF KDC MODIFIES KDB is defined during compilation of the KDC. This field
only exists in KADM5 API VERSION 2.

last failed The KDC time of the last failed AS REQ. This is only updated if KRBCONF
KDC MODIFIES KDB is defined during compilation of the KDC. This field only exists
in KADM5 API VERSION 2.

6

fail auth count The number of consecutive failed AS REQs. When this number reaches
KRB5 MAX FAIL COUNT, the KRB5 KDC DISALLOW ALL TIX is set on the
principal. This is only updated if KRBCONF KDC MODIFIES KDB is defined during
compilation. This field only exists in KADM5 API VERSION 2.

n tl data The number of elements in the tl data linked list. This field only exists in
KADM5 API VERSION 2.

n key data The number of elements in the key data array. This field only exists in
KADM5 API VERSION 2.

tl data A linked list of tagged data. This list is a mechanism by which programs can store
extended information in a principal entry, without having to modify the database API.
Each element is of type krb5 tl data:

typedef struct _krb5_tl_data {

struct _krb5_tl_data* tl_data_next;

krb5_int16 tl_data_type;

krb5_int16 tl_data_length;

krb5_octet * tl_data_contents;

} krb5_tl_data;

The KADM5 API only allows elements whose tl data type is greater than or equal to
256. Values less than 256 are reserved for internal use by the KADM5 or kdb system.
They are filtered out of the list returned by kadm5 get principal, and generate an error
if given to kadm5 modify principal.

The libkdb library defines the tagged data types KRB5 TL LAST PWD CHANGE,
KRB5 TL MOD PRINC, and KRB5 TL KADM DATA, all with values less than 256,
which store the last password modification time, time and modifier of last principal
modification, and administration system data. All of these entries are expected by
the administration system and parsed out into fields of the kadm5 principal ent rec
structure; as described above, they are not included in the tl data list.

Tagged data elements with types greater than 256 are handled without interpretation
by KADM5. Note that an application that calls kadm5 modify principal with the
KADM5 TL DATA mask bit set is responsible for providing the complete tl data list,
which it necessarily must obtain from kadm5 get principal. It is never possible for an
application to construct a complete tl data list from scratch.

key data An array of the principal’s keys. The keys contained in this array are encrypted
in the Kerberos master key. See section 4.4 for a discussion of the krb5 key data
structure.

7

4.2 Policies, kadm5 policy ent t

If the POLICY bit is set in aux attributes, the policy name field in the kadm5 principal
ent t structure refers to a password policy entry defined in a kadm5 policy ent t.

typedef struct _kadm5_policy_ent_t {

char *policy;

u_int32 pw_min_life;

u_int32 pw_max_life;

u_int32 pw_min_length;

u_int32 pw_min_classes;

u_int32 pw_history_num;

u_int32 policy_refcnt;

} kadm5_policy_ent_rec, *kadm5_policy_ent_t;

The fields of an kadm5 policy ent t are interpreted as follows. Note that a policy’s values
only apply to a principal using that policy.

policy The name of this policy, as a NULL-terminated string. The ASCII characters be-
tween 32 (space) and 126 (tilde), inclusive, are legal.

pw min life The minimum password lifetime, in seconds. A principal cannot change its
password before pw min life seconds have passed since last pwd change.

pw max life The default duration, in seconds, used to compute pw expiration when a
principal’s password is changed.

pw min length The minimum password length, in characters. A principal cannot set its
password to anything with fewer than this number of characters. This value must be
greater than zero.

pw min classes The minimum number of character classes in the password. This value
can only be 1, 2, 3, 4, or 5. A principal cannot set its password to anything with fewer
than this number of character classes in it.

pw history num The number of past passwords that are stored for the principal; the
minimum value is 1 and the maximum value is 10. A principal cannot set its password
to any of its previous pw history num passwords. The first “previous” password is the
current password; thus, a principal with a policy can never reset its password to its
current value.

policy refcnt The number of principals currently using this policy. A policy cannot be
deleted unless this number is zero.

8

4.3 Configuration parameters

The KADM5 API acquires configuration information from the Kerberos configuration
file ($KRB5 CONFIG or DEFAULT PROFILE PATH) and from the KDC configuration
file ($KRB5 KDC CONFIG or DEFAULT KDC PROFILE). In KADM5 API VERSION 2,
some of the configuration parameters used by the KADM5 API can be controlled by the
caller by providing a kadm5 config params structure to kadm5 init:

typedef struct _kadm5_config_params {

u_int32 mask;

/* Client and server fields */

char *realm;

char *profile;

int kadmind_port;

/* client fields */

char *admin_server;

/* server fields */

char *dbname;

char *admin_dbname;

char *admin_lockfile;

char *acl_file;

char *dict_file;

char *admin_keytab;

/* server library (database) fields */

int mkey_from_kbd;

char *stash_file;

char *mkey_name;

krb5_enctype enctype;

krb5_deltat max_life;

krb5_deltat max_rlife;

krb5_timestamp expiration;

krb5_flags flags;

krb5_key_salt_tuple *keysalts;

krb5_int32 num_keysalts;

} kadm5_config_params;

The following list describes each of the fields of the structure, along with the profile relation
it overrides, its mask value, its default value, and whether it is valid on the client, server, or

9

both, or neither.

mask No variable. No mask value. A bitfield specifying which fields of the structure contain
valid information. A caller sets this mask before calling kadm5 init *, indicating which
parameters are specified. The mask values are defined in <kadm5/admin.h> and are
all prefixed with KADM5 CONFIG ; the prefix is not included in the descriptions
below.

realm No variable. REALM. Client and server. The realm to which these parameters apply,
and the realm for which additional parameters are to be acquired, if any. If this field
is not specified in the mask, the default local realm is used.

profile Variable: profile (server only). PROFILE. Client and server. The Kerberos profile
to use. On the client, the default is the value of the KRB5 CONFIG environment
variable, or DEFAULT PROFILE PATH if that is not set. On the server, the value of
the “profile” variable of the KDC configuration file will be used as the first default if it
exists; otherwise, the default is the value of the KRB5 KDC PROFILE environment
variable or DEFAULT KDC PROFILE.

kadmind port Variable: kadmind port. KADMIND PORT. Client and server. The port
number the kadmind server listens on. The client uses this field to determine where
to connect, and the server to determine where to listen. The default is 749, which has
been assigned by IANA.

admin server Variable: admin server. ADMIN SERVER. Client. The host name of the
admin server to which to connect. There is no default. If the value of this field contains
a colon (:), the text following the colon is treated as an integer and assigned to the
kadmind port field, overriding any value of the kadmind port variable.

dbname Variable: dbname. DBNAME. Server. The Kerberos database name to use; the
Kerberos database stores principal information. The default is DEFAULT KDB FILE.

admin dbname Variable: admin database name. ADBNAME. Neither. If the dbname
field is set, this field is set to the value of dbname followed by “.kadm5”.

admin lockfile Variable: admin database lockfile. ADB LOCKFILE. Neither. If the ad-
min dbname field is set, this field is set to the value of admin dbname followed by
“.lock”.

acl file Variable: acl file. ACL FILE. Server. The admin server’s ACL file. The default is
DEFAULT KADM5 ACL FILE.

dict file Variable: admin dict file. DICT FILE. Server. The admin server’s dictionary file
of passwords to disallow. No default.

10

admin keytab Variable: admin keytab. ADMIN KEYTAB. Server. The keytab file con-
taining the kadmin/admin and kadmin/changepw entries for the server to use. The
default is the value of the KRB5 KTNAME environment variable, if defined, else DE-
FAULT KADM5 KEYTAB.

mkey from keyboard No variable. MKEY FROM KEYBOARD. Server. If non-zero,
prompt for the master password via the tty instead of using the stash file. If this mask
bit is not set, or is set and the value is zero, the stash file is used.

stash file Variable: key stash file. STASH FILE. Server. The file name containing the
master key stash file. No default; libkdb will work with a NULL value.

mkey name Variable: master key name. MKEY NAME. Server. The name of the master
principal for the realm. No default; lbkdb will work with a NULL value.

enctype Variable: master key type. ENCTYPE. Server. The encryption type of the master
principal. The default is DEFAULT KDC ENCTYPE.

max life Variable: max life. MAX LIFE. Maximum lifetime for all tickets issued to the
principal. The default is 28800, which is 8 hours.

max rlife, expiration, flags Variables: max renewable life, default principal expiration,
default principal flags. MAX LIFE, MAX RLIFE, EXPIRATION, FLAGS. Server.
Default values for new principals. All default to 0.

keysalts, num keysalts Variable: supported enctypes. ENCTYPES. Server. The list of
supported encryption type/salt type tuples; both fields must be assigned if ENCTYPES
is set. The default is a list containing one enctype, DES-CBC-CRC with normal salt.

4.4 Principal keys

In KADM5 API VERSION 1, all principals had a single key. The encryption method was
always DES, and the salt type was determined outside the API (by command-line options
to the administration server).

In KADM5 API VERSION 2, principals can have multiple keys, each with its own encryp-
tion type and salt. Each time a principal’s key is changed with kadm5 create principal,
kadm5 chpass principal or kadm5 randkey principal, existing key entries are removed and a
key entry for each encryption and salt type tuple specified in the configuration parameters
is added. There is no provision for specifying encryption and salt type information on a
per-principal basis; in a future version, this will probably be part of the admin policy. There
is also presently no provision for keeping multiple key versions for a single principal active
in the database.

11

A single key is represented by a krb5 key data:

typedef struct _krb5_key_data {

krb5_int16 key_data_ver; /* Version */

krb5_int16 key_data_kvno; /* Key Version */

krb5_int16 key_data_type[2]; /* Array of types */

krb5_int16 key_data_length[2]; /* Array of lengths */

krb5_octet * key_data_contents[2]; /* Array of pointers */

} krb5_key_data;

key data ver The verion number of the structure. Versions 1 and 2 are currently defined.
If key data ver is 1 then the key is either a random key (not requiring a salt) or the
salt is the normal v5 salt which is the same as the realm and therefore doesn’t need to
be saved in the database.

key data kvno The key version number of this key.

key data type The first element is the enctype of this key. In a version 2 structure, the
second element is the salttype of this key. The legal encryption types are defined in
<krb5.h>. The legal salt types are defined in <k5-int.h>.

key data length The first element is length this key. In a version 2 structure, the second
element is length of the salt for this key.

key data contents The first element is the content of this key. In a version 2 structure,
the second element is the contents of the salt for this key.

4.5 Field masks

The API functions for creating, retrieving, and modifying principals and policies allow for
a relevant subset of the fields of the kadm5 principal ent t and kadm5 policy ent t to be
specified or changed. The chosen fields are determined by a bitmask that is passed to
the relevant function. Each API function has different rules for which mask values can be
specified, and can specify whether a given mask value is mandatory, optional, or forbidden.
Mandatory fields must be present and forbidden fields must not be present or an error is
generated. When creating a principal or policy, optional fields have a default value if they
are not specified. When modifying a principal or policy, optional fields are unchanged if
they are not specified. When retrieving a principal, optional fields are simply not provided
if they are not specified; not specifying undeeded fields for retrieval may improve efficiency.
The values for forbidden fields are defined in the function semantics.

12

The masks for principals are in table 1 and the masks for policies are in table 2. They are
defined in <kadm5/admin.h>. The KADM5 prefix has been removed from the Name fields.
In the Create and Modify fields, M means mandatory, F means forbidden, and O means
optional. Create fields that are optional specify the default value. The notation “K/M
value” means that the field inherits its value from the corresponding field in the Kerberos
master principal, for KADM5 API VERSION 1, and from the configuration parameters for
KADM5 API VERSION 2.

All masks for principals are optional for retrevial, except that the KEY DATA mask is illegal
when specified by a remote client; for details, see the function semantics for kadm5 get
principal.

Note that the POLICY and POLICY CLR bits are special. When POLICY is set, the policy
is assigned to the principal. When POLICY CLR is specified, the policy is unassigned to
the principal and as a result no policy controls the principal.

For convenience, the mask KADM5 PRINCIPAL NORMAL MASK contains all of the prin-
cipal masks except KADM5 KEY DATA and KADM5 TL DATA, and the mask KADM5
POLICY NORMAL MASK contains all of the policy masks.

Name Value Fields Affected Create Modify
PRINCIPAL 0x000001 principal M F
PRINC EXPIRE TIME 0x000002 princ expire time O, K/M value O
PW EXPIRATION 0x000004 pw expiration O, now+pw max life O
LAST PWD CHANGE 0x000008 last pwd change F F
ATTRIBUTES 0x000010 attributes O, 0 O
MAX LIFE 0x000020 max life O, K/M value O
MOD TIME 0x000040 mod date F F
MOD NAME 0x000080 mod name F F
KVNO 0x000100 kvno O, 1 O
MKVNO 0x000200 mkvno F F
AUX ATTRIBUTES 0x000400 aux attributes F F
POLICY 0x000800 policy O, none O
POLICY CLR 0x001000 policy F O
MAX RLIFE 0x002000 max renewable life O, K/M value O
LAST SUCCESS 0x004000 last success F F
LAST FAILED 0x008000 last failed F F
FAIL AUTH COUNT 0x010000 fail auth count F O
KEY DATA 0x020000 n key data, key data F F
TL DATA 0x040000 n tl data, tl data O, 0, NULL O

Table 1: Mask bits for creating, retrieving, and modifying principals.

13

Name Value Field Affected Create Modify
POLICY same policy M F
PW MAX LIFE 0x004000 pw max life O, 0 (infinite) O
PW MIN LIFE 0x008000 pw min life O, 0 O
PW MIN LENGTH 0x010000 pw min length O, 1 O
PW MIN CLASSES 0x020000 pw min classes O, 1 O
PW HISTORY NUM 0x040000 pw history num O, 0 O
REF COUNT 0x080000 pw refcnt F F

Table 2: Mask bits for creating/modifying policies.

5 Constants, Header Files, Libraries

<kadm5/admin.h> includes a number of required header files, including RPC, Kerberos 5,
com err, and admin com err defines. It contains prototypes for all kadm5 routines mentioned
below, as well as all Admin API data structures, type definitions and defines mentioned in
this document.

Before #includeing <kadm5/admin.h>, the programmer can specify the API version num-
ber that the program will use by #defineing USE KADM5 API VERSION; for example,
define that symbol to be 1 to use KADM5 API VERSION 1. This will ensure that the cor-
rect functional protoypes and data structures are defined. If no version symbol is defined,
the most recent version supported by the header files will be used.

Some of the defines and their values contained in <kadm5/admin.h> include the following,
whose KADM5 prefixes have been removed. Symbols that do not exist in KADM5 API
VERSION 2 do not have a KADM5 prefix, but instead retain only with OVSEC KADM
prefix for compatibility.

admin service principal ADMIN SERVICE (“kadmin/admin”)

admin history key HIST PRINCIPAL (“kadmin/history”)

change password principal CHANGEPW SERVICE (“kadmin/changepw”)

server acl file path ACLFILE (“/krb5/ovsec adm.acl”). In KADM5 API VERSION 2,
this is controlled by configuration parameters.

dictionary WORDFILE (“/krb5/kadmind.dict”). In KADM5 API VERSION 2, this is
controlled by configuration parameters.

KADM5 errors are described in <kadm5/kadm err.h>, which is included by
<kadm5/admin.h>.

14

The locations of the admin policy and principal databases, as well as defines and type
definitions for the databases, are defined in <kadm5/adb.h>. Some of the defines in that
file are:

admin policy database POLICY DB (“/krb5/kadm5 policy.db”). In KADM5 API
VERSION 2, this is controlled by configuration parameters.

admin principal database PRINCIPAL DB (“/krb5/ovsec principal.db”). In KADM5
API VERSION 2, this is controlled by configuration parameters.

Client applications will link against libkadm5clnt.a and server programs against
libkadm5srv.a. Client applications must also link against: libgssapi krb5.a, libkrb5.a,
libcrypto.a, libgssrpc.a, libcom err.a, and libdyn.a. Server applications must also link
against: libkdb5.a, libkrb5.a, libcrypto.a, libgssrpc.a, libcom err.a, and libdyn.a.

6 Error Codes

The error codes that can be returned by admin functions are listed below. Error codes
indicated with a “*” can be returned by every admin function and always have the same
meaning; these codes are omitted from the list presented with each function.

The admin system guarantees that a function that returns an error code has no other side
effect.

The Admin system will use com err for error codes. Note that this means com err codes
may be returned from functions that the admin routines call (e.g. the kerberos library).
Callers should not expect that only KADM5 errors will be returned. The Admin system
error code table name will be “ovk”, and the offsets will be the same as the order presented
here. As mentioned above, the error table include file will be <kadm5/kadm err.h>.

Note that these error codes are also used as protocol error code constants and therefore must
not change between product releases. Additional codes should be added at the end of the
list, not in the middle. The integer value of KADM5 FAILURE is 43787520; the remaining
values are assigned in sequentially increasing order.

* KADM5 FAILURE Operation failed for unspecified reason

* KADM5 AUTH GET Operation requires “get” privilege

* KADM5 AUTH ADD Operation requires “add” privilege

* KADM5 AUTH MODIFY Operation requires “modify” privilege

15

* KADM5 AUTH DELETE Operation requires “delete” privilege

* KADM5 AUTH INSUFFICIENT Insufficient authorization for operation

* KADM5 BAD DB Database inconsistency detected

KADM5 DUP Principal or policy already exists

KADM5 RPC ERROR Communication failure with server

KADM5 NO SRV No administration server found for realm

KADM5 BAD HIST KEY Password history principal key version mismatch

KADM5 NOT INIT Connection to server not initialized

KADM5 UNK PRINC Principal does not exist

KADM5 UNK POLICY Policy does not exist

KADM5 BAD MASK Invalid field mask for operation

KADM5 BAD CLASS Invalid number of character classes

KADM5 BAD LENGTH Invalid password length

KADM5 BAD POLICY Illegal policy name

KADM5 BAD PRINCIPAL Illegal principal name.

KADM5 BAD AUX ATTR Invalid auxillary attributes

KADM5 BAD HISTORY Invalid password history count

KADM5 BAD MIN PASS LIFE Password minimum life is greater then password max-
imum life

KADM5 PASS Q TOOSHORT Password is too short

KADM5 PASS Q CLASS Password does not contain enough character classes

KADM5 PASS Q DICT Password is in the password dictionary

KADM5 PASS REUSE Cannot resuse password

KADM5 PASS TOOSOON Current password’s minimum life has not expired

KADM5 POLICY REF Policy is in use

KADM5 INIT Connection to server already initialized

16

KADM5 BAD PASSWORD Incorrect password

KADM5 PROTECT PRINCIPAL Cannot change protected principal

* KADM5 BAD SERVER HANDLE Programmer error! Bad Admin server handle

* KADM5 BAD STRUCT VERSION Programmer error! Bad API structure version

* KADM5 OLD STRUCT VERSION API structure version specified by application
is no longer supported (to fix, recompile application against current Admin API header
files and libraries)

* KADM5 NEW STRUCT VERSION API structure version specified by application
is unknown to libraries (to fix, obtain current Admin API header files and libraries and
recompile application)

* KADM5 BAD API VERSION Programmer error! Bad API version

* KADM5 OLD LIB API VERSION API version specified by application is no longer
supported by libraries (to fix, update application to adhere to current API version and
recompile)

* KADM5 OLD SERVER API VERSION API version specified by application is no
longer supported by server (to fix, update application to adhere to current API version
and recompile)

* KADM5 NEW LIB API VERSION API version specified by application is unknown
to libraries (to fix, obtain current Admin API header files and libraries and recompile
application)

* KADM5 NEW SERVER API VERSION API version specified by application is
unknown to server (to fix, obtain and install newest Admin Server)

KADM5 SECURE PRINC MISSING Database error! Required principal missing

KADM5 NO RENAME SALT The salt type of the specified principal does not support
renaming

KADM5 BAD CLIENT PARAMS Illegal configuration parameter for remote KADM5
client

KADM5 BAD SERVER PARAMS Illegal configuration parameter for local KADM5
client.

KADM5 AUTH LIST Operation requires “list” privilege

KADM5 AUTH CHANGEPW Operation requires “change-password” privilege

17

KADM5 BAD TL TYPE Programmer error! Illegal tagged data list element type

KADM5 MISSING CONF PARAMS Required parameters in kdc.conf missing

KADM5 BAD SERVER NAME Bad krb5 admin server hostname

KADM5 AUTH SETKEY Operation requires “set-key” privilege

KADM5 SETKEY DUP ENCTYPES Multiple values for single or folded enctype

7 Authentication and Authorization

Two Kerberos principals exist for use in communicating with the Admin system: kad-
min/admin and kadmin/changepw. Both principals have the KRB5 KDB DISALLOW
TGT BASED bit set in their attributes so that service tickets for them can only be ac-
quired via a password-based (AS REQ) request. Additionally, kadmin/changepw has the
KRB5 KDB PWCHANGE SERVICE bit set so that a principal with an expired password
can still obtain a service ticket for it.

The Admin system accepts requests that are authenticated to either service principal, but
the sets of operations that can be performed by a request authenticated to each service are
different. In particular, only the functions chpass principal, randkey principal, get principal,
and get policy can be performed by a request authenticated to the kadmin/changepw service,
and they can only be performed when the target principal of the operation is the same
as the authenticated client principal; the function semantics descriptions below give the
precise details. This means that administrative operations can only be performed when
authenticated to the kadmin/admin service. The reason for this distinction is that tickets
for kadmin/changepw can be acquired with an expired password, and the KADM system
does not want to allow an administrator with an expired password to perform administrative
operations on arbitrary principals.

Each Admin API operation authenticated to the kadmin/admin service requires a specific
authorization to run. This version uses a simple named privilege system with the following
names and meanings:

Get Able to examine the attributes (NOT key data) of principals and policies.

Add Able to add principals and policies.

Modify Able to modify attributes of existing principals and policies; this does not include
changing passwords.

Delete Able to remove principals and policies.

18

List Able to retrieve a list of principals and policies.

Changepw Able to change the password of principals.

Setkey Able to set principal keys directly.

Privileges are specified via an external configuration file on the Kerberos master server.

Table 3 summarizes the authorization requirements of each function. Additionally, each API
function description identifies the privilege required to perform it. The Authorization checks
only happen if you are using the RPC mechanism. If you are using the server-side API
functions locally on the admin server, the only authorization check is if you can access the
approporiate local files.

8 Functions

8.1 Overview

The functions provided by the Admin API, and the authorization they require, are listed in
the table 3. The “kadm5 ” prefix has been removed from each function name.

The function semantics in the following sections omit details that are the same for every
function.

• The effects of every function are atomic.

• Every function performs an authorization check and returns the appropriate KADM5
AUTH * error code if the caller does not have the required privilege. No other infor-
mation or error code is ever returned to an unauthorized user.

• Every function checks its arguments for NULL pointers or other obviously invalid
values, and returns EINVAL if any are detected.

• Any function that performs a policy check uses the policy named in the principal’s
policy field. If the POLICY bit is not set in the principal’s aux attributes field, however,
the principal has no policy, so the policy check is not performed.

• Unless otherwise specified, all functions return KADM5 OK.

1These functions also allow a principal to perform the operation on itself; see the function’s semantics for
details.

19

Table 3: Summary of functions and required authorization.

Function Name Authorization Operation
init none Open a connection with the kadm5 library.

OBSOLETE but still provided—use init with
password instead.

init with password none Open a connection with the kadm5 library us-
ing a password to obtain initial credentials.

init with skey none Open a connection with the kadm5 library
using the keytab entry to obtain initial
credentials.

destroy none Close the connection with the kadm5 library.
flush none Flush all database changes to disk; no-op

when called remotely.
create principal add Create a new principal.
delete principal delete Delete a principal.
modify principal modify Modify the attributes of an existing principal

(not password).
rename principal add and delete Rename a principal.
get principal get1 Retrieve a principal.
get principals list Retrieve some or all principal names.
chpass principal changepw1 Change a principal’s password.
chpass principal util changepw1 Utility wrapper around chpass principal.
randkey principal changepw1 Randomize a principal’s key.
setkey principal setkey Explicitly set a principal’s keys.
decrypt key none Decrypt a principal key.
create policy add Create a new policy.
delete policy delete Delete a policy.
modify policy modify Modify the attributes of a policy.
get policy get Retrieve a policy.
get policies list Retrieve some or all policy names.
free principal ent none Free the memory associated with an kadm5

principal ent t.
free policy ent none Free the memory associated with an kadm5

policy ent t.
get privs none Return the caller’s admin server privileges.

20

8.2 kadm5 init *

In KADM5 API VERSION 1:

kadm5_ret_t kadm5_init_with_password(char *client_name, char *pass,

char *service_name, char *realm,

unsigned long struct_version,

unsigned long api_version,

void **server_handle)

kadm5_ret_t kadm5_init_with_skey(char *client_name, char *keytab,

char *service_name, char *realm,

unsigned long struct_version,

unsigned long api_version,

void **server_handle)

kadm5_ret_t kadm5_init(char *client_name, char *pass,

char *service_name, char *realm,

unsigned long struct_version,

unsigned long api_version,

void **server_handle)

In KADM5 API VERSION 2:

kadm5_ret_t kadm5_init_with_password(char *client_name, char *pass,

char *service_name,

kadm5_config_params *realm_params,

unsigned long struct_version,

unsigned long api_version,

void **server_handle)

kadm5_ret_t kadm5_init_with_skey(char *client_name, char *keytab,

char *service_name,

kadm5_config_params *realm_params,

unsigned long struct_version,

unsigned long api_version,

void **server_handle)

kadm5_ret_t kadm5_init(char *client_name, char *pass,

char *service_name,

kadm5_config_params *realm_params,

21

unsigned long struct_version,

unsigned long api_version,

void **server_handle)

kadm5_ret_t kadm5_init_with_creds(char *client_name,

krb5_ccache ccache,

char *service_name,

kadm5_config_params *params,

krb5_ui_4 struct_version,

krb5_ui_4 api_version,

void **server_handle)

AUTHORIZATION REQUIRED: none

NOTE: kadm5 init is an obsolete function provided for backwards compatibility. It is iden-
tical to kadm5 init with password.

These three functions open a connection to the kadm5 library and initialize any neccessary
state information. They behave differently when called from local and remote clients.

In KADM5 API VERSION 2, these functions take a kadm5 config params structure instead
of a realm name as an argument. The semantics are similar: if a NULL pointer is passed
for the realm params argument, the default realm and default parameters for that realm,
as specified in the krb5 configuration file (e.g. /etc/krb5.conf) are used. If a realm params
structure is provided, the fields that are set override the default values. If a parameter is
specified to the local or remote libraries that does not apply to that side, an error code
(KADM5 BAD CLIENT PARAMS or KADM5 BAD SERVER PARAMS) is returned. See
section 4.3 for a discussion of configuration parameters.

For remote clients, the semantics are:

1. Initializes all the com err error tables used by the Admin system.

2. Acquires configuration parameters. In KADM5 API VERSION 1, all the defaults
specified in the configuration file are used, according to the realm. In KADM5 API
VERSION 2, the values in params in are merged with the default values. If an illegal
mask value is specified, KADM5 BAD CLIENT PARAMS is returned.

3. Acquires a Kerberos ticket for the specified service.

(a) The ticket’s client is client name, which can be any valid Kerberos principal. If
client name does not include a realm, the default realm of the local host is used

(b) The ticket’s service is service name@realm. service name must be one of the
constants KADM5 ADMIN SERVICE or KADM5 CHANGEPW SERVICE.

22

(c) If realm is NULL, client name’s realm is used.

(d) For init with password, an initial ticket is acquired and decoded with the password
pass, which must be client name’s password. If pass is NULL or an empty string,
the user is prompted (via the tty) for a password.

(e) For init with skey, an initial ticket is acquired and decoded with client name’s
key obtained from the specified keytab. If keytab is NULL or an empty string the
default keytab is used.

(f) For init with creds, ccache must be an open credential cache that already has a
ticket for the specified client and server. Alternatively, if a site chooses to disable
the DISALLOW TGT BASED flag on the admin and changepw principals, the
ccache can contain a ticket-granting ticket for client name.

4. Creates a GSS-API authenticated connection to the Admin server, using the just-
acquired Kerberos ticket.

5. Verifies that the struct version and api version specified by the caller are valid and
known to the library.

6. Sends the specified api version to the server.

7. Upon successful completion, fills in server handle with a handle for this connection, to
be used in all subsequent API calls.

The caller should always specify KADM5 STRUCT VERSION for the struct version argu-
ment, a valid and supported API version constant for the api version argument (currently,
KADM5 API VERSION 1 or KADM5 API VERSION 2), and a valid pointer in which the
server handle will be stored.

If any kadm5 init * is invoked locally its semantics are:

1. Initializes all the com err error tables used by the Admin system.

2. Acquires configuration parameters. In KADM5 API VERSION 1, all the defaults
specified in the configuration file are used, according to the realm. In KADM5 API
VERSION 2, the values in params in are merged with the default values. If an illegal
mask value is specified, KADM5 BAD SERVER PARAMS is returned.

3. Initializes direct access to the KDC database. In KADM5 API VERISON 1, if pass
(or keytab) is NULL or an empty string, reads the master password from the stash
file; otherwise, the non-NULL password is ignored and the user is prompted for it via
the tty. In KADM5 API VERSION 2, if the MKEY FROM KEYBOARD parameter
mask is set and the value is non-zero, reads the master password from the user via

23

the tty; otherwise, the master key is read from the stash file. Calling init with skey or
init with creds with the MKEY FROM KEYBOARD mask set with a non-zero field is
illegal, and calling them without the mask set is exactly like calling init with password.

4. Initializes the dictionary (if present) for dictionary checks.

5. Parses client name as a Kerberos principal. client name should usually be specified as
the name of the program.

6. Verifies that the struct version and api version specified by the caller are valid.

7. Fills in server handle with a handle containing all state information (version numbers
and client name) for this “connection.”

The service name argument is not used.

RETURN CODES:

KADM5 NO SRV No Admin server can be found for the specified realm.

KADM5 RPC ERROR The RPC connection to the server cannot be initiated.

KADM5 BAD PASSWORD Incorrect password.

KADM5 SECURE PRINC MISSING The principal KADM5 ADMIN SERVICE or
KADM5 CHANGEPW SERVICE does not exist. This is a special-case replacement
return code for “Server not found in database” for these required principals.

KADM5 BAD CLIENT PARAMS A field in the parameters mask was specified to the
remote client library that is not legal for remote clients.

KADM5 BAD SERVER PARAMS A field in the parameters mask was specified to the
local client library that is not legal for local clients.

8.3 kadm5 flush

kadm5_ret_t kadm5_flush(void *server_handle)

AUTHORIZATION REQUIRED: none

Flush all changes to the Kerberos databases, leaving the connection to the Admin API open.
This function behaves differently when called by local and remote clients.

24

For local clients, the function closes and reopens the Kerberos database with krb5 db fini()
and krb5 db init(), and closes and reopens the Admin policy database with adb policy
close() and adb policy open(). Although it is unlikely, any other these functions could return
errors; in that case, this function calls kadm5 destroy and returns the error code. Therefore,
if kadm5 flush does not return KADM5 OK, the connection to the Admin server has been
terminated and, in principle, the databases might be corrupt.

For remote clients, the function is a no-op.

8.4 kadm5 destroy

kadm5_ret_t kadm5_destroy(void *server_handle)

AUTHORIZATION REQUIRED: none

Close the connection to the Admin server and releases all related resources. This function
behaves differently when called by local and remote clients.

For remote clients, the semantics are:

1. Destroy the temporary credential cache created by kadm5 init.

2. Tear down the GSS-API context negotiated with the server.

3. Close the RPC connection.

4. Free storage space associated with server handle, after erasing its magic number so it
won’t be mistaken for a valid handle by the library later.

For local clients, this function just frees the storage space associated with server handle after
erasing its magic number.

RETURN CODES:

8.5 kadm5 create principal

kadm5_ret_t

kadm5_create_principal(void *server_handle,

kadm5_principal_ent_t princ, u_int32 mask,

char *pw);

25

AUTHORIZATION REQUIRED: add

1. Return KADM5 BAD MASK if the mask is invalid.

2. If the named principal exists, return KADM5 DUP.

3. If the POLICY bit is set and the named policy does not exist, return KADM5 UNK
POLICY.

4. If KADM5 POLICY bit is set in aux attributes check to see if the password does not
meets quality standards, return the appropriate KADM5 PASS Q * error code if it
fails.

5. Store the principal, set the key; see section 4.4.

6. If the POLICY bit is set, increment the named policy’s reference count by one.

7. Set the pw expiration field.

(a) If the POLICY bit is set in mask, then if pw max life is non-zero, set pw expiration
to now + pw maxlife, otherwise set pw max life to never.

(b) If the PW EXPIRATION bit is set in mask, set pw expiration to the requested
value, overriding the value set above.

NOTE: This is a change from the original semantics, in which policy expiration was
enforced even on administrators. The old semantics are not preserved, even for version
1 callers, because this is a server-specific policy decision; besides, the new semantics
are less restrictive, so all previous callers should continue to function properly.

8. Set mod date to now and set mod name to caller.

9. Set last pwd change to now.

RETURN CODES:

KADM5 BAD MASK The field mask is invalid for a create operation.

KADM5 DUP Principal already exists.

KADM5 UNK POLICY Policy named in entry does not exist.

KADM5 PASS Q * Specified password does not meet policy standards.

26

8.6 kadm5 delete principal

kadm5_ret_t

kadm5_delete_principal(void *server_handle, krb5_principal princ);

AUTHORIZATION REQUIRED: delete

1. Return KADM5 UNK PRINC if the principal does not exist.

2. If the POLICY bit is set in aux attributes, decrement the named policy’s reference
count by one.

3. Delete principal.

RETURN CODES:

KADM5 UNK PRINC Principal does not exist.

8.7 kadm5 modify principal

kadm5_ret_t

kadm5_modify_principal(void *server_handle,

kadm5_principal_ent_t princ, u_int32 mask);

Modify the attributes of the principal named in kadm5 principal ent t. This does not allow
the principal to be renamed or for its password to be changed.

AUTHORIZATION REQUIRED: modify

Although a principal’s pw expiration is usually computed based on its policy and the time
at which it changes its password, this function also allows it to be specified explicitly. This
allows an administrator, for example, to create a principal and assign it to a policy with a
pw max life of one month, but to declare that the new principal must change its password
away from its initial value sometime within the first week.

1. Return KADM5 UNK PRINC if the principal does not exist.

2. Return KADM5 BAD MASK if the mask is invalid.

3. If POLICY bit is set but the new policy does not exist, return KADM5 UNK POLICY.

27

4. If either the POLICY or POLICY CLR bits are set, update the corresponding bits in
aux attributes.

5. Update policy reference counts.

(a) If the POLICY bit is set, then increment policy count on new policy.

(b) If the POLICY or POLICY CLR bit is set, and the POLICY bit in aux attributes
is set, decrement policy count on old policy.

6. Set pw expiration appropriately. pw expiration can change if: the POLICY bit is set
in mask, so the principal is changing to a policy (either from another policy or no
policy); the POLICY CLR bit is set in mask, so the principal is changing to no policy;
or PW EXPIRATION is set.

(a) If the POLICY bit is set in mask, set pw expiration to last pwd change + pw
max life if pw max life is non-zero, otherwise set pw expiration to never.

(b) If the POLICY CLR biti s set in mask, set pw expiration to never.

(c) If PW EXPIRATION is set, set pw expiration to the requested value, overriding
the value from the previous two cases. NOTE: This is a change from the orig-
inal semantics, in which policy expiration was enforced even on administrators.
The old semantics are not preserved, even for version 1 callers, because this is a
server-specific policy decision; besides, the new semantics are less restrictive, so
all previous callers should continue to function properly.

7. Update the remaining fields specified in the mask.

8. Update mod name field to caller and mod date to now.

RETURN CODES:

KADM5 UNK PRINC Entry does not exist.

KADM5 BAD MASK The mask is not valid for a modify operation.

KADM5 UNK POLICY The POLICY bit is set but the new policy does not exist.

KADM5 BAD TL TYPE The KADM5 TL DATA bit is set in mask, and the given tl
data list contains an element whose type is less than 256.

28

8.8 kadm5 rename principal

kadm5_ret_t

kadm5_rename_principal(void *server_handle, krb5_principal source,

krb5_principal target);

AUTHORIZATION REQUIRED: add and delete

1. Check to see if source principal exists, if not return KADM5 UNK PRINC error.

2. Check to see if target exists, if so return KADM5 DUP error.

3. Create the new principal named target, then delete the old principal named source.
All of target’s fields will be the same as source’s fields, except that mod name and
mod date will be updated to reflect the current caller and time.

Note that since the principal name may have been used as the salt for the principal’s key,
renaming the principal may render the principal’s current password useless; with the new
salt, the key generated by string-to-key on the password will suddenly be different. Therefore,
an application that renames a principal must also require the user to specify a new password
for the principal (and administrators should notify the affected party).

Note also that, by the same argument, renaming a principal will invalidate that principal’s
password history information; since the salt will be different, a user will be able to select a
previous password without error.

RETURN CODES:

KADM5 UNK PRINC Source principal does not exist.

KADM5 DUP Target principal already exist.

8.9 kadm5 chpass principal

kadm5_ret_t

kadm5_chpass_principal(void *server_handle, krb5_principal princ,

char *pw);

AUTHORIZATION REQUIRED: changepw, or the calling principal being the same as
the princ argument. If the request is authenticated to the kadmin/changepw service, the
changepw privilege is disregarded.

29

Change a principal’s password. See section 4.4 for a description of how the keys are deter-
mined.

This function enforces password policy and dictionary checks. If the new password specified
is in the password dictionary, and the policy bit is set KADM5 PASS DICT is returned.
If the principal’s POLICY bit is set in aux attributes, compliance with each of the named
policy fields is verified and an appropriate error code is returned if verification fails.

Note that the policy checks are only be performed if the POLICY bit is set in the principal’s
aux attributes field.

1. Make sure principal exists, if not return KADM5 UNK PRINC error.

2. If caller does not have modify privilege, (now - last pwd change) < pw min life, and
the KRB5 KDB REQUIRES PWCHANGE bit is not set in the principal’s attributes,
return KADM5 PASS TOOSOON.

3. If the principal your are trying to change is kadmin/history return KADM5
PROTECT PRINCIPAL.

4. If the password does not meet the quality standards, return the appropriate KADM5
PASS Q * error code.

5. Convert password to key; see section 4.4.

6. If the new key is in the principal’s password history, return KADM5 PASS REUSE.

7. Store old key in history.

8. Update principal to have new key.

9. Increment principal’s key version number by one.

10. If the POLICY bit is set, set pw expiration to now + max pw life. If the POLICY bit
is not set, set pw expiration to never.

11. If the KRB5 KDB REQUIRES PWCHANGE bit is set in the principal’s attributes,
clear it.

12. Update last pwd change and mod date to now, update mod name to caller.

RETURN CODES:

KADM5 UNK PRINC Principal does not exist.

30

KADM5 PASS Q * Requested password does not meet quality standards.

KADM5 PASS REUSE Requested password is in user’s password history.

KADM5 PASS TOOSOON Current password has not reached minimum life

KADM5 PROTECT PRINCIPAL Cannot change the password of a special principal

8.10 kadm5 chpass principal util

kadm5_ret_t

kadm5_chpass_principal_util(void *server_handle, krb5_principal princ,

char *new_pw, char **pw_ret,

char *msg_ret);

AUTHORIZATION REQUIRED: changepw, or the calling principal being the same as
the princ argument. If the request is authenticated to the kadmin/changepw service, the
changepw privilege is disregarded.

This function is a wrapper around kadm5 chpass principal. It can read a new password
from a user, change a principal’s password, and return detailed error messages. msg ret
should point to a char buffer in the caller’s space of sufficient length for the error messages
described below. 1024 bytes is recommended. It will also return the new password to the
caller if pw ret is non-NULL.

1. If new pw is NULL, this routine will prompt the user for the new password (using
the strings specified by KADM5 PW FIRST PROMPT and KADM5 PW SECOND
PROMPT) and read (without echoing) the password input. Since it is likely that this
will simply call krb5 read password only terminal-based applications will make use of
the password reading functionality. If the passwords don’t match the string “New
passwords do not match - password not changed.” will be copied into msg ret, and the
error code KRB5 LIBOS BADPWDMATCH will be returned. For other errors that
ocurr while reading the new password, copy the string “¡com err message> occurred
while trying to read new password.” followed by a blank line and the string specified
by CHPASS UTIL PASSWORD NOT CHANGED into msg ret and return the error
code returned by krb5 read password.

2. If pw ret is non-NULL, and the password was prompted, set *pw ret to point to a
static buffer containing the password. If pw ret is non-NULL and the password was
supplied, set *pw ret to the supplied password.

3. Call kadm5 chpass principal with princ, and new pw.

31

4. If successful copy the string specified by CHPASS UTIL PASSWORD CHANGED into
msg ret and return zero.

5. For a policy related failure copy the appropriate message (from below) followed by a
newline and “Password not changed.” into msg ret filling in the parameters from the
principal’s policy information. If the policy information cannot be obtained copy the
generic message if one is specified below. Return the error code from kadm5 chpass
principal.

Detailed messages:

PASS Q TOO SHORT New password is too short. Please choose a password which
is more than <pw-min-len> characters.

PASS Q TOO SHORT - generic New password is too short. Please choose a
longer password.

PASS REUSE New password was used previously. Please choose a different pass-
word.

PASS Q CLASS New password does not have enough character classes. Classes in-
clude lower class letters, upper case letters, digits, punctuation and all other char-
acters. Please choose a password with at least <min-classes> character classes.

PASS Q CLASS - generic New password does not have enough character classes.
Classes include lower class letters, upper case letters, digits, punctuation and all
other characters.

PASS Q DICT New password was found in a dictionary of possible passwords and
therefore may be easily guessed. Please choose another password. See the kpasswd
man page for help in choosing a good password.

PASS TOOSOON Password cannot be changed because it was changed too recently.
Please wait until <last-pw-change+pw-min-life> before you change it. If you need
to change your password before then, contact your system security administrator.

PASS TOOSOON - generic Password cannot be changed because it was changed
too recently. If you need to change your now please contact your system security
administrator.

6. For other errors copy the string “<com err message> occurred while trying to change
password.” following by a blank line and “Password not changed.” into msg ret.
Return the error code returned by kadm5 chpass principal.

RETURN CODES:

KRB5 LIBOS BADPWDMATCH Typed new passwords did not match.

32

KADM5 UNK PRINC Principal does not exist.

KADM5 PASS Q * Requested password does not meet quality standards.

KADM5 PASS REUSE Requested password is in user’s password history.

KADM5 PASS TOOSOON Current password has not reached minimum life.

8.11 kadm5 randkey principal

In KADM5 API VERSION 1:

kadm5_ret_t

kadm5_randkey_principal(void *server_handle, krb5_principal princ,

krb5_keyblock **new_key)

In KADM5 API VERSION 2:

kadm5_ret_t

kadm5_randkey_principal(void *server_handle, krb5_principal princ,

krb5_keyblock **new_keys, int *n_keys)

AUTHORIZATION REQUIRED: changepw, or the calling principal being the same as
the princ argument. If the request is authenticated to the kadmin/changepw service, the
changepw privilege is disregarded.

Generate and assign a new random key to the named principal, and return the generated
key in allocated storage. In KADM5 API VERSION 2, multiple keys may be generated and
returned as an array, and n new keys is filled in with the number of keys generated. See
section 4.4 for a description of how the keys are chosen. In KADM5 API VERSION 1, the
caller must free the returned krb5 keyblock * with krb5 free keyblock. In KADM5 API
VERSION 2, the caller must free each returned keyblock with krb5 free keyblock.

If the principal’s POLICY bit is set in aux attributes and the caller does not have modify
privilege , compliance with the password minimum life specified by the policy is verified and
an appropriate error code is returned if verification fails.

1. If the principal does not exist, return KADM5 UNK PRINC.

33

2. If caller does not have modify privilege, (now - last pwd change) < pw min life, and
the KRB5 KDB REQUIRES PWCHANGE bit is not set in the principal’s attributes,
return KADM5 PASS TOOSOON.

3. If the principal you are trying to change is kadmin/history return KADM5 PROTECT
PRINCIPAL.

4. Store old key in history.

5. Update principal to have new key.

6. Increment principal’s key version number by one.

7. If the POLICY bit in aux attributes is set, set pw expiration to now + max pw life.

8. If the KRB5 KDC REQUIRES PWCHANGE bit is set in the principal’s attributes,
clear it.

9. Update last pwd change and mod date to now, update mod name to caller.

RETURN CODES:

KADM5 UNK PRINC Principal does not exist.

KADM5 PASS TOOSOON The minimum lifetime for the current key has not expired.

KADM5 PROTECT PRINCIPAL Cannot change the password of a special principal

This function can also be used as part of a sequence to create a new principal with a random
key. The steps to perform the operation securely are

1. Create the principal with kadm5 create principal with a random password string and
with the KRB5 KDB DISALLOW ALL TIX bit set in the attributes field.

2. Randomize the principal’s key with kadm5 randkey principal.

3. Call kadm5 modify principal to reset the KRB5 KDB DISALLOW ALL TIX bit in
the attributes field.

The three steps are necessary to ensure secure creation. Since an attacker might be able to
guess the initial password assigned by the client program, the principal must be disabled
until the key can be truly randomized.

34

8.12 kadm5 setkey principal

kadm5_ret_t

kadm5_setkey_principal(void *server_handle, krb5_principal princ,

krb5_keyblock *new_keys, int n_keys)

AUTHORIZATION REQUIRED: setkey. This function does not allow the use of regular
changepw authorization because it bypasses the password policy mechanism.

This function only exists in KADM5 API VERSION 2.

Explicitly sets the specified principal’s keys to the n keys keys in the new keys array. The
keys in new keys should not be encrypted in the Kerberos master key; this function will
perform that operation itself (the keys will be protected during transmission from the calling
client to the kadmind server by the AUTH GSSAPI RPC layer). This function completely
bypasses the principal’s password policy, if set.

1. If the principal does not exist, return KADM5 UNK PRINC.

2. If the principal you are trying to change is kadmin/history return KADM5 PROTECT
PRINCIPAL.

3. If new keys contains more than one key of any ENCTYPE DES CBC * type that is
folded, return KADM5 SETKEY DUP ENCTYPES.

4. Store old key in history.

5. Update principal to have new key.

6. Increment principal’s key version number by one.

7. If the POLICY bit in aux attributes is set, set pw expiration to now + max pw life.

8. If the KRB5 KDC REQUIRES PWCHANGE bit is set in the principal’s attributes,
clear it.

9. Update last pwd change and mod date to now, update mod name to caller.

RETURN CODES:

KADM5 UNK PRINC Principal does not exist.

KADM5 PROTECT PRINCIPAL Cannot change the password of a special principal

35

This function can also be used as part of a sequence to create a new principal with an
explicitly key. The steps to perform the operation securely are

1. Create the principal with kadm5 create principal with a random password string and
with the KRB5 KDB DISALLOW ALL TIX bit set in the attributes field.

2. Set the principal’s key with kadm5 setkey principal.

3. Call kadm5 modify principal to reset the KRB5 KDB DISALLOW ALL TIX bit in
the attributes field.

The three steps are necessary to ensure secure creation. Since an attacker might be able to
guess the initial password assigned by the client program, the principal must be disabled
until the key can be truly randomized.

8.13 kadm5 get principal

In KADM5 API VERSION 1:

kadm5_ret_t

kadm5_get_principal(void *server_handle, krb5_principal princ,

kadm5_principal_ent_t *ent);

In KADM5 API VERSION 2:

kadm5_ret_t

kadm5_get_principal(void *server_handle, krb5_principal princ,

kadm5_principal_ent_t ent, u_int32 mask);

AUTHORIZATION REQUIRED: get, or the calling principal being the same as the princ
argument. If the request is authenticated to the kadmin/changepw service, the get privilege
is disregarded.

In KADM5 API VERSION 1, return all of the principal’s attributes in allocated memory;
if an error is returned entry is set to NULL. In KADM5 API VERSION 2, fill in the fields
of the principal structure specified in the mask; memory for the structure is not allocated.
Typically, a caller will specify the mask KADM5 PRINCIPAL NORMAL MASK, which
includes all the fields except key data and tl data to improve time and memory efficiency. A
caller that wants key data and tl data can bitwise-OR those masks onto NORMAL MASK.

36

Note that even if KADM5 TL DATA is specified, this function will not return internal tl
data elements whose type is less than 256.

The caller must free the returned entry with kadm5 free principal ent.

The function behaves differently for local and remote clients. For remote clients, the KEY
DATA mask is illegal and results in a KADM5 BAD MASK error.

RETURN CODES:

KADM5 UNK PRINC Principal does not exist.

KADM5 BAD MASK The mask is not valid for a get operation.

8.14 kadm5 decyrpt key

kadm5_ret_t kadm5_decrypt_key(void *server_handle,

kadm5_principal_ent_t entry, krb5_int32

ktype, krb5_int32 stype, krb5_int32

kvno, krb5_keyblock *keyblock,

krb5_keysalt *keysalt, int *kvnop)

AUTHORIZATION REQUIRED: none, local function

Searches a principal’s key data array to find a key with the specified enctype, salt type,
and kvno, and decrypts the key into keyblock and keysalt if found. entry must have been
returned by kadm5 get principal with at least the KADM5 KEY DATA mask set. Returns
ENOENT if the key cannot be found, EINVAL if the key data array is empty (as it always
is in an RPC client).

If ktype or stype is -1, it is ignored for the search. If kvno is -1, ktype and stype are ignored
and the key with the max kvno is returned. If kvno is 0, only the key with the max kvno is
returned and only if it matches the ktype and stype; otherwise, ENOENT is returned.

8.15 kadm5 get principals

kadm5_ret_t

kadm5_get_principals(void *server_handle, char *exp,

char ***princs, int *count)

37

Retrieves the list of principal names.

AUTHORIZATION REQUIRED: list

If exp is NULL, all principal names are retrieved; otherwise, principal names that match the
expression exp are retrieved. princs is filled in with a pointer to a NULL-terminated array
of strings, and count is filled in with the number of principal names in the array. princs

must be freed with a call to kadm5 free name list.

All characters in the expression match themselves except “?” which matches any single
character, “*” which matches any number of consecutive characters, and “[chars]” which
matches any single character of “chars”. Any character which follows a “\” matches itself
exactly, and a “\” cannot be the last character in the string.

8.16 kadm5 create policy

kadm5_ret_t

kadm5_create_policy(void *server_handle,

kadm5_policy_ent_t policy, u_int32 mask);

Create a new policy.

AUTHORIZATION REQUIRED: add

1. Check to see if mask is valid, if not return KADM5 BAD MASK error.

2. Return KADM5 BAD POLICY if the policy name contains illegal characters.

3. Check to see if the policy already exists, if so return KADM5 DUP error.

4. If the PW MIN CLASSES bit is set and pw min classes is not 1, 2, 3, 4, or 5, return
KADM5 BAD CLASS.

5. Create a new policy setting the appropriate fields determined by the mask.

RETURN CODES:

KADM5 DUP Policy already exists

KADM5 BAD MASK The mask is not valid for a create operation.

KADM5 BAD CLASS The specified number of character classes is invalid.

KADM5 BAD POLICY The policy name contains illegal characters.

38

8.17 kadm5 delete policy

kadm5_ret_t

kadm5_delete_policy(void *server_handle, char *policy);

Deletes a policy.

AUTHORIZATION REQUIRED: delete

1. Return KADM5 BAD POLICY if the policy name contains illegal characters.

2. Return KADM5 UNK POLICY if the named policy does not exist.

3. Return KADM5 POLICY REF if the named policy’s refcnt is not 0.

4. Delete policy.

RETURN CODES:

KADM5 BAD POLICY The policy name contains illegal characters.

KADM5 UNK POLICY Policy does not exist.

KADM5 POLICY REF Policy is being referenced.

8.18 kadm5 modify policy

kadm5_ret_t

kadm5_modify_policy(void *server_handle,

kadm5_policy_ent_t policy, u_int32 mask);

Modify an existing policy. Note that modifying a policy has no affect on a principal using
the policy until the next time the principal’s password is changed.

AUTHORIZATION REQUIRED: modify

1. Return KADM5 BAD POLICY if the policy name contains illegal characters.

2. Check to see if mask is legal, if not return KADM5 BAD MASK error.

39

3. Check to see if policy exists, if not return KADM5 UNK POLICY error.

4. If the PW MIN CLASSES bit is set and pw min classes is not 1, 2, 3, 4, or 5, return
KADM5 BAD CLASS.

5. Update the fields specified in the mask.

RETURN CODES:

KADM5 BAD POLICY The policy name contains illegal characters.

KADM5 UNK POLICY Policy not found.

KADM5 BAD MASK The mask is not valid for a modify operation.

KADM5 BAD CLASS The specified number of character classes is invalid.

8.19 kadm5 get policy

In KADM5 API VERSION 1:

kadm5_ret_t

kadm5_get_policy(void *server_handle, char *policy, kadm5_policy_ent_t *ent);

In KADM5 API VERSION 2:

kadm5_ret_t

kadm5_get_policy(void *server_handle, char *policy, kadm5_policy_ent_t ent);

AUTHORIZATION REQUIRED: get, or the calling principal’s policy being the same as the
policy argument. If the request is authenticated to the kadmin/changepw service, the get
privilege is disregarded.

In KADM5 API VERSION 1, return the policy’s attributes in allocated memory; if an error
is returned entry is set to NULL. In KADM5 API VERSION 2, fill in fields of the policy
structure allocated by the caller. The caller must free the returned entry with kadm5 free
policy ent

RETURN CODES:

KADM5 BAD POLICY The policy name contains illegal characters.

KADM5 UNK POLICY Policy not found.

40

8.20 kadm5 get policies

kadm5_ret_t

kadm5_get_policies(void *server_handle, char *exp,

char ***pols, int *count)

Retrieves the list of principal names.

AUTHORIZATION REQUIRED: list

If exp is NULL, all principal names are retrieved; otherwise, principal names that match the
expression exp are retrieved. pols is filled in with a pointer to a NULL-terminated array of
strings, and count is filled in with the number of principal names in the array. pols must
be freed with a call to kadm5 free name list.

All characters in the expression match themselves except “?” which matches any single
character, “*” which matches any number of consecutive characters, and “[chars]” which
matches any single character of “chars”. Any character which follows a “\” matches itself
exactly, and a “\” cannot be the last character in the string.

8.21 kadm5 free principal ent, policy ent

void kadm5_free_principal_ent(void *server_handle,

kadm5_principal_ent_t princ);

In KADM5 API VERSION 1, free the structure and contents allocated by a call to kadm5
get principal. In KADM5 API VERSION 2, free the contents allocated by a call to kadm5
get principal.

AUTHORIZATION REQUIRED: none (local operation)

void kadm5_free_policy_ent(kadm5_policy_ent_t policy);

Free memory that was allocated by a call to kadm5 get policy. If the argument is NULL,
the function returns succesfully.

AUTHORIZATION REQUIRED: none (local operation)

41

8.22 kadm5 free name list

void kadm5_free_name_list(void *server_handle,

char **names, int *count);

Free the memory that was allocated by kadm5 get principals or kadm5 get policies. names
and count must be a matched pair of values returned from one of those two functions.

8.23 kadm5 free key data

void kadm5_free_key_data(void *server_handle,

krb5_int16 *n_key_data, krb5_key_data *key_data)

Free the memory that was allocated by kadm5 randkey principal. n key data and key data
must be a matched pair of values returned from that function.

8.24 kadm5 get privs

kadm5_ret_t

kadm5_get_privs(void *server_handle, u_int32 *privs);

Return the caller’s admin server privileges in the integer pointed to by the argument. The
Admin API does not define any way for a principal’s privileges to be set. Note that this
function will probably be removed or drastically changed in future versions of this system.

The returned value is a bitmask indicating the caller’s privileges:

Privilege Symbol Value
Get KADM5 PRIV GET 0x01
Add KADM5 PRIV ADD 0x02
Modify KADM5 PRIV MODIFY 0x04
Delete KADM5 PRIV DELETE 0x08
List KADM5 PRIV LIST 0x10
Changepw KADM5 PRIV CPW 0x20

There is no guarantee that a caller will have a privilege indicated by this function for any
length of time or for any particular target; applications using this function must still be
prepared to handle all possible KADM5 AUTH * error codes.

42

In the initial MIT Kerberos version of the admin server, permissions depend both on the
caller and the target; this function returns a bitmask representing all privileges the caller
can possibly have for any possible target.

43

