public class LaguerreSolver extends AbstractPolynomialSolver
A First Course in Numerical Analysis ISBN 048641454X, chapter 8.Laguerre's method is global in the sense that it can start with any initial approximation and be able to solve all roots from that point. The algorithm requires a bracketing condition.
Constructor and Description |
---|
LaguerreSolver()
Construct a solver with default accuracy (1e-6).
|
LaguerreSolver(double absoluteAccuracy)
Construct a solver.
|
LaguerreSolver(double relativeAccuracy,
double absoluteAccuracy)
Construct a solver.
|
LaguerreSolver(double relativeAccuracy,
double absoluteAccuracy,
double functionValueAccuracy)
Construct a solver.
|
Modifier and Type | Method and Description |
---|---|
double |
doSolve()
Method for implementing actual optimization algorithms in derived
classes.
|
double |
laguerre(double lo,
double hi,
double fLo,
double fHi)
Find a real root in the given interval.
|
getCoefficients, setup
computeObjectiveValue, getAbsoluteAccuracy, getEvaluations, getFunctionValueAccuracy, getMax, getMaxEvaluations, getMin, getRelativeAccuracy, getStartValue, incrementEvaluationCount, isBracketing, isSequence, solve, solve, solve, verifyBracketing, verifyInterval, verifySequence
clone, equals, finalize, getClass, hashCode, notify, notifyAll, toString, wait, wait, wait
getAbsoluteAccuracy, getEvaluations, getFunctionValueAccuracy, getMaxEvaluations, getRelativeAccuracy, solve, solve, solve
public LaguerreSolver()
public LaguerreSolver(double absoluteAccuracy)
absoluteAccuracy
- Absolute accuracy.public LaguerreSolver(double relativeAccuracy, double absoluteAccuracy)
relativeAccuracy
- Relative accuracy.absoluteAccuracy
- Absolute accuracy.public LaguerreSolver(double relativeAccuracy, double absoluteAccuracy, double functionValueAccuracy)
relativeAccuracy
- Relative accuracy.absoluteAccuracy
- Absolute accuracy.functionValueAccuracy
- Function value accuracy.public double doSolve()
doSolve
in class BaseAbstractUnivariateSolver<PolynomialFunction>
public double laguerre(double lo, double hi, double fLo, double fHi)
LaguerreSolver.ComplexSolver.solve(Complex[],Complex)
may
not be a real zero inside [min, max]
.
For example, p(x) = x3 + 1,
with min = -2
, max = 2
, initial = 0
.
When it occurs, this code calls
LaguerreSolver.ComplexSolver.solveAll(Complex[],Complex)
in order to obtain all roots and picks up one real root.lo
- Lower bound of the search interval.hi
- Higher bound of the search interval.fLo
- Function value at the lower bound of the search interval.fHi
- Function value at the higher bound of the search interval.Copyright © 2003-2012 Apache Software Foundation. All Rights Reserved.