A state space representing time. The time can be unbounded, in which case enforceBounds() is a no-op, satisfiesBounds() always returns true, sampling uniform time states always produces time 0 and getMaximumExtent() returns 1. If time is bounded (setBounds() has been previously called), the state space behaves as expected. After construction, the state space is unbounded. isBounded() can be used to check if the state space is bounded or not. More...
#include <TimeStateSpace.h>
Classes | |
class | StateType |
The definition of a time state. More... |
Public Member Functions | |
virtual unsigned int | getDimension (void) const |
Get the dimension of the space (not the dimension of the surrounding ambient space) | |
virtual double | getMaximumExtent (void) const |
Get the maximum value a call to distance() can return (or an upper bound). For unbounded state spaces, this function can return infinity. | |
void | setBounds (double minTime, double maxTime) |
Set the minimum and maximum time bounds. This will make the state space switch into bounded time mode. If this function is not called, sampling time will always produce position = 0, enforceBounds() is a no-op, satisfiesBounds() always returns true and getMaximumExtent() returns 1. | |
double | getMinTimeBound (void) const |
Get the minimum allowed value of position in a state. The function returns 0 if time is not bounded. | |
double | getMaxTimeBound (void) const |
Get the maximum allowed value of position in a state. The function returns 0 if time is not bounded. | |
bool | isBounded (void) const |
Check if the time is bounded or not. | |
virtual void | enforceBounds (State *state) const |
Bring the state within the bounds of the state space. For unbounded spaces this function can be a no-op. | |
virtual bool | satisfiesBounds (const State *state) const |
Check if a state is inside the bounding box. For unbounded spaces this function can always return true. | |
virtual void | copyState (State *destination, const State *source) const |
Copy a state to another. The memory of source and destination should NOT overlap. | |
virtual unsigned int | getSerializationLength (void) const |
Get the number of chars in the serialization of a state in this space. | |
virtual void | serialize (void *serialization, const State *state) const |
Write the binary representation of state to serialization. | |
virtual void | deserialize (State *state, const void *serialization) const |
Read the binary representation of a state from serialization and write it to state. | |
virtual double | distance (const State *state1, const State *state2) const |
Computes distance between two states. This function satisfies the properties of a metric and its return value will always be between 0 and getMaximumExtent() | |
virtual bool | equalStates (const State *state1, const State *state2) const |
Checks whether two states are equal. | |
virtual void | interpolate (const State *from, const State *to, const double t, State *state) const |
Computes the state that lies at time t in [0, 1] on the segment that connects from state to to state. The memory location of state is not required to be different from the memory of either from or to. | |
virtual StateSamplerPtr | allocDefaultStateSampler (void) const |
Allocate an instance of the default uniform state sampler for this space. | |
virtual State * | allocState (void) const |
Allocate a state that can store a point in the described space. | |
virtual void | freeState (State *state) const |
Free the memory of the allocated state. | |
virtual double * | getValueAddressAtIndex (State *state, const unsigned int index) const |
Many states contain a number of double values. This function provides a means to get the memory address of a double value from state state located at position index. The first double value is returned for index = 0. If index is too large (does not point to any double values in the state), the return value is NULL. | |
virtual void | printState (const State *state, std::ostream &out) const |
Print a state to a stream. | |
virtual void | printSettings (std::ostream &out) const |
Print the settings for this state space to a stream. | |
virtual void | registerProjections (void) |
Register the projections for this state space. Usually, this is at least the default projection. These are implicit projections, set by the implementation of the state space. This is called by setup(). | |
![]() | |
StateSpace (void) | |
Constructor. Assigns a unique name to the space. | |
template<class T > | |
T * | as (void) |
Cast this instance to a desired type. | |
template<class T > | |
const T * | as (void) const |
Cast this instance to a desired type. | |
virtual void | setup (void) |
Perform final setup steps. This function is automatically called by the SpaceInformation. If any default projections are to be registered, this call will set them and call their setup() functions. It is safe to call this function multiple times. At a subsequent call, projections that have been previously user configured are not re-instantiated, but their setup() method is still called. | |
virtual bool | isCompound (void) const |
Check if the state space is compound. | |
virtual bool | isDiscrete (void) const |
Check if the set of states is discrete. | |
virtual bool | isHybrid (void) const |
Check if this is a hybrid state space (i.e., both discrete and continuous components exist) | |
const std::string & | getName (void) const |
Get the name of the state space. | |
void | setName (const std::string &name) |
Set the name of the state space. | |
int | getType (void) const |
Get the type of the state space. The type can be used to verify whether two space instances are of the same type (e.g., SO2) | |
bool | includes (const StateSpacePtr &other) const |
Return true if other is a space included (perhaps equal, perhaps a subspace) in this one. | |
bool | includes (const StateSpace *other) const |
Return true if other is a space included (perhaps equal, perhaps a subspace) in this one. | |
bool | covers (const StateSpacePtr &other) const |
Return true if other is a space that is either included (perhaps equal, perhaps a subspace) in this one, or all of its subspaces are included in this one. | |
bool | covers (const StateSpace *other) const |
Return true if other is a space that is either included (perhaps equal, perhaps a subspace) in this one, or all of its subspaces are included in this one. | |
ParamSet & | params (void) |
Get the parameters for this space. | |
const ParamSet & | params (void) const |
Get the parameters for this space. | |
virtual double | getLongestValidSegmentFraction (void) const |
When performing discrete validation of motions, the length of the longest segment that does not require state validation needs to be specified. This function returns this length, for this state space, as a fraction of the space's maximum extent. | |
virtual void | setLongestValidSegmentFraction (double segmentFraction) |
When performing discrete validation of motions, the length of the longest segment that does not require state validation needs to be specified. This function sets this length as a fraction of the space's maximum extent. | |
virtual unsigned int | validSegmentCount (const State *state1, const State *state2) const |
Count how many segments of the "longest valid length" fit on the motion from state1 to state2. | |
void | setValidSegmentCountFactor (unsigned int factor) |
Set factor to be the value to multiply the return value of validSegmentCount(). By default, this value is 1. The higher the value, the smaller the size of the segments considered valid. The effect of this function is immediate (setup() does not need to be called). | |
unsigned int | getValidSegmentCountFactor (void) const |
Get the value used to multiply the return value of validSegmentCount(). | |
void | computeSignature (std::vector< int > &signature) const |
Compute an array of ints that uniquely identifies the structure of the state space. The first element of the signature is the number of integers that follow. | |
virtual StateSamplerPtr | allocStateSampler (void) const |
Allocate an instance of the state sampler for this space. This sampler will be allocated with the sampler allocator that was previously specified by setStateSamplerAllocator() or, if no sampler allocator was specified, allocDefaultStateSampler() is called. | |
void | setStateSamplerAllocator (const StateSamplerAllocator &ssa) |
Set the sampler allocator to use. | |
void | clearStateSamplerAllocator (void) |
Clear the state sampler allocator (reset to default) | |
const double * | getValueAddressAtIndex (const State *state, const unsigned int index) const |
Const variant of the same function as above;. | |
const std::vector < ValueLocation > & | getValueLocations (void) const |
Get the locations of values of type double contained in a state from this space. The order of the values is consistent with getValueAddressAtIndex(). The setup() function must have been previously called. | |
const std::map< std::string, ValueLocation > & | getValueLocationsByName (void) const |
Get the named locations of values of type double contained in a state from this space. The setup() function must have been previously called. | |
double * | getValueAddressAtLocation (State *state, const ValueLocation &loc) const |
Get a pointer to the double value in state that loc points to. | |
const double * | getValueAddressAtLocation (const State *state, const ValueLocation &loc) const |
Const variant of the same function as above;. | |
double * | getValueAddressAtName (State *state, const std::string &name) const |
Get a pointer to the double value in state that name points to. | |
const double * | getValueAddressAtName (const State *state, const std::string &name) const |
Const variant of the same function as above;. | |
void | copyToReals (std::vector< double > &reals, const State *source) const |
Copy all the real values from a state source to the array reals using getValueAddressAtLocation() | |
void | copyFromReals (State *destination, const std::vector< double > &reals) const |
Copy the values from reals to the state destination using getValueAddressAtLocation() | |
void | registerProjection (const std::string &name, const ProjectionEvaluatorPtr &projection) |
Register a projection for this state space under a specified name. | |
void | registerDefaultProjection (const ProjectionEvaluatorPtr &projection) |
Register the default projection for this state space. | |
ProjectionEvaluatorPtr | getProjection (const std::string &name) const |
Get the projection registered under a specific name. | |
ProjectionEvaluatorPtr | getDefaultProjection (void) const |
Get the default projection. | |
bool | hasProjection (const std::string &name) const |
Check if a projection with a specified name is available. | |
bool | hasDefaultProjection (void) const |
Check if a default projection is available. | |
const std::map< std::string, ProjectionEvaluatorPtr > & | getRegisteredProjections (void) const |
Get all the registered projections. | |
StateSamplerPtr | allocSubspaceStateSampler (const StateSpacePtr &subspace) const |
Allocate a sampler that actually samples only components that are part of subspace. | |
virtual StateSamplerPtr | allocSubspaceStateSampler (const StateSpace *subspace) const |
Allocate a sampler that actually samples only components that are part of subspace. | |
State * | getSubstateAtLocation (State *state, const SubstateLocation &loc) const |
Get the substate of state that is pointed to by loc. | |
const State * | getSubstateAtLocation (const State *state, const SubstateLocation &loc) const |
Get the substate of state that is pointed to by loc. | |
const std::map< std::string, SubstateLocation > & | getSubstateLocationsByName (void) const |
Get the list of known substate locations (keys of the map corrspond to names of subspaces) | |
void | getCommonSubspaces (const StateSpacePtr &other, std::vector< std::string > &subspaces) const |
Get the set of subspaces that this space and other have in common. The computed list of subspaces does not contain spaces that cover each other, even though they may be common, as that is redundant information. | |
void | getCommonSubspaces (const StateSpace *other, std::vector< std::string > &subspaces) const |
Get the set of subspaces that this space and other have in common. The computed list of subspaces does not contain spaces that cover each other, even though they may be common, as that is redundant information. | |
virtual void | computeLocations (void) |
Compute the location information for various components of the state space. Either this function or setup() must be called before any calls to getValueAddressAtName(), getValueAddressAtLocation() (and other functions where those are used). | |
virtual void | printProjections (std::ostream &out) const |
Print the list of registered projections. This function is also called by printSettings() | |
virtual void | sanityChecks (double zero, double eps, unsigned int flags) const |
Perform sanity checks for this state space. Throws an exception if failures are found. | |
virtual void | sanityChecks (void) const |
Convenience function that allows derived state spaces to choose which checks should pass (see SanityChecks flags) and how strict the checks are. This just calls sanityChecks() with some default arguments. | |
void | diagram (std::ostream &out) const |
Print a Graphviz digraph that represents the containment diagram for the state space. | |
void | list (std::ostream &out) const |
Print the list of all contained state space instances. |
Protected Attributes | |
bool | bounded_ |
Flag indicating whether the state space is considering bounds or not. | |
double | minTime_ |
The minimum point in time considered by the state space (if bounds are used) | |
double | maxTime_ |
The maximum point in time considered by the state space (if bounds are used) | |
![]() | |
int | type_ |
A type assigned for this state space. | |
StateSamplerAllocator | ssa_ |
An optional state sampler allocator. | |
double | maxExtent_ |
The extent of this space at the time setup() was called. | |
double | longestValidSegmentFraction_ |
The fraction of the longest valid segment. | |
double | longestValidSegment_ |
The longest valid segment at the time setup() was called. | |
unsigned int | longestValidSegmentCountFactor_ |
The factor to multiply the value returned by validSegmentCount() | |
std::map< std::string, ProjectionEvaluatorPtr > | projections_ |
List of available projections. | |
ParamSet | params_ |
The set of parameters for this space. | |
std::vector< ValueLocation > | valueLocationsInOrder_ |
The value locations for all varliables of type double contained in a state; The locations point to values in the same order as that returned by getValueAddressAtIndex() | |
std::map< std::string, ValueLocation > | valueLocationsByName_ |
All the known value locations, by name. The names of state spaces access the first element of a state. RealVectorStateSpace dimensions are used to access individual dimensions. | |
std::map< std::string, SubstateLocation > | substateLocationsByName_ |
All the known substat locations, by name. |
Additional Inherited Members | |
![]() | |
enum | SanityChecks { STATESPACE_DISTANCE_DIFFERENT_STATES = (1<<1), STATESPACE_DISTANCE_SYMMETRIC = (1<<2), STATESPACE_INTERPOLATION = (1<<3), STATESPACE_TRIANGLE_INEQUALITY = (1<<4), STATESPACE_DISTANCE_BOUND = (1<<5), STATESPACE_RESPECT_BOUNDS = (1<<6), STATESPACE_ENFORCE_BOUNDS_NO_OP = (1<<7), STATESPACE_SERIALIZATION = (1<<8) } |
Flags to use in a bit mask for state space sanity checks. Some basic checks do not have flags associated (they are always executed; for example, whether copyState() works as expected) More... | |
typedef State | StateType |
Define the type of state allocated by this space. | |
![]() | |
static void | Diagram (std::ostream &out) |
Print a Graphviz digraph that represents the containment diagram for all the instantiated state spaces. | |
static void | List (std::ostream &out) |
Print the list of available state space instances. | |
![]() | |
static const std::string | DEFAULT_PROJECTION_NAME = "" |
The name used for the default projection. |
A state space representing time. The time can be unbounded, in which case enforceBounds() is a no-op, satisfiesBounds() always returns true, sampling uniform time states always produces time 0 and getMaximumExtent() returns 1. If time is bounded (setBounds() has been previously called), the state space behaves as expected. After construction, the state space is unbounded. isBounded() can be used to check if the state space is bounded or not.
Definition at line 71 of file TimeStateSpace.h.
|
virtual |
Copy a state to another. The memory of source and destination should NOT overlap.
Implements ompl::base::StateSpace.
Definition at line 104 of file TimeStateSpace.cpp.
|
virtual |
Get the maximum value a call to distance() can return (or an upper bound). For unbounded state spaces, this function can return infinity.
Implements ompl::base::StateSpace.
Definition at line 81 of file TimeStateSpace.cpp.
|
virtual |
Many states contain a number of double values. This function provides a means to get the memory address of a double value from state state located at position index. The first double value is returned for index = 0. If index is too large (does not point to any double values in the state), the return value is NULL.
Reimplemented from ompl::base::StateSpace.
Definition at line 188 of file TimeStateSpace.cpp.