

Intel(R) Threading Building Blocks

Getting Started Guide

Intel® Threading Building Blocks is a runtime-based parallel programming model for

C++ code that uses threads. It consists of a template-based runtime library to help

you harness the latent performance of multicore processors. Use Intel® Threading

Building Blocks to write scalable applications that:

 Specify logical parallel structure instead of threads

 Emphasize data parallel programming

 Take advantage of concurrent collections and parallel algorithms

This guide provides a complete example that uses Intel® Threading Building Blocks to

write, compile, link, and run a parallel application. The example shows you how to

explore a key feature of the library and to successfully build and link an application.

After completing this guide, you should be ready to write and build your own code

using Intel® Threading Building Blocks.

Contents

1 Note Default Directory Paths ... 2

2 Set Up Environment ... 3

3 Develop an Application Using parallel_for ... 4

4 Build the Application .. 8

5 Run the Application ... 10

6 Next Steps ... 11

Legal Information ... 12

Intel(R) Threading Building Blocks

2 Document Number: 314904-009US

1 Note Default Directory Paths

Before you begin, make sure you have successfully installed Intel® Threading Building

Blocks on your machine. Otherwise, install it according to the instructions in

INSTALL.txt.

The default installation locations for the bin, doc, and examples directories used in

this document are shown in the following table:

Platform Default Directories

Linux OS /opt/intel/composer_xe_2011_sp1/tbb/[bin|examples]

/opt/intel/composer_xe_2011_sp1/Documentation

Mac OS X /opt/intel/composer_xe_2011_sp1/tbb/[bin|examples]

/opt/intel/composer_xe_2011_sp1/Documentation

Windows

OS with

Intel® IA-

32

processor

C:\Program Files\Intel\ComposerXE-2011 SP1\tbb\examples

C:\Program Files\Intel\ComposerXE-2011 SP1\Documentation

Windows

OS with

Intel® 64

Instruction

Set

Architectur

e (ISA)

processor

C:\Program Files (x86)\Intel\ComposerXE-2011 SP1\tbb\examples

C:\Program Files (x86)\Intel\ComposerXE-2011 SP1\Documentation

Set Up Environment

Getting Started Guide 3

2 Set Up Environment

Before using Intel® Threading Building Blocks, you must register the environment

variables that are used to locate necessary library and include files as follows:

1. Locate the configuration scripts for your operating system. The scripts are located

in the bin directory.

2. Execute the appropriate scripts or set properties for your operating system:

 On Linux* and Mac OS* X operating systems, from the bin directory, source

the tbbvars.[c]sh script. These scripts modify the paths held by the

LD_LIBRARY_PATH, DYLD_LIBRARY_PATH (Mac OS* X), and CPATH variables,

and affect only your current shell.

 On Windows* operating systems, modify your Visual Studio project build

configurations (debug, release) properties as follows:

C/C++ Properties

 General: add an additional include directory:

"$(TBBROOT)\include"

Linker Properties

 General: add an additional library directory (shown for Visual

Studio 2005 32-bit library):

$(TBBROOT)\lib\ia32\vc8

 Input: add an additional dependency

tbb_debug.lib or tbb.lib

Intel(R) Threading Building Blocks

4 Document Number: 314904-009US

3 Develop an Application Using

parallel_for

This section presents a basic example that uses the parallel_for template in a

substring matching program. For each position in a string, the program displays the

length and location of the largest matching substring elsewhere in the string.

Consider the string “babba” as an example. Starting at position 0, “ba” is the largest

substring with a match elsewhere in the string (position 3).

You can refer to a complete version of this program in the Intel® Threading Building

Blocks (Intel® TBB) examples/GettingStarted folder. Or you can follow the step-by-

step development of this application given here. In this section, new code that is

added in each step is shown in blue. Code that is carried over from a previous step is

shown in black. Lines are numbered in the order they appear in the final completed

example.

To develop the example code:
 Create a new empty application.

 The using statement imports the namespace tbb, in which all of the library’s
classes and functions are found (line 07).

07: using namespace tbb;

36: int main() {

50: return 0;

51: }

3. Create the example string that is transformed by the program (lines 38 - 40) and

the arrays for holding the lengths of the largest matched substrings and their

locations (lines 42 - 43).

The example generates a Fibonacci string consisting of a series of ‘a’ and ‘b’

characters.

4. Add statements to output the lengths and locations of the largest substring

matches for each position (lines 46 - 47).

01: #include <iostream>

02: #include <string>

07: using namespace tbb;

08: using namespace std;

09: static const size_t N = 23;

Develop an Application Using parallel_for

Getting Started Guide 5

36: int main() {

38: string str[N] = { string("a"), string("b") };

39: for (size_t i = 2; i < N; ++i) str[i] = str[i-1]+str[i-2];

40: string &to_scan = str[N-1];

41: size_t num_elem = to_scan.size();

42: size_t *max = new size_t[num_elem];

43: size_t *pos = new size_t[num_elem];

44—45: // will add code to populate max and pos here

46: for (size_t i = 0; i < num_elem; ++i)

47: cout << " " << max[i] << "(" << pos[i] << ")" << endl;

48: delete[] pos;

49: delete[] max;

50: return 0;

51: }

5. Add a call to the parallel_for template function (lines 44 - 45).

The first parameter of the call is a blocked_range object that describes the

iteration space.

blocked_range is a template class provided by the Intel® Threading Building

Blocks library. The constructor takes three parameters:
 The lower bound of the range.

 The upper bound of the range.

The second parameter to the parallel_for function is the function object to be
applied to each subrange.

01: #include <iostream>

02: #include <string>

05: #include "tbb/parallel_for.h"

06: #include "tbb/blocked_range.h"

07: using namespace tbb;

08: using namespace std;

09: static const size_t N = 23;

36: int main() {

38: string str[N] = { string("a"), string("b") };

39: for (size_t i = 2; i < N; ++i) str[i] = str[i-1]+str[i-2];

40: string &to_scan = str[N-1];

41: size_t num_elem = to_scan.size();

Intel(R) Threading Building Blocks

6 Document Number: 314904-009US

42: size_t *max = new size_t[num_elem];

43: size_t *pos = new size_t[num_elem];

44: parallel_for(blocked_range<size_t>(0, num_elem),

45: SubStringFinder(to_scan, max, pos));

46: for (size_t i = 0; i < num_elem; ++i)

47: cout << " " << max[i] << "(" << pos[i] << ")" << endl;

48: delete[] pos;

49: delete[] max;

50: return 0;

51: }

6. Implement the body of the parallel_for loop (lines 10 – 35).

At runtime, the template parallel_for automatically divides the range into

subranges and invokes the SubStringFinder function object on each subrange.

7. Define the class SubStringFinder (line 10) to populate the max and pos array

elements found within the given subrange.

At line 16, the call r.begin() returns the start of the subrange and the r.end()

method returns the end of the subrange.

01: #include <iostream>

02: #include <string>

03: #include <algorithm>

04: #include "tbb/parallel_for.h"

05: #include "tbb/blocked_range.h"

07: using namespace tbb;

08: using namespace std;

09: static const size_t N = 23;

10: class SubStringFinder {

11: const string str;

12: size_t *max_array;

13: size_t *pos_array;

14: public:

15: void operator() (const blocked_range<size_t>& r) const {

16: for (size_t i = r.begin(); i != r.end(); ++i) {

17: size_t max_size = 0, max_pos = 0;

18: for (size_t j = 0; j < str.size(); ++j)

19: if (j != i) {

20: size_t limit = str.size()-max(i,j);

21: for (size_t k = 0; k < limit; ++k) {

22: if (str[i + k] != str[j + k]) break;

23: if (k > max_size) {

24: max_size = k;

25: max_pos = j;

Develop an Application Using parallel_for

Getting Started Guide 7

26: }

27: }

28: }

29: max_array[i] = max_size;

30: pos_array[i] = max_pos;

31: }

32: }

33: SubStringFinder(string &s, size_t *m, size_t *p) :

34: str(s), max_array(m), pos_array(p) { }

35: };

36—
51:

// The function main starting at line 36 goes here

Intel(R) Threading Building Blocks

8 Document Number: 314904-009US

4 Build the Application

Intel® Threading Building Blocks is compatible with the GCC* and Microsoft compilers.

This section assumes that you are using the Intel® C++ Compiler. You can use the

GCC or Microsoft C++ compilers interchangeably in the directions given below.

Building Code from the Examples Directory

If you did not type the example in Develop an Application Using parallel_for,

build from the completed source code provided in the examples/GettingStarted

folder.

Linux* or Mac OS* X Systems

1. cd to the directory examples/GettingStarted/sub_string_finder/.

2. Type make to build and run the example.

Windows* Systems

1. Invoke Visual Studio on the file

examples\GettingStarted\sub_string_finder\msvs\sub_string_finder.sln

using one of the following methods:
 Browse to the directory containing sub_string_finder.sln and double-click

the file.
 Invoke Visual Studio from the Start menu, and then open the

sub_string_finder.sln file via File  Open  Open Project.

2. Press <Ctrl-F5> to build and run the example.

Building Manually Typed Code

If you manually typed the code provided in Develop an Application Using

parallel_for, build your application by invoking the appropriate compiler directly:

Linux* or Mac OS* X Systems

Use the command line:

icc sub_string_finder.cpp –ltbb

Windows* Systems from the Command Line

Build the Application

Getting Started Guide 9

From within the Intel® C++ Compiler build environment issue the following

command:

icl /MD sub_string_finder.cpp tbb.lib

Intel(R) Threading Building Blocks

10 Document Number: 314904-009US

5 Run the Application

To run the application you built:

1. Run the application as you would normally. When run, the program outputs a long

list of length and location pairs.

2. Optionally, to compare the performance of this example to a sequential version,

you can build and run the extended version of the SubStringFinder example

located in the Intel® Threading Buildings Blocks examples/GettingStarted folder

as sub_string_finder_extended.cpp. This extended example calculates and

displays the speedup obtained by using Intel® Threading Building Blocks to

parallelize the algorithm compared to performing the same work sequentially.

Next Steps

Getting Started Guide 11

6 Next Steps

To get the most out of the Intel® Threading Building Blocks library, explore the

following additional resources.

1. Tutorial is a document that walks you through the major classes, algorithms and

concepts used by Intel® Threading Building Blocks. This document is available in

the doc directory as Tutorial.pdf.

2. Design Patterns is a “cookbook” of some common parallel programming patterns

using Intel® Threading Building Blocks.

3. Reference is a complete, detailed reference manual for all the functions and

interfaces provided by Intel® Threading Building Blocks. It is available in the doc

directory as Reference.pdf.

4. Examples includes a collection of example programs that demonstrate the

various features of Intel® Threading Building Blocks. These programs are located

within the examples directory. A good place to start is with the extended version

of the SubStringFinder example presented in this Getting Started Guide. This

extended example is found in the examples/GettingStarted/sub_string_finder

subdirectory as sub_string_finder_extended.cpp. When run, it calculates and

displays the speedup obtained by using Intel® Threading Building Blocks to

parallelize the algorithm compared to performing the same work sequentially.

5. Doxygen includes documentation that was automatically generated from the

comments in the Intel® Threading Building Blocks include files. The Doxygen

subdirectory is found within the doc directory. The files in the Doxygen directory

are in HTML format and are viewable with any browser that supports HTML.

Intel(R) Threading Building Blocks

12 Document Number: 314904-009US

Legal Information
INFORMATION IN THIS DOCUMENT IS PROVIDED IN CONNECTION WITH INTEL(R) PRODUCTS. NO LICENSE, EXPRESS OR

IMPLIED, BY ESTOPPEL OR OTHERWISE, TO ANY INTELLECTUAL PROPERTY RIGHTS IS GRANTED BY THIS DOCUMENT. EXCEPT AS

PROVIDED IN INTEL'S TERMS AND CONDITIONS OF SALE FOR SUCH PRODUCTS, INTEL ASSUMES NO LIABILITY WHATSOEVER,

AND INTEL DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY, RELATING TO SALE AND/OR USE OF INTEL PRODUCTS INCLUDING

LIABILITY OR WARRANTIES RELATING TO FITNESS FOR A PARTICULAR PURPOSE, MERCHANTABILITY, OR INFRINGEMENT OF ANY

PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

UNLESS OTHERWISE AGREED IN WRITING BY INTEL, THE INTEL PRODUCTS ARE NOT DESIGNED NOR INTENDED FOR ANY

APPLICATION IN WHICH THE FAILURE OF THE INTEL PRODUCT COULD CREATE A SITUATION WHERE PERSONAL INJURY OR

DEATH MAY OCCUR.

Intel may make changes to specifications and product descriptions at any time, without notice. Designers must not rely on the

absence or characteristics of any features or instructions marked "reserved" or "undefined." Intel reserves these for future

definition and shall have no responsibility whatsoever for conflicts or incompatibilities arising from future changes to them. The

information here is subject to change without notice. Do not finalize a design with this information.

The products described in this document may contain design defects or errors known as errata which may cause the product to

deviate from published specifications. Current characterized errata are available on request.

Contact your local Intel sales office or your distributor to obtain the latest specifications and before placing your product order.

Copies of documents which have an order number and are referenced in this document, or other Intel literature, may be obtained

by calling 1-800-548-4725, or go to: http://www.intel.com/#/en_US_01.

Intel processor numbers are not a measure of performance. Processor numbers differentiate features within each processor family,

not across different processor families. See http://www.intel.com/products/processor_number for details.

BlueMoon, BunnyPeople, Celeron, Celeron Inside, Centrino, Centrino Inside, Cilk, Core Inside, E-GOLD, i960, Intel, the Intel logo,

Intel AppUp, Intel Atom, Intel Atom Inside, Intel Core, Intel Inside, Intel Insider, the Intel Inside logo, Intel NetBurst, Intel

NetMerge, Intel NetStructure, Intel SingleDriver, Intel SpeedStep, Intel Sponsors of Tomorrow., the Intel Sponsors of Tomorrow.

logo, Intel StrataFlash, Intel vPro, Intel XScale, InTru, the InTru logo, the InTru Inside logo, InTru soundmark, Itanium, Itanium

Inside, MCS, MMX, Moblin, Pentium, Pentium Inside, Puma, skoool, the skoool logo, SMARTi, Sound Mark, The Creators Project,

The Journey Inside, Thunderbolt, Ultrabook, vPro Inside, VTune, Xeon, Xeon Inside, X-GOLD, XMM, X-PMU and XPOSYS are

trademarks of Intel Corporation in the U.S. and/or other countries.* Other names and brands may be claimed as the property of

others.

Copyright (C) 2005 - 2012, Intel Corporation. All rights reserved.

http://www.intel.com/#/en_US_01

Next Steps

Getting Started Guide 13

Optimization Notice

Intel’s compilers may or may not optimize to the same degree for non-Intel microprocessors

for optimizations that are not unique to Intel microprocessors. These optimizations include

SSE2, SSE3, and SSSE3 instruction sets and other optimizations. Intel does not guarantee the

availability, functionality, or effectiveness of any optimization on microprocessors not

manufactured by Intel. Microprocessor-dependent optimizations in this product are intended

for use with Intel microprocessors. Certain optimizations not specific to Intel

microarchitecture are reserved for Intel microprocessors. Please refer to the applicable product

User and Reference Guides for more information regarding the specific instruction sets

covered by this notice.

Notice revision #20110804

Revision History

Document
Number

Revision
Number

Description Revision Date

314904-009 009 Updated the Copyright Date April 2012

314904-008 008 Updated the Optimization Notice October 2011

314904-007 007 Updated install paths. August 2011

314904-006 006 Modified to match source code in example. October 2010

314904-005 005 Correct paths for library version 3.0. June 2010

	1 Note Default Directory Paths
	2 Set Up Environment
	3 Develop an Application Using parallel_for
	4 Build the Application
	5 Run the Application
	6 Next Steps
	Legal Information
	Optimization Notice

