5
D

Intel(R) Threading Building Blocks

Reference Manual

Document Number 315415-016US.

World Wide Web: http://www.intel.com

®
i n tel Intel(R) Threading Building Blocks

Legal Information

INFORMATION IN THIS DOCUMENT IS PROVIDED IN CONNECTION WITH INTEL(R) PRODUCTS. NO LICENSE, EXPRESS OR
IMPLIED, BY ESTOPPEL OR OTHERWISE, TO ANY INTELLECTUAL PROPERTY RIGHTS IS GRANTED BY THIS DOCUMENT. EXCEPT
AS PROVIDED IN INTEL'S TERMS AND CONDITIONS OF SALE FOR SUCH PRODUCTS, INTEL ASSUMES NO LIABILITY
WHATSOEVER, AND INTEL DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY, RELATING TO SALE AND/OR USE OF INTEL
PRODUCTS INCLUDING LIABILITY OR WARRANTIES RELATING TO FITNESS FOR A PARTICULAR PURPOSE, MERCHANTABILITY,
OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

UNLESS OTHERWISE AGREED IN WRITING BY INTEL, THE INTEL PRODUCTS ARE NOT DESIGNED NOR INTENDED FOR ANY
APPLICATION IN WHICH THE FAILURE OF THE INTEL PRODUCT COULD CREATE A SITUATION WHERE PERSONAL INJURY OR
DEATH MAY OCCUR.

Intel may make changes to specifications and product descriptions at any time, without notice. Designers must not rely on the
absence or characteristics of any features or instructions marked "reserved" or "undefined." Intel reserves these for future
definition and shall have no responsibility whatsoever for conflicts or incompatibilities arising from future changes to them. The
information here is subject to change without notice. Do not finalize a design with this information.

The products described in this document may contain design defects or errors known as errata which may cause the product to
deviate from published specifications. Current characterized errata are available on request.

Contact your local Intel sales office or your distributor to obtain the latest specifications and before placing your product order.

Copies of documents which have an order number and are referenced in this document, or other Intel literature, may be obtained
by calling 1-800-548-4725, or go to: http://www.intel.com/#/en US 01.

Intel processor numbers are not a measure of performance. Processor numbers differentiate features within each processor
family, not across different processor families. See http://www.intel.com/products/processor_number for details.

BlueMoon, BunnyPeople, Celeron, Celeron Inside, Centrino, Centrino Inside, Cilk, Core Inside, E-GOLD, i960, Intel, the Intel logo,
Intel AppUp, Intel Atom, Intel Atom Inside, Intel Core, Intel Inside, Intel Insider, the Intel Inside logo, Intel NetBurst, Intel
NetMerge, Intel NetStructure, Intel SingleDriver, Intel SpeedStep, Intel Sponsors of Tomorrow., the Intel Sponsors of Tomorrow.
logo, Intel StrataFlash, Intel vPro, Intel XScale, InTru, the InTru logo, the InTru Inside logo, InTru soundmark, Itanium, Itanium
Inside, MCS, MMX, Moblin, Pentium, Pentium Inside, Puma, skoool, the skoool logo, SMARTI, Sound Mark, The Creators Project,
The Journey Inside, Thunderbolt, Ultrabook, vPro Inside, VTune, Xeon, Xeon Inside, X-GOLD, XMM, X-PMU and XPOSYS are
trademarks of Intel Corporation in the U.S. and/or other countries.* Other names and brands may be claimed as the property of
others.

Copyright (C) 2005 - 2012, Intel Corporation. All rights reserved.

ii 315415-016US

http://www.intel.com/#/en_US_01

Overview | n tel)

Optimization Notice |

Intel’s compilers may or may not optimize to the same degree for non-Intel microprocessors
for optimizations that are not unique to Intel microprocessors. These optimizations include
SSEZ2, SSE3, and SSSE3 instruction sets and other optimizations. Intel does not guarantee the
availability, functionality, or effectiveness of any optimization on microprocessors not
manufactured by Intel. Microprocessor-dependent optimizations in this product are intended
for use with Intel microprocessors. Certain optimizations not specific to Intel
microarchitecture are reserved for Intel microprocessors. Please refer to the applicable
product User and Reference Guides for more information regarding the specific instruction
sets covered by this notice.

Notice revision #20110804

Reference Manual iii

Revision History

Intel(R) Threading Building Blocks

Document

Number

Description

Revision
Date

315415-
016

Added multifunction_node and split_node
as full features of the flow graph. Made
changes to method names and typedefs in
tuple-based flow graph nodes. Modified
flow graph nodes so that all nodes now
receive a reference to the flow graph in
their constructors. Added
concurrent_Iru_cache as a community
preview feature. Made other small
additions and corrections.

2012-Jan-20

315415-
015

Updated concurrent_bounded_queue to
add abort() method (Section 5.6 and 13.4)

2011-Nov-21

315415-
014

Updated the Optimization Notice.

2011-Oct-27

315415-
013

Moved the flow graph from Appendix D to
Section 6 and made a number of updates
as it bcomes a fully supported feature.
Moved concurrent_priority_queue from
Appendix D to Section 5.7 as it becomes
fully supported. Added serial subset,
memory pools, and
parallel_deterministic_reduce to Appendix
D. Made other small corrections and
additions.

2011-Aug-01

315415-
012

Moved task and task_group priorities from
Appendix D to Section 111.3.8 and 11.6.
Updated concurrent_priority_queue
documentation in Section D.1 to reflect
interface changes. Updated flow graph
documentation in D.2 to reflect changes in
the interface. Added run-time loader
documentation as Section D.3.

2011-July-01

315415-
011

Fix incorrect cross-reference to Tutorial in
Section 11.3.5.3. Clarify left to right
properties of parallel reduce. Add

task _group context Syntax and description
to parallel algorithms as needed. Add
group and change group method to task.
Update description of task group. Add
task and task_group priorities to
Community Preview Features as D.3. Add
two examples to D.2 and describe body
objects. Update overwrite node,

write once node and join node.

2011-Feb-24

315415-016US

Overview

Contents

1 L Y] Y 1
2 LT Tt = | I @] o 1YY oY o] o = PP 2
2.1 NOTATION Lu e e 2
2.2 BLIC=10 8 11 0101 oY A PP 3
2.2.1 @00 01T o1 3

2.2.2 MO e e 4

2.2.3 CopYCoNStrUCEIDIE. ..ot 4

2.3 o [T o L =Y o= PP 4
2.3.1 L= 1 PP 5

2.3.2 Reserved Identifier Prefixescooviviiiiiiiiiiin e 5

2.4 N A B PACES .ttt e 5
24.1 tbb NamMESPACE ...cveiiii 5

2.4.2 th:ifloW NamMESPACE . vttt e 5

2.4.3 tbb::interfacex NameSPaCevviiiiiii e eae e 5

2.4.4 tbb::internal Namespaceccoviiiii i 5

2.4.5 tbb::deprecated Namespaceccoviiiiiiiiiiiii e 6

2.4.6 tbb::strict._ppl Namespace....cociiiiii i 6

2.4.7 St NaMESPACE . .ttt 6

2.5 Thread Safely ... e 7
3 L= 0 YT 0] T 0 1= o | P 8
3.1 Version INformation ..o e 8
3.1.1 AV /=] 5] Te] o T =T o P 8

3.1.2 TBB_VERSION Environment Variable.......ccoooiiiiiiiiiiiiicie e 8

3.1.3 TBB_runtime_interface_version FUNCLION ...vvviiiiiiiiiii i iaes 9

3.2 Enabling Debugging FEaturescocviiiiiiiiii i 9
3.2.1 TBB_USE_ASSERT MACI0 eucueeitititineeeene e e eeeaeneaeeeeaenenenennenes 10

3.2.2 TBB_USE_THREADING_TOOLS MACIrO...cuvueeieieieinineeeeeeneeannnnnns 10

3.2.3 TBB_USE_PERFORMANCE_WARNINGS MacCrocccovviinienennnnnnnns 11

3.3 L= LU < 0 =T o = 11
3.3.1 TBB_DEPRECATED MACKO +ueuvntititinineneeeaeenenesaeneneneneeneeaenennanns 11

3.3.2 TBB_USE_EXCEPTIONS MACI0.....iuiuiniiiiieieieiaiaee e enanaeaes 11

3.3.3 TBB_USE_CAPTURED_EXCEPTION MaCrO....cvvvvieieieiiiiieeneaenennnns 11

4 FY e o] g1 o o T3 TP 13
4.1 Splittable ConNCEPL.. .. s 13
4.1.1 SPIIE ClaSS ittt e 14

4.2 RaANGE CONCEPTE 1uiuiiiiitiii i e s 14
4.2.1 blocked_range<Value> Template Classccocvveiiiiiiiiiiiiiinninennns 16

4.2.1.1 SiZE Y P . 18

4.2.1.2 blocked_range(Value begin, Value end, size_t grainsize=1

) et 19

4.2.1.3 blocked_range(blocked_range& range, split)............... 19

4.2.1.4 size_type size() CONSt...iviiriiiiiii 19

4.2.1.5 bool empty() CONSt.....oiiiiiieii 20

4.2.1.6 size_type grainsize() CONSt.......coviiiiiiiiiiiiiiieeienae e 20

4.2.1.7 bool is_divisible() CONStcccoviiiiiiiiiii e 20

Reference Manual

Vi

ntel)

4.3

4.4
4.5
4.6

4.7

4.8
4.9

Intel(R) Threading Building Blocks

4.2.1.8 const_iterator begin() const......cccoiiiiiiiiiiiii 20
4.2.1.9 const_iterator end() const........ccoeiiiiiiiiiii 20
4.2.2 blocked_range2d Template ClasS......cocviiiiiiiiiiiiiiiii s 21
4.2.2.1 rOW_range_tyPe ..ooviiiiiiiiiiii i 23
4.2.2.2 COl_range Ty Pe. ettt 23
4.2.2.3 blocked_range2d<RowValue,ColValue>(RowValue
row_begin, RowValue row_end, typename
row_range_type::size_type row_grainsize, ColValue
col_begin, ColValue col_end, typename
col_range_type::size_type col_grainsize).........cccevuenen. 24
4.2.2.4 blocked_range2d<RowValue,ColvValue>(RowValue
row_begin, RowValue row_end, ColValue col_begin,
ColValue col_end)coveiiiiiiiiiii 24
4.2.2.5 blocked_range2d<RowValue,ColValue> (
blocked_range2d& range, split) ..cocvvvviiiiiiiiiiiiineenn 24
4.2.2.6 bool empty() CONSt....cciviiiiiii 24
4.2.2.7 bool is_divisible() const......ccoiiiiiiiiiiii 25
4.2.2.8 const row_range_type& rows() constcocviiiiiiininnnn. 25
4.2.2.9 const col_range_type& cols() const........coevvvviiiniiennnnns. 25
4.2.3 blocked_range3d Template Class.......ccoiviiiiiiiiiiiiiiiiiieee e 25
L= o1 To] =] o= 26
4.3.1 auto_partitioner Class ...uiviiiiiiii i e 27
4.3.1.1 auto_partitioner() ...ooeiiiiiiii 28
4.3.1.2 ~auto_partitioner().....ccocoiiiiiiii 28
4.3.2 affinity_partitioner ... 28
4.3.2.1 affinity_partitioner()....ccoceviiiii 30
4.3.2.2 ~affinity_partitioner()ccooiiiiiiiiii 30
4.3.3 simple_partitioner Classcciiiiiiii 31
4.3.3.1 simple_partitioner()c.coviiiiiii 31
4.3.3.2 ~simple_partitioner() ..cccooiiiiiiiii 31
parallel_for Template FUNCLION.......oiiiiiiii e 32
parallel_reduce Template FUNCLION ... 36
parallel_scan Template FUNCLIONciiiii e 41
4.6.1 pre_scan_tag and final_scan_tag Classescccvvviiiiiiiiiienninnnnns 46
4.6.1.1 boolis_final_scan().....ccooviiiiiiiiiii 46
parallel_do Template FUNCLION ..o e 47
4.7.1 parallel_do_feeder<Item> Classccooiiiiiiiiiiiiiiii s 48
4.7.1.1 void add(const Item& item)cocviiiiiiiiiiii 49
parallel_for_each Template Functionccoooiiiiiiiiiiiiic e 49
PIPEINE ClasS oottt e e e 50
4.9.1 PIPEINE() -ttt 51
4.9.2 A PIPEIINE() teiitiii i s 51
4.9.3 void add_filter(filter& f) v 51
4.9.4 void run(size_t max_number_of_live_tokens/, task_group_context&
(oo T8 o TP 52
4.9.5 AVZe] Lo [ol 1= of () PP 52
4.9.6 Il Class « vt e 52
4.9.6.1 filter(mode filter_mode)cocoviiiiiiiiii 53
4.9.6.2 IR i 54
4.9.6.3 bool is_serial() CONSt.....ccveieiiiiiiiiiiiiii e 54
4.9.6.4 bool is_ordered() CONSt......cceiviiiiiiiiiiiiii e 54
4.9.6.5 virtual void* operator()(void * item)cocieiiiiiiininne. 54
4.9.6.6 virtual void finalize(void * item) ...cocoviiiiiiiii 54
4.9.7 thread_bound_filter Classiviiiiiiiii i i i e e eaes 55
315415-016US

Overview
4.9.7.1 thread_bound_filter(mode filter_mode)cccevvnennn. 57
4.9.7.2 result_type try_process_item()......coviiiiiiiiiiiiiiin 57
4.9.7.3 result_type process_item() .cociiiiiiiiiiiii e 58
4.10 parallel_pipeline FUNCLION......uiiiiiiii e 58
4.10.1 filter_t Template Class.....cououiiiiiiieiee e 60
4.10.1.1 fiIEer_£() o e 61
4.10.1.2 filter_t(const filter_t<T,U>& rhs) ...ccccvvviiiiiininennnnne. 61
4.10.1.3 template<typename Func> filter_t(filter::mode mode,
CONSE FUNC& T) teiiiiii i e 61
4.10.1.4 void operator=(const filter_t<T,U>& rhs)ccentne. 61
4.10.1.5 ~filter_B() coviiiii 61
4.10.1.6 vOId Clear() «.ooeieiiiiiii i 61
4.10.1.7 template<typename T, typename U, typename Func>
filter_t<T,U> make_filter(filter: :mode mode, const Func&
1) I PP 62
4.10.1.8 template<typename T, typename V, typename U>
filter_t<T,U> operator& (const filter_t<T,V>& left, const
filter_t<V,U>& right)....ccoiiiiii e 62
A 1o)YV ol o o I 1 = 1= 62
4.11 parallel_sort Template FUNCEION ...t e 63
4.12 parallel_invoke Template FUNCEION ..ooiiiiiiii i e 64
5 (©e T o= Y1 =T = 67
5.1 Container RanNge CONCEPE. . .uiiiiii i e 67
5.2 concurrent_unordered_map Template Classccocviiiiiiiiiiiiiiiiceeeas 68
5.2.1 Construct, Destroy, COPY ...iiieiiiieiiiiiiiiii e e 72

Reference Manual

5.2.1.1 explicit concurrent_unordered_map (size_type n =
implementation-defined, const hasher& hf =
hasher(),const key_equal& eql = key_equal(), const
allocator_type& a = allocator_type()).....ccovvveiiiiiinennnns 72

5.2.1.2 template <typename Inputlterator>
concurrent_unordered_map (Inputlterator first,
Inputlterator last, size_type n = implementation-defined,
const hasher& hf = hasher(), const key_equal& eql =
key_equal(), const allocator_type& a = allocator_type())72

5.2.1.3 concurrent_unordered_map(const unordered_map& m) .72
5.2.1.4 concurrent_unordered_map(const Alloc& @) 72
5.2.1.5 concurrent_unordered_map(const unordered_map&, const
AllOCR @) it 72
5.2.1.6 ~concurrent_unordered_map() - ccoceiiieiiiiiiiiiiaees 73
5.2.1.7 concurrent_ unordered_map& operator=(const
concurrent_unordered_map& M); ..ocovevviiiiiiiiniiinennns 73
5.2.1.8 allocator_type get_allocator() const;ccoovvvvivieininnnnn. 73
5.2.2 Size and CaPACITY ...civiiiii 73
5.2.2.1 bool empty() CONSt....ciiiiiieiiiiie e 73
5.2.2.2 size_type size() CONSt....civiiiiiiiii 73
5.2.2.3 size_type max_sSize() CONSt.....ccvvviiiriiiiiiiiiiiiiieeeennns 73
5.2.3 L= = 0] =N 74
5.2.3.1 iterator begin() . ccoiiiiii i 74
5.2.3.2 const_iterator begin() CONStcooiiiiiiiiiiiiees 74
5.2.3.3 iterator end() coieeiiiiii e 74
5.2.3.4 const_iterator end() CONSt......coiiiiiiiiiiiiii e 74
5.2.3.5 const_iterator cbegin() CONSt........ccoeiiiiiiiiiiiiiiiiees 74
5.2.3.6 const_iterator cend() constcoiiiiiiiiiiiii 74

Vii

viii

ntel)

Intel(R) Threading Building Blocks

5.2.4 1o To [} =T o PP 75
5.2.4.1 std::pair<iterator, bool> insert(const value_type& x)75
5.2.4.2 iterator insert(const_iterator hint, const value_type& x) .75
5.2.4.3 template<class Inputlterator> void insert(Inputlterator
first, Inputlterator [ast)ccvviiiiiiiiii 75
5.2.4.4 iterator unsafe_erase(const_iterator position) 75
5.2.4.5 size_type unsafe_erase(const key_type& K).......ccevvuennnn 76
5.2.4.6 iterator unsafe_erase(const_iterator first, const_iterator
1= =3 o 76
5.2.4.7 vOId ClEar() «oviiriiiii i e 76
5.2.4.8 void swap(concurrent_unordered_map& m) 76
5.2.5 (@0 T7=T oY= o= PP 76
5.2.5.1 hasher hash_function() constc.cocoiiiiiiiiiiiiiinnns 76
5.2.5.2 key_equal key_eq() CONSt......coceiiiiiiiiiiiiiiii e 77
5.2.6 [T 0] U] o PO 77
5.2.6.1 iterator find(const key_type& K)cccvevereiniiiiiiiiiiiieneens 77
5.2.6.2 const_iterator find(const key_type& k) const................. 77
5.2.6.3 size_type count(const key_type& k) consteuenne. 77
5.2.6.4 std::pair<iterator, iterator> equal_range(const key_type&
) et e 77
5.2.6.5 std::pair<const_iterator, const_iterator>
equal_range(const key_type& k) const.........coevvvvvinnnnns 77
5.2.6.6 mapped_type& operator[](const key_type& k) 77
5.2.6.7 mapped_type& at(const key_type& K)...ccvviiiiiiiiiiinnn, 78
5.2.6.8 const mapped_type& at(const key_type& k) const......... 78
5.2.7 Parallel Tterationucvve i e 78
5.2.7.1 const_range_type range() Constcocevviiiiiiiiiiiiininenns 78
5.2.7.2 range_type range()cieeiiiiiiiiiii e 78
5.2.8 [0 Tol N A g =T o = Lol PP 79
5.2.8.1 size_type unsafe_bucket_count() const..............coeneiens 79
5.2.8.2 size_type unsafe_max_bucket_count() const 79
5.2.8.3 size_type unsafe_bucket_size(size_type n)cceenennt. 79
5.2.8.4 size_type unsafe_bucket(const key_type& k) const........ 79
5.2.8.5 local_iterator unsafe_begin(size_type n).......ccoevvevninnnnn. 79
5.2.8.6 const_local_iterator unsafe_begin(size_type n) const..... 79
5.2.8.7 local_iterator unsafe_end(size_type n)cccevviiiiiiinnnns 80
5.2.8.8 const_local_iterator unsafe_end(size_type n) const 80
5.2.8.9 const_local_iterator unsafe_cbegin(size_type n) const....80
5.2.8.10 const_local_iterator unsafe_cend(size_type n) const...... 80
5.2.9 HaSh POLICY «.veiii e 80
5.2.9.1 float load_factor() constccoiiiiiiiiiiiiiiii s 80
5.2.9.2 float max_load_factor() const........cccveviiiiiiiiiiiiiiennn, 80
5.2.9.3 void max_load_factor(float z).......ccooviiiiiiiiiiiiiie 80
5.2.9.4 void rehash(size_type n)cocviiiiiiiiiiii 81
5.3 concurrent_unordered_set Template Classccvvviiiiiiiiiiiiiiii s 81
5.3.1 Construct, Destroy, COPY ...iiieiriiiiiiiiiintiii e 85
5.3.1.1 explicit concurrent_unordered_set (size_type n =
implementation-defined, const hasher& hf =
hasher(),const key_equal& eql = key_equal(), const
allocator_type& a = allocator_type())....cccvvvveiiiiiiinennnns 85
5.3.1.2 template <typename Inputlterator>

concurrent_unordered_set (Inputlterator first,
Inputlterator last, size_type n = implementation-defined,
const hasher& hf = hasher(), const key_equal& eql =
key_equal(), const allocator_type& a = allocator_type())85

315415-016US

Overview

5.3.2

5.3.3

5.3.4

5.3.5

5.3.6

5.3.7

5.3.8

Reference Manual

5.3.1.3 concurrent_unordered_set(const unordered_set& m) 85
5.3.1.4 concurrent_unordered_set(const Alloc& a)covuevee. 85
5.3.1.5 concurrent_unordered_set(const unordered_set&, const
AHOCR @) uviiiiiii e 85
5.3.1.6 ~concurrent_unordered_set()cooviiiiiiiiiiiiii 86
5.3.1.7 concurrent_ unordered_set& operator=(const
concurrent_unordered_set& m);ocoviiiiiiiiiiiiiii 86
5.3.1.8 allocator_type get_allocator() const;ccovvviiiiiiinnnnnns 86
Size and CapPACITY . .civiiiii 86
5.3.2.1 bool empty() CONSt...ciiiiiiiii 86
5.3.2.2 size_type Size() CONSt.....oviiiiiiiiiiiiiiii e 86
5.3.2.3 size_type max_size() CONSt.....cciviiiiiiiiiiiiiiiii e 86
L= = 0] =P 87
5.3.3.1 iterator begin()...cooiiiiiii 87
5.3.3.2 const_iterator begin() CONSt......ccvviiiiiiiiiiiiiea e 87
5.3.3.3 iterator end() oo 87
5.3.3.4 const_iterator end() CONSt......ccviiiiiiiiiiiiiiiiiiieeas 87
5.3.3.5 const_iterator cbegin() const.........cocviiiiiiiiii 87
5.3.3.6 const_iterator cend() constcccoiiiiiiiiiiiii 87
1o To [} =T o= PP 88
5.3.4.1 std::pair<iterator, bool> insert(const value_type& x)88
5.3.4.2 iterator insert(const_iterator hint, const value_type& x) .88
5.3.4.3 template<class Inputlterator> void insert(Inputlterator
first, Inputlterator [ast)ccoviiiiiiiiiiiii 88
5.3.4.4 iterator unsafe_erase(const_iterator position) 88
5.3.4.5 size_type unsafe_erase(const key_type& K)cccvnninns 89
5.3.4.6 iterator unsafe_erase(const_iterator first, const_iterator
1= =3 o) PP 89
5.3.4.7 vOId ClEar() «oviiiiiiii it 89
5.3.4.8 void swap(concurrent_unordered_set& m)............cevuenns 89
(00 17=T oY= o= PP 89
5.3.5.1 hasher hash_function() const............coiiiiiiiiiiiiiinienn. 89
5.3.5.2 key_equal key_eq() CONSt....ccccviiiiiiiiiiiiii s 90
[0 Y0 1] o 1P 90
5.3.6.1 iterator find(const key_type& K)cociiiiiiiiiiiiiinn, 90
5.3.6.2 const_iterator find(const key_type& k) const................. 90
5.3.6.3 size_type count(const key_type& k) const 90
5.3.6.4 std::pair<iterator, iterator> equal_range(const key_type&
K) et 90
5.3.6.5 std::pair<const_iterator, const_iterator>
equal_range(const key_type& k) const.........coevvvvinnnnns 90
Parallel Tteration . .ccv i e 91
5.3.7.1 const_range_type range() Constocevviiiiiiiiiiiiininnn. 91
5.3.7.2 range_type range()ciieiiiiiiiiiii e 91
BUCKET INteIr At vttt e aaeeaa 91
5.3.8.1 size_type unsafe_bucket_count() const.............ceeunennn. 91
5.3.8.2 size_type unsafe_max_bucket_count() const 91
5.3.8.3 size_type unsafe_bucket_size(size_type n)cccevenennns 91
5.3.8.4 size_type unsafe_bucket(const key_type& k) const........ 92
5.3.8.5 local_iterator unsafe_begin(size_type n).........cceevennnnns 92
5.3.8.6 const_local_iterator unsafe_begin(size_type n) const..... 92
5.3.8.7 local_iterator unsafe_end(size_type n)cocveviiiiennnnns 92
5.3.8.8 const_local_iterator unsafe_end(size_type n) const 92
5.3.8.9 const_local_iterator unsafe_cbegin(size_type n) const....92
5.3.8.10 const_local_iterator unsafe_cend(size_type n) const...... 92
[

ntel)

Intel(R) Threading Building Blocks

5.3.9 HasSh POLiCY cuiiiii i e 93
5.3.9.1 float load_factor() constcooiiiiiiiiiii e 93
5.3.9.2 float max_load_factor() const.........cocviiiiiiiiiiiiiiinns 93
5.3.9.3 void max_load_factor(float z)........cccoieieiiiiiiiiiiies 93
5.3.9.4 void rehash(size_type N) ..c.cciiiiiiiiiiiiiiiiiiiiii s 93
5.4 concurrent_hash_map Template Class........coovviiiiiiiiiiiicii s 93
54.1 Whole Table Operations........ccovviiiiiiiiii 97
5.4.1.1 concurrent_hash_map(const allocator_type& a =
allocator_type())eeiviiiiiiiiii 97
5.4.1.2 concurrent_hash_map(size_type n, const allocator_type&
a = allocator_type())ueevviiiiiiiii i 97
5.4.1.3 concurrent_hash_map(const concurrent_hash_map&
table, const allocator_type& a = allocator_type()) 98
5.4.1.4 template<typename Inputlterator>
concurrent_hash_map(Inputlterator first, Inputlterator
last, const allocator_type& a = allocator_type()) 98
5.4.1.5 ~concurrent_hash_map() ...cccooviiiiiiiiiiieee 98
5.4.1.6 concurrent_hash_map& operator= (
concurrent_hash_map& source)cccovviviiiiiiiiniiinennnns 98
5.4.1.7 void swap(concurrent_hash_map& table).................... 98
5.4.1.8 void rehash(size_type n=0) ...cocoviiiiiiiiiiiiiiee 99
5.4.1.9 vOId ClEar() «ouiiiiiii it i 99
5.4.1.10 allocator_type get_allocator() const........ccocvvvivvieininnnnnn 99
5.4.2 CONCUITENT ACCESS 1uvutintieeinerntaneinesnnraeaansanereaerarrarsaneaneanerneenens 99
5.4.2.1 (000] 1) W= Lol 0l Eo1] 01 100
I 0 B Yol /=11 o | 102
5.4.3 Concurrent Operations ...oiiciiiiii i i e 103
5.4.3.1 size_type count(const Key& key) const............cccevnens 104
5.4.3.2 bool find(const_accessor& result, const Key& key) const104
5.4.3.3 bool find(accessor& result, const Key& key) 105
5.4.3.4 bool insert(const_accessor& result, const Key& key) ..105
5.4.3.5 bool insert(accessor& result, const Key& key) 105
5.4.3.6 bool insert(const_accessor& result, const value_type&
ValUB) it e 105
5.4.3.7 bool insert(accessor& result, const value_type& value)106
5.4.3.8 bool insert(const value_type& value)............cccoeenennens 106
5.4.3.9 template<typename Inputlterator> void insert(
Inputlterator first, Inputlterator last)ccovennnnne. 106
5.4.3.10 bool erase(const KEy& K€Y).ccviiriiiiiiiiiiiiiiiiiiiiinienaen 107
5.4.3.11 bool erase(const_accessor& item_accessor).............. 107
5.4.3.12 bool erase(accessor& item_accessor)cccovvuviniinnnnn. 107
5.4.4 Parallel Tteration ..o i e 107
5.4.4.1 const_range_type range(size_t grainsize=1) const..... 108
5.4.4.2 range_type range(size_t grainsize=1)covviiininnns 108
5.4.5 CAPACITY + ettt e 108
5.4.5.1 size_type size() CONSt...ccoiiiiiiiiiii 108
5.4.5.2 bool empty() CONSt....cciviiiiiiiii s 108
5.4.5.3 size_type max_size() CONSt......coviuiniiiiiiiiiiiiieeeeeeaeann 108
5.4.5.4 size_type bucket_count() constcoiiiiiiiiiiiiinnnn. 109
5.4.6 L= = | 0] =P 109
5.4.6.1 iterator begin()....ccovoiiiiiii 109
5.4.6.2 iterator €nd() oeieieiiiiii 109
5.4.6.3 const_iterator begin() const ..o 109
5.4.6.4 const_iterator end() CONSt......ooviiiiiiiiiii 109

315415-016US

Overview

5.5

5.6

5.7

Reference Manual

5.4.6.5 std::pair<iterator, iterator> equal_range(const Key& key

PP 110
5.4.6.6 std::pair<const_iterator, const_iterator> equal_range(
const Key& key) CONSt; . ..oviviiiiiiiiiiiiiiiin e 110
5.4.7 Global FUNCHIONS ... e 110
5.4.7.1 template<typename Key, typename T, typename
HashCompare, typename Al, typename A2> bool
operator==(const
concurrent_hash_map<Key,T,HashCompare,A1>& a,
const concurrent_hash_map<Key, T,HashCompare, A2>&
D) i 110
5.4.7.2 template<typename Key, typename T, typename
HashCompare, typename Al, typename A2> bool
operator!=(const
concurrent_hash_map<Key, T,HashCompare,A1> &a,
const concurrent_hash_map<Key, T,HashCompare,A2>
D)} e 110
5.4.7.3 template<typename Key, typename T, typename
HashCompare, typename A> void
swap(concurrent_hash_map<Key, T, HashCompare, A>
&a, concurrent_hash_map<Key, T, HashCompare, A> &b)111
5.4.8 tbb_hash_compare Class......ccciiiiiiiiiiiii e 111
concurrent_queue Template Class.....cccooeiiiiiiiiii e 112
5.5.1 concurrent_queue(const Alloc& a = AIlOC ()) voovvvviiiiiiiiiiininennns 114
5.5.2 concurrent_queue(const concurrent_queue& src, const Alloc& a =
721 Lo T () R 114
5.5.3 template<typename Inputlterator> concurrent_queue(Inputlterator
first, Inputlterator last, const Alloc& a = AHOC()) vvvvvvrerevninvnennnes 115
5.5.4 ~CONCUITENT_QUEUE() tvieiieiiieiie it et s et e s e e e e e e s aeenaens 115
5.5.5 void push(conNSt T& SOUMCE) .uiiriiniiiiiiiiiiiiiici i i e 115
5.5.6 bool try_pop (T& destination).....cccoviiiiiiiiiii s 115
5.5.7 (V701 e Il 1T T ol () I S 115
5.5.8 size_type unsafe_size() CONSt......coviiiiiiii 116
5.5.9 bool empty() CONSE .uiiiii 116
5.5.10 Alloc get_allocator() CONStcovviiiiiiiiiii e 116
o T I A £ =T or= 1 o] 116
5.5.11.1 iterator unsafe_begin()......ccocviiiiiiiiiiiii 117
5.5.11.2 iterator unsafe_end()cooviiiiiiiiiiii 117
5.5.11.3 const_iterator unsafe_begin() const.........cccoevviiiinnnnns 117
5.5.11.4 const_iterator unsafe_end() const..........ocoviiiiiiiiiinnnns 117
concurrent_bounded_queue Template Class......ccvcvviiiiiiiiiiiiiiiiiiici e 117
5.6.1 void push(const T& SOUMCE) .uiiriiniiiiiiiii i i 120
5.6.2 void pop(T& destination)coveiiiiiiiii e 120
5.6.3 VOId @BOrt() coviiii i e 120
5.6.4 bool try_push(const T& SOUICE) ...cuiieieiiiiiiiiiiiee e 120
5.6.5 bool try_pop(T& destination)......cccviiiiiiiiiiiiii s 120
5.6.6 Size_type SiZze() CONSE. . 121
5.6.7 bool empty() CONSE ..nvni 121
5.6.8 size_type capacity() CONSEcivieieiiiii e 121
5.6.9 void set_capacity(size_type capacity).....ccovvveiiiiiiiiiiiiiinee e 121
concurrent_priority_queue Template Class......cccveieiiiiiiiiiiiiiii e 121
5.7.1 concurrent_priority_queue(const allocator_type& a =
AlloCator_tYPE()) «ieieiiiiii e 123
Xi

®
i n tel) Intel(R) Threading Building Blocks

5.7.2 concurrent_priority_queue(size_type init_capacity, const

allocator_type& a = allocator_type())....ccoevviiiiiiiiiiiiiiiiieenes 123
5.7.3 concurrent_priority_queue(Inputlterator begin, Inputlterator end,
const allocator_type& a = allocator_type()) ...cooovvviiiiiiiiiinnnnnnn, 124
5.7.4 concurrent_priority_queue (const concurrent_priority_queue& src,
const allocator_type& a = allocator_type()) ...cooovvviiiiiiiiinnnnnnns 124
5.7.5 concurrent_priority_queue& operator=(const
concurrent_priority_qUEUER SIC)..iiiiiiiiiiiiiiii i aeneeeas 124
5.7.6 ~concurrent_priority_queue() .oveviieiiiiiiii e 124
5.7.7 bool empty() CONSE cuiiiiii 124
5.7.8 size_type size() CONSt...c.iiiiiiiii 125
5.7.9 void push(const_reference elem)coccviiiiiiiiiiiiii i 125
5.7.10 bool try_pop(reference elem)ccoeieiieiniiiiiiiiiiii e 125
5.7.11 VOId ClEAM() seuuineiniiiii i 125
5.7.12 void swap(concurrent_priority_queue& other)ccccovviiiiiiiiinnnns 125
5.7.13 allocator_type get_allocator() const......covviiiiiiiiiiiiinne s 126
5.8 (ofo] Tl [=T o} S Y7 = o1 o N 126
5.8.1 Construction, Copy, and Assignmentcocvviiiiiiiiiiiiiieenes 131
5.8.1.1 concurrent_vector(const allocator_type& a =
allocator_type()) covviiiii 131
5.8.1.2 concurrent_vector(size_type n, const_reference t=T(),
const allocator_type& a = allocator_type()); «.oevvvvrnnns 131
5.8.1.3 template<typename Inputlterator> concurrent_vector(
Inputlterator first, Inputlterator last, const
allocator_type& a = allocator_type()).cceevvivviiiiiiininnnns 131
5.8.1.4 concurrent_vector(const concurrent_vector& src) 131
5.8.1.5 concurrent_vector& operator=(const concurrent_vector&
] ol I 132
5.8.1.6 template<typename M> concurrent_vector& operator=(
const concurrent_vector<T, M>& SIC) ivcvvviiviiinninnnns 132
5.8.1.7 void assign(size_type n, const_reference t)............... 132
5.8.1.8 template<class Inputlterator > void assign(Inputlterator
first, Inputlteratorlast)cccovvieiiiiii 132
5.8.2 Whole Vector Operationscoviiiiiiiiiiiiiici e 132
5.8.2.1 void reserve(Size_type N) cicciiieiiiiiiiiiiiiieiieeeaens 132
5.8.2.2 void shrink_to_fit() ...ocovevriiiiiiii 133
5.8.2.3 void swap(concurrent_vector& X).....cccevveiiiiiiiiiinnnnn. 133
5.8.2.4 vOId Clear() oovveireie i 133
5.8.2.5 ~concurrent_VeCtor() ...ccoveiiiiiiiiiiiii i e 133
5.8.3 Concurrent GroWEhviieiii e 133
5.8.3.1 iterator grow_by(size_type delta, const_reference t=T())134
5.8.3.2 iterator grow_to_at_least(size_typen).....c.cceiinnnnns 134
5.8.3.3 iterator push_back(const_reference value)................ 134
5.8.4 2 ol 1 135
5.8.4.1 reference operator[](size_type index)ccovvvniennnns 135
5.8.4.2 const_refrence operator[](size_type index) const 135
5.8.4.3 reference at(size_type indeX).....ccoeviiiiiiiiiiiiiiiiinnns 135
5.8.4.4 const_reference at(size_type index) const 135
5.8.4.5 reference front()....cooviiiiiiiiii 136
5.8.4.6 const_reference front() constcooviiiiiiiiiiiiiiiinnns 136
5.8.4.7 reference back()cooviiiiiiiiii 136
5.8.4.8 const_reference back() CONStcoovviiiiiiiiiiiiiiinns 136
5.8.5 Parallel Tterationvv i 136
5.8.5.1 range_type range(size_t grainsize=1)ccccviennnns 136
5.8.5.2 const_range_type range(size_t grainsize=1) const..... 136

xii 315415-016US

Overview

5.8.6 G-] o= of L 1Y 20 PP 137
5.8.6.1 size_type Size() CONSt....cceiiiiiiiiiiiiiiiii s 137
5.8.6.2 bool empty() const....ccciiiiiiiiii 137
5.8.6.3 size_type capacity() CONSt.......covviiiiiiiiiii 137
5.8.6.4 size_type max_size() const......ccciiiiiiiiiiiiiiii e 137
5.8.7 L= = 0] =P 137
5.8.7.1 iterator begin()..ccoiiiiiiiii i 137
5.8.7.2 const_iterator begin() const........ccociiiiiiiiiiiiii 138
5.8.7.3 iterator end() ...ioeiiiiiii 138
5.8.7.4 const_iterator end() cONSt......ccovviiiiiiiiiiiiiiii e 138
5.8.7.5 reverse_iterator rbegin()cocoiiiiiiiiiii 138
5.8.7.6 const_reverse_iterator rbegin() const...........oeviiinnn. 138
5.8.7.7 iterator rend() ...coiiiiiii 138
5.8.7.8 const_reverse_iterator rend().......cooeiiiiiiiiiiiii 138
6 [1o XV €] =1 o o PP 139
6.1 (o =T o] o T O F= 11 PPN 145
6.1.1 GrAP () et s 146
6.1.2 AGFAPN() e 146
6.1.3 void increment_wait_ count()....ccoieiiiiiiiiii 146
6.1.4 void decrement_wait_count()......coviiiiiiiiiii 147

6.1.5 template< typename Receiver, typename Body > void run(Receiver
&F, BOAY BOAY) euviniiiiiiiii e 147
6.1.6 template< typename Body > void run(Body body)..........ceuevnene. 147
6.1.7 void wait_for_all() ooeiiiiii 147
6.1.8 task *root_task()...c.oviieiiii 148
6.2 sender TemMPIate Class. . icuiiiiiiiiiiiii i e e ettt aaeas 148
6.2.1 T E1=] Ve [T o (P PP 149
6.2.2 bool register_successor(successor_type & r) = 0 .covvvvvvinvininnnnnnn 149
6.2.3 bool remove_successor(successor_type & r) =0 ...ccovvvnvininnnnnn. 149
6.2.4 bool try_get(output_type &).ccoveiriiiiiiiii 149
6.2.5 bool try_reserve(output_type &).civiiiiiiiiiiiiii 150
6.2.6 bOOl try_rel@ase() .uiviiiiiii i 150
6.2.7 DOOI try_CONSUME() .iueniiiiie e 150
6.3 receiver TempPlate Class . ..uiiiii i e e 150
6.3.1 A =ToL=T 1Y Z=T () I 151
6.3.2 bool register_predecessor(predecessor_type & p)..ccocvviiininennnns 151
6.3.3 bool remove_predecessor(predecessor_type & p) coeevvvvviiininnnnnn. 152
6.3.4 bool try_put(const input_type &v) = 0 cooviviiiiiii 152
6.4 CONEINUE_MSG ClaSS 1uitiiiieiiiiti ittt e e s e e e e aeaaeenes 152
6.5 [olo] a1 a1 a T TSI gt =] A2 =] O F= 13 153
6.5.1 continue_receiver(int num_predecessors = 0)...c.cccvvviiiiiiinninnnns 154
6.5.2 continue_receiver(const continue_receiver& src)cocvvevnvnennns 154
6.5.3 A CONEINUE_FECEIVEI() vttt it e s 154
6.5.4 bool try_put(const input_type &) .cceiiiiiiiiii 154
6.5.5 bool register_predecessor(predecessor_type & r)....c.cocvevernnnnnne. 154
6.5.6 bool remove_predecessor(predecessor_type & r)....cccoevvvviiennnns 155
6.5.7 VOId €XECULE() = 0 iriiiriieiii et 155
6.6 o] =T o] g T g VoY [@ = 1= PP 155
6.7 continue_node Template Classcvevvieiiiiiiii i e e 156

Reference Manual

6.7.1 template< typename Body> continue_node(graph &g, Body body)158

6.7.2 template< typename Body> continue_node(graph &g, int
number_of_predecessors, Body body).......c.cooviiiiiiiiiiiiiiiins 158

6.7.3 continue_node(const continue_node & SIC) .ovvvvvviiiriiiiniieinnnnnnns 159

xiii

Xiv

ntel)

6.8

6.9

6.10

6.11

Intel(R) Threading Building Blocks

6.7.4 bool register_predecessor(predecessor_type & r)...ccovvivininnnnn. 159
6.7.5 bool remove_predecessor(predecessor_type & r)....c.coevveiinennnns 159
6.7.6 bool try_put(const input_type &) .iccvviiiiiiiiiiiiii 159
6.7.7 bool register_successor(successor_type & I) ..cocvveviiiiiiiniiinennnns 160
6.7.8 bool remove_successor(successor_type & r) .c.ccvvviiiiiiiiiiinnenne. 160
6.7.9 bool try_get(output_type &V) ..ciiiiiiiiiii 160
6.7.10 bool try_reserve(output_type &)..ccvciiiiiiiiii 160
6.7.11 D00l try_relase() cieiiriiriiie ittt e e 161
(ST 2 o T To] I f VN o{0 Y o F={ 8 | o =T () J P 161
function_node Template Class ...ccoiiiiiiiiiiiic e 161
6.8.1 template< typename Body> function_node(graph &g, size_t
concurrency, Body body) ..o 164
6.8.2 function_node(const function_node &Src) ...ccvovvvviiiiiiiiinieinennen. 164
6.8.3 bool register_predecessor(predecessor_type & p)..ccovvvvvininnnnnn. 165
6.8.4 bool remove_predecessor(predecessor_type & p) covcvvvviiiininnnnnn. 165
6.8.5 bool try_put(const input_type &v) cciciiiiiiiiiiiii 165
6.8.6 bool register_successor(successor_type &) c.cocvveiiiiiiiniiinennnns 165
6.8.7 bool remove_successor(successor_type & r) .c.ccvviviiiiiiiiiiiinnenne. 166
6.8.8 bool try_get(output_type &V) ..cciiiiiiiiii 166
6.8.9 bool try_reserve(output_type &).civiiiiiiiiiiiiiiii 166
6.8.10 DOOl try_rele@Se() .ccveiueieiiiieiie i e 166
6.8.11 D00l try_CONSUME() ettt ittt e aeas 167
0181 g ol= T g Lo 1o [T O 1= 13 167
6.9.1 template< typename Body> source_node(graph &g, Body body, bool
IS_ACHIVE=EIUE) . i 169
6.9.2 source_node(const source_Node &SIC) .ivvvviiiiieiieiiiiiiiieineinenns 169
6.9.3 bool register_successor(successor_type &) ..coceveiiiiiiiiiiiinennnns 169
6.9.4 bool remove_successor(successor_type & r) .c.ccviviiiiiiiiiiiinnennn. 170
6.9.5 bool try_get(output_type &V) ..cciiiiiiiiii 170
6.9.6 bool try_reserve(output_type &V).icciiiiiiiiiiiiii 170
6.9.7 bOOl try_release() ..cov i 170
6.9.8 DOOI try_CONSUME() eiueeiieiiie e 171
multifunction_node Template Classccoiviiiiiiiiiii e 171
6.10.1 template< typename Body> multifunction_node(graph &g, size_t
concurrency, Body body, queue_type *q = NULL)........ccvernnnennns 174
6.10.2 template< typename Body> multifunction_node(multifunction_node
const & other, queue_type *q = NULL).....cocvvviiiiiiiiiiieneeee 174
6.10.3 bool register_predecessor(predecessor_type & p)....covevvvneinnnnn. 174
6.10.4 bool remove_predecessor(predecessor_type & p) .ccocvvvivininnnnnn. 174
6.10.5 bool try_put(iNpUE_type V) .iceiriiiiiiiiii i 175
6.10.6 (output port &) output_port<N>(Node)cveviiiiiiiiiiiiiiiieans 175
overwrite_node Template Classcoviiiiiiiiii e 175
6.11.1 overwrite_node(graph &g)ooeveiiiiiiiiiii 177
6.11.2 overwrite_node(const overwrite_node &Src)...ccvvvvviiiiiiiiieinennnns 177
6.11.3 ~OVErwrite_NOAE() ivvieeieiiieiii i e 177
6.11.4 bool register_predecessor(predecessor_type &).......cocvvuvninennnn. 177
6.11.5 bool remove_predecessor(predecessor_type &)c.covvvevnernnnnnn. 177
6.11.6 bool try_put(const input_type &V) ...coiiiiiiiiii 178
6.11.7 bool register_successor(successor_type & r) ...cocveieiiiiiiiiinenne. 178
6.11.8 bool remove_successor(successor_type &) ...covevveiiiiiiniennnnnne. 178
6.11.9 bool try_get(output_type &V) .o 178
6.11.10 bool try_reserve(output_type &)..ccveeiiiiiiiiiii 179
6.11.11 bOOl try_rel@ase() «uvviuieieiiiiiii e 179
6.11.12 bOoOl try_CONSUME()euriueeiiieiiie it st e s e e s e e enes 179

315415-016US

Overview

6.12

6.13

6.14

6.15

6.16

Reference Manual

6.11.13 b0l iS_Valid() vveieiiiiiiii e 179
6.11.14 VOId ClEAI() «uiuriniie it e 179
write_once_node Template Classoviiiiiiiiiiiiiiii e 180
6.12.1 write_once_node(graph &g)ccccviiiiiiiiiiiii i 181
6.12.2 write_once_node(const write_once_node &Src)ccvvvvvnvinernnnnnns 181
6.12.3 bool register_predecessor(predecessor_type &)....ccvveviiiiiiininnen. 181
6.12.4 bool remove_predecessor(predecessor_type &)........coveveviininnnn. 181
6.12.5 bool try_put(const input_type &V) ciciiiiiiiiiiiiii 182
6.12.6 bool register_successor(successor_type & r) .ccivciviiiiiiiiiieinnnnn. 182
6.12.7 bool remove_successor(successor_type & ') .oocovviiiiiiiniieinnnns, 182
6.12.8 bool try_get(output_type &V) ceiviiiiiiiiiiii 182
6.12.9 bool try_reserve(output_type &)..ccociiiiiiiiii 183
6.12.10 D00l try_releaSe() cieiiriiiiieii i e 183
6.12.11 bOOl try_CONSUME()euriuitiiieiiieiinieie e e e e e 183
6.12.12 b0l iS_Valid() «oveiieiiiiiiiii e 183
6.12.13 VOId ClEAIN() eiriiri it e 184
broadcast_node Template Class....c.uiviiiieiiiiiiiiiirrie e eaereenens 184
6.13.1 broadcast_node(graph &g)ccviiiiiiiiiiiiii 185
6.13. broadcast_node(const broadcast_node &Src)......covvvviiiiiininnnnnn. 185
6.13.3 bool register_predecessor(predecessor_type &).....cocvveiiiiiinnnnn. 185
6.13.4 bool remove_predecessor(predecessor_type &)......cccevviviiiininnnn. 186
6.13.5 bool try_put(const input_type &V) ..ccoiiiiiiiiiii 186
6.13.6 bool register_successor(successor_type & r) ..ccvevviiiiiiiiiiniinnnn. 186
6.13.7 bool remove_successor(successor_type & ') .oocoveveiiiiiiieiiinnnnns, 186
6.13.8 bool try_get(output_type &).ccvviiiiiiiiiii 187
6.13.9 bool try_reserve(output_type &).ciciiiiiiiiiiiiiiici 187
6.13.10 bOOl try_rele@Se() .cveieieiiieie i 187
6.13.11 D00l try_CONSUME() ettt it et e e 187
BUffEr_NOAE Class v.uiieiiiiii i e 187
6.14.1 buffer_node(graph& g) ..oceviiiiiiiiiii 189
6.14.2 buffer_node(const buffer_node &Src) ..ccoovviiiiiiiiiiiiiiiiiiieenn, 189
6.14.3 bool register_predecessor(predecessor_type &).....cocvvvieiiinnnnnn. 189
6.14.4 bool remove_predecessor(predecessor_type &)......cccevviviiiinnnnnn. 189
6.14.5 bool try_put(const input_type &V) coviiiiiiiiiiiiiii 190
6.14.6 bool register_successor(successor_type & r) ...ccoevviiiiiiiniiinnnnnns. 190
6.14.7 bool remove_successor(successor_type & ') ciocvvvviiiniiieineinennns 190
6.14.8 bool try_get(output_type & V) ooiiiiiiiiiiii 190
6.14.9 bool try_reserve(output_type & V) covviiiiiiiiiiiiiiicii 191
6.14.10 bOOl try_rele@Se() .ceveieieiiiieiie i 191
[0 I A o Yo Yo I o VA oY £ | 0 1= (R 191
queue_node Template Class . ..iuiiiiiiiiii i e e 191
6.15.1 queue_node(graph& G)..iciiiiiiiiiiii i 193
6.15.2 queue_node(const queue_Node &SIC).uvvreiiiiieiieiiniieninrneineanens 193
6.15.3 bool register_predecessor(predecessor_type &)....ccoovvvviiiiinnnnnn. 193
6.15.4 bool remove_predecessor(predecessor_type &)c.coevvvvnernnnnnn. 193
6.15.5 bool try_put(const input_type &V) ...coiiiiiiiiii 194
6.15.6 bool register_successor(successor_type & r)cocviiiiiiiiiiiinninnnn. 194
6.15.7 bool remove_successor(successor_type &) ...cocveveieiiininininnnne. 194
6.15.8 bool try_get(output_type & Vv) oo 194
6.15.9 bool try_reserve(output_type & v) ..coiiiiiiiiii 195
6.15.10 bOOl try_rel@ase() .uveieieiniiiiiiiiie e 195
6.15.11 bOOl try_CONSUME()eurrueeiiiiiiie it st e e r e e ee e 195
priority_queue_node Template Classccoiiiiiieiiiiiiiiiiiiirr e 195
6.16.1 priority_queue_node(graph& @) ...cocvviviiiiiiiiiiiiiii e 197

XV

®
i n tel) Intel(R) Threading Building Blocks

6.16.2 priority_queue_node(const priority_queue_node &src) 197
6.16.3 bool register_predecessor(predecessor_type &)....ccovevivvinninnnnnns 197
6.16.4 bool remove_predecessor(predecessor_type &)......ccvevviviiiininnen. 198
6.16.5 bool try_put(const input_type &V) ..ccoiiiiiiiiiiii 198
6.16.6 bool register_successor(successor_type &) ...ccvvviiiiiiiiiiieinennnn. 198
6.16.7 bool remove_successor(successor_type &) ...ocovviiiiiiiiiiiiininns, 198
6.16.8 bool try_get(output_type & V) ooiiiiiiiiiii 199
6.16.9 bool try_reserve(output_type & V) coiviiiiiiiiiiiiiiii 199
6.16.10 bOoOl try_rele@Se() .ccvieeieiiiiiiii i 199
6.16.11 D00l try_CONSUME()uririiriiie it et eeeaaeas 199
6.17 sequencer_node Template Classccciveiuiiiiiiiii e 200
6.17.1 template<typename Sequencer> sequencer_node(graph& g, const
Y=Te [UL=] 1ol T T PR 202
6.17.2 sequencer_node(const sequencer_node &SrC)cvcevvviinineiennenss 202
6.17.3 bool register_predecessor(predecessor_type &)....ccvevviviiiininnnns 202
6.17.4 bool remove_predecessor(predecessor_type &)......cccevviviiiinnnnnn. 202
6.17.5 bool try_put(iNpUt_type V) .o 203
6.17.6 bool register_successor(successor_type &) ...ccoveiviiiiiiiiiiiiinnnn. 203
6.17.7 bool remove_successor(successor_type &)covviiiiiiiiiiiinninns. 203
6.17.8 bool try_get(output_type & V) iviiiiiiiiiiiiiiin e 203
6.17.9 bool try_reserve(output_type & Vv) ..ciiiiiiiii 204
6.17.10 DOl try_release() cieiieiiiii it e 204
6.17.11 D00l try_CONSUME(ettt it r e e e eaaeas 204
6.18 limiter_node Template Classcoiiiiiiiiiiiiiiii e 204
6.18.1 limiter_node(graph &g, size_t threshold, int
number_of _decrement_predecessors)....ccvvivieiiiiiiiiiiiiiiiiineae, 206
6.18.2 limiter_node(const limiter_node &Src) ...ccovvivviiiiiiiiiiiiniieinennens 206
6.18.3 bool register_predecessor(predecessor_type& p).....cccvevvivinennnnn 207
6.18.4 bool remove_predecessor(predecessor_type & r).....cocvveviinnnnnn. 207
6.18.5 bool try_put(input_type &V).ciieiiiiiiiiiii 207
6.18.6 bool register_successor(successor_type & r) ...ccocviiiiiiiiiiininnnnn. 208
6.18.7 bool remove_successor(successor_type & ') .oocveveiiiiiiiiiennnnnnn. 208
6.18.8 bool try_get(output_type &).ceiriiiiiiiiiiiii e 208
6.18.9 bool try_reserve(output_type &)..ccveiiiiiiiii 208
6.18.10 D00l try_release() .iceiieiiiii it e 209
6.18.11 bOOl try_CONSUME()euriueeiieiieie i e a e e e 209
6.19 join_node Template Classccvuiiiriiiiiieitiieeire et re e aaeaaeenes 209
6.19.1 join_node(graph &g) .cciiiiiiieiiiiiiiii i 212
6.19.2 template < typename BO, typename B1, ... > join_node(graph &g,
BO b0, Bl D1, .) ceiiiiiiii i 213
6.19.3 join_node(const join_Node &SIC).ivvirviriiiiieiiiiiieieieiirieaeneeens 213
6.19.4 input_ports_type& input_ports().....cccoviiiiiiiiiiiiiiii e 213
6.19.5 bool register_successor(successor_type & r) ...ccovvveiiiiiiniiiinnnens. 213
6.19.6 bool remove_successor(successor_type & ') .oocoveveiiiiiiiiiiennnnnne. 213
6.19.7 bool try_get(output_type &V) .o 214
6.19.8 D00l try_reserve(T &) i e 214
6.19.9 D00l try_rele@Se() .cevrieieiiiiiii i 214
6.19.10 bOOI try_CONSUME() rurnininiiiiie e e e e ae e eaenes 214
6.19.11 template<size_t N, typename JNT> typename
std::tuple_element<N, typename INT::input_ports_type>::type
&INPUL_POrt(INT &JN) cueeiiieiiiii e e e 215
6.20 split_node Template Class......ccoiiiiieieiiiiie e e 215
6.20.1 split_node(graph &g) .. uoeiiiiiiiii 217
6.20.2 split_node(split_node const & other)......ccooviiiiiiiiiiiiiic e 217

XVi 315415-016US

Overview

6.20.3 bool register_predecessor(predecessor_type & p) ..ccvevvrviivinennnns 217
6.20.4 bool remove_predecessor(predecessor_type & p) ...coovvvveiniinnnnnn. 217
6.20.5 bool try_put(input_type v)i 218
6.20.6 (output port &) output_port<N>(Node)cevviviiiiiiiiiiiiniieneinens, 218
6.21 input_port Template FUNCEIONooiiii e 218
6.22 make_edge Template FUNCHIONoiiiiiii e 219
6.23 remove_edge Template FUNCEION ..o e 219
6.24 copy_body Template FUNCLION ... 219
Thread LOCal STOrage . vt e e e 220
7.1 combinable Template Classocviiiiii e 220
7.1.1 COMbBINADIE() . e 221
7.1.2 template<typename FInit> combinable(FInit finit)..................... 221
7.1.3 combinable(const combinable& other);....ccoovviiiiiiiiiiiiin 221
7.1.4 ~ComMbIiNable() covvi 222
7.1.5 combinable& operator=(const combinable& other).................... 222
7.1.6 (Vo] Il 1T T ol () I PN 222
7.1.7 TR TOCAI() tuetiteiti et 222
7.1.8 T& local(boOoI& EXISES).iiviiriiii i 222
7.1.9 template<typename FCombine>T combine(FCombine fcombine).. 223
7.1.10 template<typename Func> void combine_each(Func f)............... 223
7.2 enumerable_thread_specific Template Class.......ccccviiiiiiiiiiiiiiiiiici e 223
7.2.1 Whole Container Operations.......c.covviiiiiiiiiii e 227
7.2.1.1 enumerable_thread_specific()cocvrerniiiiiiiiiiiiienennns 227
7.2.1.2 enumerable_thread_specific(const
enumerable_thread_specific &other)cccoeveieinnnnn. 227
7.2.1.3 template<typename U, typename Alloc,
ets_key_usage_type Cachetype>
enumerable_thread_specific(const
enumerable_thread_specific<U, Alloc, Cachetype>& other
) e 228
7.2.1.4 template< typename Finit>
enumerable_thread_specific(Finit finit)o....e. 228
7.2.1.5 enumerable_thread_specific(const &xemplar)............ 228
7.2.1.6 ~enumerable_thread_specific()coviiiiiiiiiiiiinnn. 228
7.2.1.7 enumerable_thread_specifick operator=(const
enumerable_thread_specific& other);ccveviiiiiiiins 228
7.2.1.8 template< typename U, typename Alloc,
ets_key_usage_type Cachetype>
enumerable_thread_specific& operator=(const
enumerable_thread_specific<U, Alloc, Cachetype>&
(o) a =T o) P 229
7.2.1.9 vOId Clear() ioeiieiii i 229
7.2.2 Concurrent Operations ...oiiiiiiiiii i e 229
7.2.2.1 reference [0Cal() ..ovvvriiiiiiii i 229
7.2.2.2 reference local(bool& eXiStS)ccvvveieiniiiiiiiiiiiiiieieans 229
7.2.2.3 size_type size() CONSt....ciiiiiiiiii e 230
7.2.2.4 bool empty() CONSE...uivieiiiiiiiiirr e 230
7.2.3 COMDBINING 1. e 230
7.2.3.1 template<typename FCombine>T combine(FCombine
fCOMDINE) 1o 230
7.2.3.2 template<typename Func> void combine_each(Func f) 230
7.2.4 Parallel Tterationvie i 231
7.2.4.1 const_range_type range(size_t grainsize=1) const..... 231
Xvii

Reference Manual

®
i n tel) Intel(R) Threading Building Blocks

7.2.4.2 range_type range(size_t grainsize=1)cceiviiinnnns 231

7.2.5 L= = 0] =P 231

7.2.5.1 iterator begin()...coiiiiiii 231

7.2.5.2 iterator end() ..cieiiiiii 231

7.2.5.3 const_iterator begin() const.......c.coiiiiiiiiii 231

7.2.5.4 const_iterator end() const........cociiiiiiiii 232

7.3 flattened2d Template Classcocoeieieieiiie e e 232
7.3.1 Whole Container OperationsS......cocviiiiiiiiiiii i eeas 234

7.3.1.1 flattened2d(const Container& C) ...ccvvvvviviiiiiininneinnnns 235

7.3.1.2 flattened2d(const Container& c, typename
Container::const_iterator first, typename

Container::const_iterator last)ccooiviiiiiiiinnn, 235
7.3.2 Concurrent Operations ...viiciiiiii i s e 235
7.3.2.1 size_type size() CONSt.....coceiviiiiiiiiii 235
7.3.3 L] =) o =P 235
7.3.3.1 iterator begin()...cooiiiiiii 235
7.3.3.2 iterator end() c.cciiiiii 235
7.3.3.3 const_iterator begin() const........cocviiiiiiiiiiii 236
7.3.3.4 const_iterator end() const........cooeiiiiiiiiii 236
7.3.4 ULty FUNCEIONS. .o e 236
8 MemMOry AHOCALION . v e 237
8.1 P2\ [[oTor=1 (o] g o] o Tol=T o | AN PP 237
8.2 tbb_allocator Template Class.......ccoviiiiiiiii s 238
8.3 scalable_allocator Template Classoceiviiiiiiiiiiii e 238
8.3.1 C Interface to Scalable Allocator......ccoovviiiiiiiiii e 239
8.3.1.1 size_t scalable_msize(void* ptr)cocviiiiiiiiiinnnnn. 241
8.4 cache_aligned_allocator Template Classccooeieiiiiiiiiiiiiii e 241
8.4.1 pointer allocate(size_type n, const void* hint=0)...................... 243
8.4.2 void deallocate(pointer p, size_type n) .ccccviiiiiiiiiiiiiiiiiie 243
8.4.3 char* _Charalloc(size_type Siz€)...cccvvviiiiiiiiiiiiiii e 244
8.5 4= (o = | o o7 o 244
8.6 aligned_space Template Classoviiiiiiiiiiii i 245
8.6.1 AlIGNEA_SPACE() .t ueieiiitie i e 246
8.6.2 ~aliIgNEA_SPACE() tvurieinie it 246
8.6.3 T DEGIN() ittt 246
8.6.4 T BNA() tt ittt s 246
9 SYNCNIONIZAt 0N et e 247
9.1 L=< PN 247
9.1.1 MUEEX CONCEPE .ttt e 247
9.1.1.1 C++ 200x Compatibilityc.covviiiiiiii e 248
9.1.2 MUEEX ClaSS cututiiiie ittt e e e et e e eaeanans 249
9.1.3 recurSive_MUEEX Class ..iviiiiieiiii it e aaees 250
9.1.4 SPIN_MUEEX ClaSS 1utuviuiitieitiieiie it aeese e aaereeaeaaaneean 250
9.1.5 queUing_MUEEX Class ...oviuiieiiiiii i et eas 251
9.1.6 ReaderWriterMutex CONCEPL.....ccoviviiiiiiiiiiiiii e 252
9.1.6.1 ReaderWriterMuteX()coovviiiiiiiinr e 253
9.1.6.2 ~ReaderWriterMutex() . .c.ocevieieiiiiiiiiieri e ieeeeees 253
9.1.6.3 ReaderWriterMutex::scoped_lock()cooviiiiiiiiinennnnns 253
9.1.6.4 ReaderWriterMutex::scoped_lock(ReaderWriterMutex&
rw, bool write =true)....c.cocoiiiiiiii 253
9.1.6.5 ReaderWriterMutex::~scoped_lock()......c.coevuvieininnnnn. 253

Xviii 315415-016US

Overview
9.1.6.6 void ReaderWriterMutex:: scoped_lock:: acquire(
ReaderWriterMutex& rw, bool write=true)................. 253
9.1.6.7 bool ReaderWriterMutex:: scoped_lock::try_acquire(
ReaderWriterMutex& rw, bool write=true)................. 254
9.1.6.8 void ReaderWriterMutex:: scoped_lock::release()........ 254
9.1.6.9 bool ReaderWriterMutex::
scoped_lock::upgrade_to_writer() ...cccoviviiiiiiiiiieienns 254
9.1.6.10 bool ReaderWriterMutex::
scoped_lock::downgrade_to_reader()ccvvuiinnnnnn. 254
9.1.7 SPIN_IW_MUEEX ClaSS .vuuviitiiiiiiiii i i aaenaeeeas 255
9.1.8 queuing_rw_muteX Class......ccooviiiiiiiiiii e 255
9.1.9 LU 0 [0 D O = 17 256
9.1.10 NUIL_rW_mMUEEX ClasS ..vviiiiiiiiiiiiit i iiieersinnsesriiasessannsrerannes 256
9.2 atomic Template Class......ocviiiiiiiiii e 257
9.2.1 memory_semantics ENUMo e 259
9.2.2 value_type fetch_and_add(value_type addend)..........ccvvvvinennen. 259
9.2.3 value_type fetch_and_increment()......coovviiiiiiiiini e 260
9.2.4 value_type fetch_and_decrement().....c.cooviiiiiiiiiiiiiiiiiiiiiiean 260
9.2.5 value_type compare_and_SWapcooeveviiiiieniiiniieneiierereneeens 260
9.2.6 value_type fetch_and_store(value_type new_value) 260
9.3 PPL Compatibilitycovieiii i 261
9.3.1 Lol 3 7= | ==L of o] o I 261
9.3.2 reader_writer_[0CK Classovviiiiiiiiiiiiii i 262
9.4 C+H+ 200X Synchronizationccieiiiiii e 263
10 L0 267
O R o o G oo T8 | o = 17 267
10.1.1 static tick_count tick_count::nOwW()cooviiiiiiiiii s 268
10.1.2 tick_count::interval_t operator—(const tick_count& t1, const
Eick_count& 0) coviiiiii i e 268
10.1.3 tick_count::interval_t Classcceviiiiiiiiii i e 268
10.1.3.1 interval_t() covieiiii i 269
10.1.3.2 interval_t(doubleseC)ccooviiiiiiiiiii 269
10.1.3.3 double seconds() coNSt......cceviiiiiiiiiiiiii 269
10.1.3.4 interval_t operator+=(const interval_t& i) 269
10.1.3.5 interval_t operator—-=(const interval_t& i)................. 270
10.1.3.6 interval_t operator+ (const interval_t& i, const
INEEIVAl_t&J)uvriii i 270
10.1.3.7 interval_t operator- (const interval_t& i, const interval_t&
T) e 270
11 LI 13 S o T o 3 271
3 A A =] e | o 18 o I 1 = 7P 272
B T O A = 1= i« [o YU o () T PP 273
11.1.2 ~EASK_GrOUP() coeineeiiieiii ettt e e s e e e e e e aeeanans 273
11.1.3 template<typename Func> void run(const Func& f).................. 273
11.1.4 template<typename Func> void run (task_handle<Func>& handle
PP 273
11.1.5 template<typename Func> void run_and_wait(const Func&f) ...273
11.1.6 template<typename Func> void run _and_wait(
task_handle<Func>& handle); ..ocviiiiiiiiii 274
11.1.7 task_group_status Wait()oooviieiiiiii e 274
11.1.8 bool is_canceling() .. e 274
11.1.9 vOid CaNCEI() cuuviniiiii 274

Reference Manual

Xix

12

XX

ntel)

11.2 task_group_status ENUM ..o e 274
11.3 task_handle Template Classc.coiiiiiiiiiii s 275
11.4 make_task Template FUNCtion ... 275
11.5 structured_task_group Classccuiiiiiiiiiiiiii i e e 276
11.6 is_current_task_group_canceling FUNCLionccooiiiiiiiiiiiiii e 277
LI 53 ST el 1o 11 | 1= PP 278
12.1 Scheduling Algorithm ... 279
12.2 task_scheduler_init Classuociiiiiiii i e 280
12.2.1 task_scheduler_init(int max_threads=automatic, stack_size_type
thread_stack_Size=0) ...cociiiiiiiiii e 282
12.2.2 ~task_scheduler_init() .coooiiiiiii i 283
12.2.3 void initialize(int max_threads=automatic)ccvivviiiinnnnnn. 284
12.2.4 void terminate() ooeov i 284
12.2.5 intdefault_num_threads()cccoiiiiiiiiiiiiic e 284
12.2.6 boolis_active() CONSt.....cciiiiiii 284
12.2.7 Mixing With OpenMP ...t 284
2 T = 1= Q1 = =1 285
12.3.1 task Derivationcviii i e e 289
12.3.1.1 Processing of eXecCute() ...oovvrriieiriiniiieienniiinerienenens 289
12.3.2 task AllOCAtiONot 289
12.3.2.1 new(task::allocate_root(task_group_context& group)) 7290
12.3.2.2 new(task::allocate_root()) T...cooviiiiiiiiiiiiiiiiiiiiiens 290
12.3.2.3 new(x.allocate_continuation()) 7cccoeeiviiiiiiiennnnnn. 290
12.3.2.4 new(x.allocate_child()) T..ovovviiiiiiiiiiiiiiieas 290
12.3.2.5 new(task::allocate_additional_child_of(y)) T............. 291
12.3.3 Explicit task Destruction ..o 292
12.3.3.1 static void destroy (task& victim)......coovviiiiiiiiiiinnn 292
12.3.4 ReCyCliNg TasKs ..uuiiuiiiiiiiiii e 292
12.3.4.1 void recycle_as_continuation()c.ccoeiiiiiiiiiiiiiiiienns 293
12.3.4.2 void recycle_as_safe_continuation()........c.coevveveinnenn. 293
12.3.4.3 void recycle_as_child_of(task& new_successor)......... 294
12.3.5 Synchronization........ccoiiiiiii 294
12.3.5.1 void set_ref _count(intcount)cocoiiiiiiiiiiiiiiinn 295
12.3.5.2 void increment_ref_count(); ..cocoviiiiiiiiiiiiiiiii 295
12.3.5.3 int decrement_ref_count();ccooviiiiiiiiiiiiiiii 295
12.3.5.4 void wait_for_all() ..ccoviiiiiii 295
12.3.5.5 static void spawn(task& t)....ccocviiiiiiiiiiii 296
12.3.5.6 static void spawn (task_list& list).....ccovviiiiiiiiinnns 297
12.3.5.7 void spawn_and_wait_for_all(task& t)......cccovvvneinnnns 297
12.3.5.8 void spawn_and_wait_for_all(task_list& list) 297
12.3.5.9 static void spawn_root_and_wait(task& root) 298
12.3.5.10 static void spawn_root_and_wait(task_list& root_list) 298
12.3.5.11 static void enqueue (task&)..cocvviiiiiiiiiiiiiiiiiiii 298
12.3.6 TaSK CONEEXE tiviiriiiiii i 298
12.3.6.1 static task& self() .ovviiiiiiiii 299
12.3.6.2 task* parent() CONStccciiiiiiiiiii 299
12.3.6.3 void set_parent(task™* p)ccoiviiiiiiiiiiii 299
12.3.6.4 bool is_stolen_task() constcccevviiiiiiiiiiiiiiiineenen 299
12.3.6.5 task_group_context* group()ccccviviiiiiiiiiiiiiiieieeenen 299
12.3.6.6 void change_group(task_group_context& ctx)........... 299
12.3.7 Cancellation .o 300
12.3.7.1 bool cancel_group_execution()ccceevererernrnininennnnnes 300
12.3.7.2 boolis_cancelled() constcoviiiiiiiiiiiiieen 300

Intel(R) Threading Building Blocks

315415-016US

Overview
12.3.8 Prionities e 300
12.3.8.1 void enqueue (task& t, priority_t p) const................. 301
12.3.8.2 void set_group_priority (priority_t)...ccccviiiiiiiiiiiinnn 302
12.3.8.3 priority_t group_priority () constcocoiiiiiiiiiinnn, 302
12.3.9 AffiNILY coveri 302
12.3.9.1 affinity_id .o 302
12.3.9.2 virtual void note_affinity (affinity_id id) 302
12.3.9.3 void set_affinity(affinity_id id).......ccoiviiiiiiiinnn 303
12.3.9.4 affinity_id affinity() const........coooiiiiiiiii 303
12.3.10 task DebUGQGING ..ocviiiiiiiiiici 303
12.3.10.1 state_type state() constcocoviiiiiiiiiiiii 303
12.3.10.2 int ref_count() CONSE . .ccivviiiiiiiiiiii i e 304
12,4 empty_task Class ...ccoiiiiiiiiii 305
A T o= 1] 11 S = 17 305
B T R = 1= S 1 () 1P 306
12.5.2 ~EASK_HSE()eeeieiiiiiiir 306
12.5.3 bool empty() CONSE ..niniii i 306
12.5.4 push_back(task& task) ...c.cciiiiiiiiiiiiiiiiiii 306
12.5.5 task& task pop_front() oceeeveininiiiiii 307
3 I V7o [o =T f () 1 PP 307
12.6 task_group_ConteXE ..o e 307
12.6.1 task_group_context(kind_t relation_to_parent=bound, uintptr_t
traits=default_traits).....cooviiiiii 309
12.6.2 ~task_group_conteXt() ivviviiiiiiiiiii e 309
12.6.3 bool cancel_group_eXeCution()ccoovevieiriiiiiiiiiiiei e 309
12.6.4 bool is_group_execution_cancelled() constccoevviiiiiiiniiinnnnnns 309
12.6.5 VOId r@SeE() e uuuiieiiiiii i 310
12.6.6 void set_priority (priority_t) .o 310
12.6.7 priority_t priority () CONSt.iciiiiiii i 310
12.7 task _SCheduler _ObDSEIrVaL ...ttt i i i e e s i e s eaaeeeranaes 310
12.7.1 task_scheduler_observer()....ccovoiiiiiiiiiiiiiicic e 311
12.7.2 ~task_scheduler_observer() ...cccciiiiiiiiiiiiiiiiic i 311
12.7.3 void observe(bool state=true)......ccoooiiiiiiiiiii 311
12.7.4 bool is_observing() CONSt.....cciiiiiiiiiiiii e 311
12.7.5 virtual void on_scheduler_entry(bool is_worker)..........ccccveviennns 311
12.7.6 virtual void on_scheduler_exit(bool is_worker).......cccccvevvniinennn. 312
12.8 Catalog of Recommended task Patternscocoieiiiiiiiiiiiiiees 312
12.8.1 Blocking Style With k Children........ccooiiiiiiiiies 313
12.8.2 Continuation-Passing Style With k Children...........c.ccoeiiiiiiiinnnns 313
12.8.2.1 Recycling Parent as Continuationccoovvviviiennnnnns. 314
12.8.2.2 Recycling Parent as a Childcoccoiiiiiiiiiiiiinn, 314
12.8.3 Letting Main Thread Work While Child Tasks Runccocvvennns 315
13 EX P IONS et e 317
13,1 tbb_eXCEPEION e s 317
13.2 caplured_eXCePtiON . .ot 318
13.2.1 captured_exception(const char* name, const char* info)........... 319
13.3 movable_exception<ExceptionData>ccoeiiiiiiiiiiiiii 319
13.3.1 movable_exception(const ExceptionData& Src).......cccvevvevuvnennns 320
13.3.2 ExceptionData& data() throw().....cooeviiiiiiii s 320
13.3.3 const ExceptionData& data() const throw()coceiiiiiiiiiinnnnnnnn. 321
G I ST o T=Tel) i [ofll = d /=] o] o o] o =P 321
14 LI == Lo PP 323

Reference Manual

XXi

15
Appendix A

Appendix B
Appendix C

Appendix D

XXii

Intel(R) Threading Building Blocks

I R o o <= T IO =] 324
14,11 Ehread() cvveiriiii e 325
14.1.2 template<typename F> thread(F f) ..ccovviiiiiiiiiiiiiiicee 325
14.1.3 template<typename F, typename X> thread(F f, X X) ...cccvvrnrnnnnn. 325

14.1.4 template<typename F, typename X, typename Y> thread(F f, X x, Y
172 T PP 325
14.1.5 thread& operator=(thread& X)......ccoiiiiiiiiiiiii 325
14.1.6 ~ERrEad. ..o e 326
14.1.7 bool joinable() CONStcciiiiiii 326
14.1.8 VOIA JOIN()ttutiitiinii i i e e 326
14.1.9 void detach() ..cooviiiriii 326
14.1.10 id get_id() CONSt...iiiiiiiiii e 326
14.1.11 native_handle_type native_handle()ccooviiiiiiiiiiiiiiiiiiien 327
14.1.12 static unsigned hardware_conCUrrenCy().....cvevverrinernrneriinernnneinnns 327
I o o o <= T I T PP 327
14.3 this_thread NameSPaCecviiiiiiiiiii i e e 328
14.3.1 thread::id get_id() . ccooiiiiii e 328
14.3.2 VOId Yield() coviriiiiiii s 328
14.3.3 void sleep_for(const tick_count::interval_t & i)ccveviiiinnnnn. 328
2] =T 1T Lol T PP 330
Compatibility FEatUIrEs. ...t e 331
A.l parallel_while Template Class.......cooviiiiiiiiiiii e 331
A.l.1 parallel_while<Body>() ..coiiiiiiiiiii 332
A.1.2 ~parallel_while<Body>()..ieiiiiiiiiiiiir e 333

A.1.3 Template <typename Stream> void run(Stream& stream, const

Body& DoAY) cviiiiiiiiiii i 333
A.1.4 void add(const value_type& item).....ccociiiiiiiiiiiiii 333
A.2 Interface for constructing a pipeline filter........ccoovviiiiii 333
A.2.1 filter::filter(bool is_serial)...cccoiiiiiiiii 333
A.2.2 filer:iserial. e e 334
A.3 [D1=] 0] Ule a1 aTe I Tol o TS PP 334
A.4 tbb::deprecated::concurrent_queue<T,Alloc> Template Class................... 334
A.5 Interface for CoONCUrreNt_VeCEOr . vviiiii i e 336
A.5.1 VOId COMPACE() 1eneinie i e 337
A.6 Interface fOr Class tasKccvuiiiiiii i e 337
A.6.1 void recycle _to_reexecute() ...ooviiiiiiiiiiiiiii 337
A.6.2 Depth interface for class taskc.ooviiieiiiiiiiii s 338
A.7 (0] o T o a1 Y= IO F= 11 338
PPL ComPatibility «.veee i 339
L T0 1 T K=Y 1< 340
C.1 WiNAOWS® O .ttt e 340
Community Preview FEatUrescvviiiiiiiiii i e 341
D.1 FIOW Graph .o e e 342
D.1.1 or_node Template Classcocviiiiiiiiiii e 342
D.2 RUN-EIME J0@A . i e e e 346
D.2.1 FUNEIME_10adEr Class tivviiiiiiiiiii i i eaeeenees 348
D.3 parallel_ deterministic _reduce Template Functionc.covviiiiiiiinnnens 350
D.4 Scalable MemoOry POOIS ..o 353
D.4.1 memory_pool Template Class........cccveviiiiiiiiiiii 353
315415-016US

Overview

D.5

D.6

Reference Manual

D.4.2 fiXed_POO0l Class ..viiiiiiiiiii i e 355
D.4.3 memory_pool_allocator Template Class........ccccvvvviiiiiiiiiiiinnnns 356
Serial SUDSEE ..uri e 358
D.5.1 tbb::serial::parallel_for()...ccoiiiiiii i 358
concurrent_Iru_cache Template Class.....ccoooviiiiiiiii i e 359
D.6.1 concurrent_lru_cache(value_function_type f, std::size t
number_of_lru_history_items);ccoooiiiiiiiiiiii 361
D.6.2 handle_object operator[]J(key_type K) ...c.covviiiiiiiiiiiiiiins 361
D.6.3 ~ concurrent_Iru_cache () oo 361
D.6.4 handle_object Class........ccovviiiiiiii 361
D.6.5 handle_MoOVE t ClasS...iiiiiiiiiiiiiii i i i i eranaes 363
XXiii

Overview | n tel)

1 Overview

Intel® Threading Building Blocks (Intel® TBB) is a library that supports scalable
parallel programming using standard ISO C++ code. It does not require special
languages or compilers. It is designed to promote scalable data parallel programming.
Additionally, it fully supports nested parallelism, so you can build larger parallel
components from smaller parallel components. To use the library, you specify tasks,
not threads, and let the library map tasks onto threads in an efficient manner.

Many of the library interfaces employ generic programming, in which interfaces are
defined by requirements on types and not specific types. The C++ Standard Template
Library (STL) is an example of generic programming. Generic programming enables
Intel® Threading Building Blocks to be flexible yet efficient. The generic interfaces
enable you to customize components to your specific needs.

The net result is that Intel® Threading Building Blocks enables you to specify
parallelism far more conveniently than using raw threads, and at the same time can
improve performance.

This document is a reference manual. It is organized for looking up details about
syntax and semantics. You should first read the Inte/l® Threading Building Blocks
Getting Started Guide and the Inte/l® Threading Building Blocks Tutorial to learn how to
use the library effectively. The Inte/l® Threading Building Blocks Design Patterns
document is another useful resource.

TIP: Even experienced parallel programmers should read the Inte/l® Threading Building
Blocks Tutorial before using this reference guide because Intel® Threading Building
Blocks uses a surprising recursive model of parallelism and generic algorithms.

Reference Manual 1

2 General Conventions

This section describes conventions used in this document.

2.1 Notation

Literal program text appears in Courier font. Algebraic placeholders are in monospace
italics. For example, the notation blocked range<Type> indicates that

blocked range is literal, but Type is a notational placeholder. Real program text
replaces Type with a real type, such as in blocked range<int>.

Class members are summarized by informal class declarations that describe the class
as it seems to clients, not how it is actually implemented. For example, here is an
informal declaration of class Foo:

class Foo {
public:
int x();
int y;
~Foo () ;

bi
The actual implementation might look like:

namespace internal {
class FooBase {
protected:
int x();

}i

class Foo v3: protected FooBase ({
private:
int internal stuff;
public:
using FooBase: :x;
int y;
}i

typedef internal::Foo v3 Foo;

315415-016US

General Conventions ‘ i n tel 0]

The example shows two cases where the actual implementation departs from the
informal declaration:

e Foo is actually a typedef to Foo_ v3.
e Method x () is inherited from a protected base class.
e The destructor is an implicit method generated by the compiler.

The informal declarations are intended to show you what you need to know to use the
class without the distraction of irrelevant clutter particular to the implementation.

2.2 Terminology

This section describes terminology specific to Intel® Threading Building Blocks (Intel®
TBB).

2.2.1 Concept

A concept is a set of requirements on a type. The requirements may be syntactic or
semantic. For example, the concept of “sortable” could be defined as a set of
requirements that enable an array to be sorted. A type T would be sortable if:

e x < y returns a boolean value, and represents a total order on items of type T.

e swap (x,y) swaps items x and y

You can write a sorting template function in C++ that sorts an array of any type that is
sortable.

Two approaches for defining concepts are valid expressions and pseudo-signatures®.
The ISO C++ standard follows the valid expressions approach, which shows what the
usage pattern looks like for a concept. It has the drawback of relegating important
details to notational conventions. This document uses pseudo-signatures, because they
are concise, and can be cut-and-pasted for an initial implementation.

For example, Table 1 shows pseudo-signatures for a sortable type T:

! See Section 3.2.3 of Concepts for C++0x available at http://www.open-
std.org/jtc1/sc22/wg21/docs/papers/2005/n1758.pdf for further discussion of valid
expressions versus pseudo-signatures.

Reference Manual 3

Table 1: Pseudo-Signatures for Example Concept “sortable”

Pseudo-Signature Semantics
bool operator<(const T& x, const T& y) Compare x and y.
void swap(T& x, T& y) Swap x and y.

A real signature may differ from the pseudo-signature that it implements in ways
where implicit conversions would deal with the difference. For an example type U, the
real signature that implements operator< in Table 1 can be expressed as int
operator<(U x, U y), because C++ permits implicit conversion from int to bool,
and implicit conversion from U to (const Us). Similarly, the real signature bool
operator<(Us& x, Us& y) is acceptable because C++ permits implicit addition of a
const qualifier to a reference type.

2.2.2 Model

A type models a concept if it meets the requirements of the concept. For example, type
int models the sortable concept in Table 1 if there exists a function swap (x,y) that
swaps two int values x and y. The other requirement for sortable, specifically x<y, is
already met by the built-in operator< on type int.

2.2.3 CopyConstructible

The library sometimes requires that a type model the CopyConstructible concept,
which is defined by the ISO C++ standard. Table 2 shows the requirements for
CopyConstructible in pseudo-signature form.

Table 2: CopyConstructible Requirements

Pseudo-Signature Semantics
T(const T&) Construct copy of const T.
~T () Destructor.
T* operators () Take address.
const T* operator&() const Take address of const T.

2.3 |dentifiers

This section describes the identifier conventions used by Intel® Threading Building
Blocks.

315415-016US

General Conventions ‘ i n tel 0]

2.3.1 Case

The identifier convention in the library follows the style in the ISO C++ standard
library. Identifiers are written in underscore_style, and concepts in PascalCase.

2.3.2 Reserved Identifier Prefixes

The library reserves the prefix __ TBB for internal identifiers and macros that should
never be directly referenced by your code.

24 Namespaces

This section describes the library’s namespace conventions.

2.4.1 tbb Namespace

Namespace tbb contains public identifiers defined by the library that you can reference
in your program.

2.4.2 tb::flow Namespace

Namespace tbb: : f1ow contains public identifiers related to the flow graph Community
Preview Feature. See Appendix D.1 for more information.

243 tbb:interfacex Namespace

Namespaces of the form tbb: :interfacex define public identifiers that the library
injects into namespace tbb. The numeral x corresponds to an internal version number
that serves to prevent accidental linkage of incompatible definitions. Your code should
never directly reference namespaces prefixed with tbb: :interfacex. Instead,
reference names via hamespace tbb.

For example the header tbb/concurrent hash map.h defines the template
concurrent hashmap<Key, T> a@s tbb: :version4::concurrent hashmap<Key, T> and
employs a using directive to inject it into namespace tbb. Your source code should
reference it as tbb: :concurrent hashmap<Key, T>.

244 tbb:internal Namespace

Namespace tbb: :internal serves a role similar to tbb::interfacex. It is retained for
backwards compatibility with older versions of the library. Your code should never

Reference Manual 5

directly reference namespace tbb::internal. Indirect reference via a public typedef
provided by the header files is permitted.

2.4.5 tbb::deprecated Namespace

The library uses the namespace tbb: :deprecated for deprecated identifiers that have
different default meanings in namespace tbb. Compiling with TBB DEPRECATED=1
causes such identifiers to replace their counterpart in namespace tbb.

For example, tbb: :concurrent queue underwent changes in Intel® TBB 2.2 that split
its functionality into tbb: :concurrent queue and tbb: :concurrent bounded gqueue
and changed the name of some methods. For sake of legacy code, the old Intel® TBB
2.1 functionality is retained in tbb: :deprecated: :concurrent queue, Which is injected
into namespace tbb when compiled with TBB DEPRECATED=1.

2.4.6 tbb::strict_ppl Namespace

The library uses the namespace tbb: :strict ppl for identifiers that are put in
namespace Concurrency when tbb/compat/ppl.h is included.

2.4.7 std Namespace

The library implements some C++40x features in namespace std. The library version
can be used by including the corresponding header in Table 3.

Table 3: C++0x Features Optonally Defined by Intel® Threading Building Blocks.

Header Identifiers Added to std: : Section

defer lock t
try to lock t
adopt lock t
defer lock
try to lock
adopt lock
tbb/compat/condition_variable | lock_guard 9.4
unique lock

swap?

condition variable
cv_status

timeout

no timeout

tbb/compat/thread thread 14.1

2 Adds swap of two unique lock objects, not the general swap template
function.

315415-016US

General Conventions i n tel 0]

| | this thread |

To prevent accidental linkage with other implementations of these C++ library
features, the library defines the identifiers in other namespaces and injects them into
namespace std::. This way the "mangled name” seen by the linker will differ from

the “"mangled name” generated by other implementations.

2.5 Thread Safety

Unless otherwise stated, the thread safety rules for the library are as follows:

e Two threads can invoke a method or function concurrently on different objects, but
not the same object.

e It is unsafe for two threads to invoke concurrently methods or functions on the same
object.

Descriptions of the classes note departures from this convention. For example, the
concurrent containers are more liberal. By their nature, they do permit some
concurrent operations on the same container object.

Reference Manual 7

3 Environment

This section describes features of Intel® Threadinging Building Blocks (Intel® TB) that
relate to general environment issues.

3.1 Version Information

Intel® TBB has macros, an environment variable, and a function that reveal version
and run-time information.

3.1.1 Version Macros

The header tbb/tbb_stddef.h defines macros related to versioning, as described in
Table 4. You should not redefine these macros.

Table 4: Version Macros

Macro Description of Value

TBB INTERFACE VERSION Current interface version. The value is a
decimal numeral of the form xyyy where x is
the major version number and y is the
minor version number.

TBB INTERFACE VERSION MAJOR TBB_INTERFACE_VERSION/1000; that is,
the major version number.

TBB COMPATIBLE INTERFACE VERSION | Oldest major interface version still
supported.

3.1.2 TBB_VERSION Environment Variable

Set the environment variable TBB_VERSION to 1 to cause the library to print information
on stderr. Each line is of the form “TBB: tag value”, where tag and value are
described in Table 5.

Table 5: Output from TBB_VERSION

Tag Description of Value

VERSION Intel® TBB product version number.

INTERFACE VERSION | Value of macro TBB INTERFACE VERSION when library was
compiled.

315415-016US

Environment

CAUTION:

BUILD ... Various information about the machine configuration on which
the library was built.

TBB USE ASSERT Setting of macro TBB USE ASSERT

DO_ITT NOTIFY 1 if library can enable instrumentation for Intel® Parallel
Studio and Intel® Threading Tools; 0 or undefined otherwise.

ITT yes if library has enabled instrumentation for Intel® Parallel
Studio and Intel® Threadng Tools, no otherwise. Typically yes
only if the program is running under control of Intel® Parallel
Studio or Intel® Threadng Tools.

ALLOCATOR Underlying allocator for tbb::tbb allocator. Itis
scalable malloc if the Intel® TBB malloc library was
successfully loaded; malloc otherwise.

This output is implementation specific and may change at any time.

3.1.3 TBB_runtime_interface_version Function

Summary

Function that returns the interface version of the Intel® TBB library that was loaded at
runtime.

Syntax

extern “C” int TBB runtime interface version();

Header
#include "tbb/tbb stddef.h"

Description

The value returned by TBB runtime interface version () may differ from the value
of TBB INTERFACE VERSION obtained at compile time. This can be used to identify
whether an application was compiled against a compatible version of the Intel® TBB
headers.

In general, the run-time value TBB runtime interface version() must be greater
than or equal to the compile-time value of TBB INTERFACE VERSION. Otherwise the
application may fail to resolve all symbols at run time.

3.2 Enabling Debugging Features

Four macros control certain debugging features. In general, it is useful to compile with
these features on for development code, and off for production code, because the

Reference Manual 9

features may decrease performance. Table 6 summarizes the macros and their default
values. A value of 1 enables the corresponding feature; a value of 0 disables the
feature.

Table 6: Debugging Macros

TIP:

10

Macro Default Value Feature
TBB_USE_DEBUG Windows* OS: Default value for all other
1if DEBUG is defined, | macros in this table.
0 otherwise.

All other systems: 0.

TBB_USE_ASSERT Enable internal assertion
checking. Can significantly slow
performance.

TBB_USE_THREADING TOOLS TBB USE DEBUG Enable full support for Intel®

Parallel Studio and Intel®
Threading Tools.

TBB_USE_PERFORMANCE WARNINGS Enable warnings about
performance issues.

3.2.1 TBB_USE_ASSERT Macro

The macro TBB_USE_ASSERT controls whether error checking is enabled in the header
files. Define TBB USE ASSERT as 1 to enable error checking.

If an error is detected, the library prints an error message on stderr and calls the
standard C routine abort. To stop a program when internal error checking detects a
failure, place a breakpoint on tbb: :assertion failure.

On Microsoft Windows* operating systems, debug builds implicitly set TBB_USE_ASSERT
to 1 by default

3.22 TBB_USE_THREADING_TOOLS Macro

The macro TBB_USE_THREADING_TOOLS controls support for Intel® Threading Tools:

Intel® Parallel Inspector

Intel® Parallel Amplifier
Intel® Thread Profiler
Intel® Thread Checker.

315415-016US

Environment

CAUTION:

Define TBB USE THREADING TOOLS as 1 to enable full support for these tools.

That is full support is enabled if error checking is enabled. Leave
TBB_USE THREADING TOOLS undefined or zero to enable top performance in release
builds, at the expense of turning off some support for tools.

323 TBB_USE_PERFORMANCE_WARNINGS Macro

The macro TBB_USE PERFORMANCE WARNINGS controls performance warnings. Define it
to be 1 to enable the warnings. Currently, the warnings affected are:

e Some that report poor hash functions for concurrent hash map. Enabling the
warnings may impact performance.

e Misaligned 8-byte atomic stores on Intel® IA-32 processors.

3.3 Feature macros

Macros in this section control optional features in the library.

3.3.1 TBB_DEPRECATED macro

The macro TBB_DEPRECATED controls deprecated features that would otherwise conflict
with non-deprecated use. Define it to be 1 to get deprecated Intel® TBB 2.1 interfaces.
Appendix A describes deprecated features.

3.3.2 TBB_USE_EXCEPTIONS macro

The macro TBB_USE EXCEPTIONS controls whether the library headers use exception-
handling constructs such as try, catch, and throw. The headers do not use these
constructs when TBB USE_EXCEPTIONS=0.

For the Microsoft Windows*, Linux*, and MacOS* operating systems, the default value
is 1 if exception handling constructs are enabled in the compiler, and 0 otherwise.

The runtime library may still throw an exception when TBB USE EXCEPTIONS=0.

333 TBB_USE_CAPTURED_EXCEPTION macro

The macro TBB_USE_CAPTURED EXCEPTION controls rethrow of exceptions within the
library. Because C++ 1998 does not support catching an exception on one thread and

Reference Manual 11

12

rethrowing it on another thread, the library sometimes resorts to rethrowing an
approximation called tbb: :captured exception.

e Define TBB_USE CAPTURED EXCEPTION=1 to make the library rethrow an
approximation. This is useful for uniform behavior across platforms.

e Define TBB_USE CAPTURED EXCEPTION=0 to request rethrow of the exact exception.
This setting is valid only on platforms that support the std: :exception ptr feature
of C++4 200x. Otherwise a compile-time diagnostic is issued.

The default value is 1 for supported host compilers with std: :exception ptr, and 0
otherwise.

Section 13 describes exception handling and TBB USE CAPTURED EXCEPTION in more
detail.

315415-016US

Algorithms

CAUTION:

intel)

4 Algorithms

Most parallel algorithms provided by Intel® Threading Building Blocks (Intel® TBB) are
generic. They operate on all types that model the necessary concepts. Parallel
algorithms may be nested. For example, the body of a parallel for can invoke
another parallel for.

When the body of an outer parallel algorithm invokes another parallel algorithm, it may
cause the outer body to be re-entered for a different iteration of the outer algorithm.

For example, if the outer body holds a global lock while calling an inner parallel
algorithm, the body will deadlock if the re-entrant invocation attempts to acquire the
same global lock. This ill-formed example is a special case of a general rule that code
should not hold a lock while calling code written by another author.

4.1 Splittable Concept

Summary

Requirements for a type whose instances can be split into two pieces.

Requirements

Table 7 lists the requirements for a splittable type x with instance x.

Table 7: Splittable Concept

Pseudo-Signature Semantics
X::X(X& %, Split) Split x into x and newly constructed object.
Description

A type is splittable if it has a splitting constructor that allows an instance to be split into
two pieces. The splitting constructor takes as arguments a reference to the original
object, and a dummy argument of type split, which is defined by the library. The
dummy argument distinguishes the splitting constructor from a copy constructor. After
the constructor runs, x and the newly constructed object should represent the two
pieces of the original x. The library uses splitting constructors in three contexts:

e Partitioning a range into two subranges that can be processed concurrently.

e Forking a body (function object) into two bodies that can run concurrently.

Reference Manual 13

The following model types provide examples.

Model Types

blocked range (4.2.1) and blocked range2d (4.2.2) represent splittable ranges. For
each of these, splitting partitions the range into two subranges. See the example in
Section 4.2.1.3 for the splitting constructor of blocked range<value>.

The bodies for parallel reduce (4.5) and parallel scan (4.6) must be splittable.
For each of these, splitting results in two bodies that can be run concurrently.

4.1.1 split Class

Summary

Type for dummy argument of a splitting constructor.

Syntax

class split;

Header
#include "tbb/tbb_stddef.h"

Description

An argument of type split is used to distinguish a splitting constructor from a copy
constructor.

Members

namespace tbb {
class split {
bi

4.2 Range Concept

Summary

Requirements for type representing a recursively divisible set of values.

Requirements

Table 8 lists the requirements for a Range type R.

315415-016US

Algorithms

intel)

Table 8: Range Concept

Pseudo-Signature Semantics
R::R(const R&) Copy constructor.
R::~R() Destructor.
bool R::empty() const True if range is empty.
bool R::is divisible() const True if range can be partitioned into two
subranges.
R::R(R& r, split) Split r into two subranges.
Description

A Range can be recursively subdivided into two parts. It is recommended that the
division be into nearly equal parts, but it is not required. Splitting as evenly as possible
typically yields the best parallelism. Ideally, a range is recursively splittable until the
parts represent portions of work that are more efficient to execute serially rather than
split further. The amount of work represented by a Range typically depends upon
higher level context, hence a typical type that models a Range should provide a way to
control the degree of splitting. For example, the template class blocked range (4.2.1)
has a grainsize parameter that specifies the biggest range considered indivisible.

The constructor that implements splitting is called a splitting constructor. If the set of
values has a sense of direction, then by convention the splitting constructor should
construct the second part of the range, and update the argument to be the first half.
Following this convention causes the parallel for (4.4), parallel reduce (4.5), and
parallel scan (4.6) algorithms, when running sequentially, to work across a range in
the increasing order typical of an ordinary sequential loop.

Example

The following code defines a type TrivialIntegerRange that models the Range
concept. It represents a half-open interval [lower,upper) that is divisible down to a
single integer.

struct TrivialIntegerRange {
int lower;
int upper;
bool empty() const {return lower==upper; }
bool is divisible() const {return upper>lower+l;}
TrivialIntegerRange(TrivialIntegerRange& r, split) {
int m = (r.lower+r.upper)/2;

lower m;
upper = r.upper;

r.upper = m;

Reference Manual 15

16

TrivialIntegerRange is for demonstration and not very practical, because it lacks a
grainsize parameter. Use the library class blocked range instead.

Model Types

Type blocked range (4.2.1) models a one-dimensional range.
Type blocked range2d (4.2.2) models a two-dimensional range.
Type blocked range3d (4.2.3) models a three-dimensional range.

Concept Container Range (5.1) models a container as a range.

4.2.1 blocked_range<Value> Template Class

Summary

Template class for a recursively divisible half-open interval.

Syntax

template<typename Value> class blocked range;

Header
#include "tbb/blocked range.h"

Description

A blocked range<Value> represents a half-open range [/,j) that can be recursively
split. The types of i and j must model the requirements in Table 9. In the table, type D
is the type of the expression “j-i”. It can be any integral type that is convertible to
size_t. Examples that model the Value requirements are integral types, pointers, and
STL random-access iterators whose difference can be implicitly converted to a size t.

A blocked range models the Range concept (4.2).

Table 9: Value Concept for blocked_range

Pseudo-Signature Semantics
Value::Value (const Values&) Copy constructor.
Value: :~Value () Destructor.

315415-016US

Algorithms

TIP:

intel)

void® operator=(const Value&) Assighment

bool operator<(const Value& i, const Value& j) Value i precedes value
j.

D operator—(const Value& i, const Values j) Number of values in
range [i,3).

Value operator+(const Value& i, D k) kth value after J.

A blocked range<Value> specifies a grainsize of type size t. A blocked range is
splittable into two subranges if the size of the range exceeds grain size. The ideal grain
size depends upon the context of the blocked range<vValue>, which is typically as the
range argument to the loop templates parallel for, parallel reduce, OF

parallel scan. A too small grainsize may cause scheduling overhead within the loop
templates to swamp speedup gained from parallelism. A too large grainsize may
unnecessarily limit parallelism. For example, if the grain size is so large that the range
can be split only once, then the maximum possible parallelism is two.

Here is a suggested procedure for choosing grainsize:

1. Set the grainsize parameter to 10,000. This value is high enough to amortize
scheduler overhead sufficiently for practically all loop bodies, but may be
unnecessarily limit parallelism.

2. Run your algorithm on one processor.

3. Start halving the grainsize parameter and see how much the algorithm slows down
as the value decreases.

A slowdown of about 5-10% is a good setting for most purposes.

For a blocked_range [i,j) where j<i, not all methods have specified behavior. However,
enough methods do have specified behavior that parallel_for (4.4), parallel_reduce
(4.5), and parallel_scan (4.6) iterate over the same iteration space as the serial loop
for(Value index=i; index<j; ++index)... , even when j<i. If TBB_USE ASSERT (3.2.1)
is nonzero, methods with unspecified behavior raise an assertion failure.

Examples

A blocked range<Value> typically appears as a range argument to a loop template.
See the examples for parallel for (4.4), parallel reduce (4.5), and
parallel scan (4.6).

*The return type void in the pseudo-signature denotes that operator= is not
required to return a value. The actual operator= can return a value, which will
be ignored by blocked range.

Reference Manual 17

Members
namespace tbb {
template<typename Value>
class blocked range {
public:
// types
typedef size t size type;
typedef Value const iterator;

// constructors

blocked range(Value begin, Value end,
size type grainsize=1l);

blocked range(blocked range& r, split);

// capacity
size type size() const;
bool empty () const;

// access
size type grainsize() const;
bool is divisible() const;

// iterators
const iterator begin() const;
const iterator end() const;

42.1.1 size_type

Description

The type for measuring the size of a blocked range. The type is always a size t.

const iterator

Description

The type of a value in the range. Despite its name, the type const iterator is not

necessarily an STL iterator; it merely needs to meet the Value requirements in Table 9.
However, it is convenient to call it const_iterator so that if it is a const_iterator, then
the blocked range behaves like a read-only STL container.

18 315415-016US

Algorithms

42.1.2 blocked_range(Value begin, Value end, size_t grainsize=1)

Requirements

The parameter grainsize must be positive. The debug version of the library raises an
assertion failure if this requirement is not met.

Effects

Constructs a blocked range representing the half-open interval [begin,end) with the
given grainsize.

Example

The statement "blocked range<int> r(5, 14, 2);” constructs a range of int that
contains the values 5 through 13 inclusive, with a grainsize of 2. Afterwards,
r.begin ()==5 and r.end ()==14.

4213 blocked_range(blocked_range& range, split)
Requirements
is divisible () is true.

Effects

Partitions range into two subranges. The newly constructed blocked range is
approximately the second half of the original range, and range is updated to be the
remainder. Each subrange has the same grainsize as the original range.

Example

Let i and § be integers that define a half-open interval [i,7) and let g specifiy a grain
size. The statement blocked range<int> r(i,j,g) constructs a blocked range<int>
that represents [i,j) with grain size g. Running the statement blocked range<int>

s (r,split) ; subsequently causes r to represent [i, i +(5 —-1)/2) and s to represent [i
+(5 —-1)/2, j), both with grain size g.

4214 size_type size() const

Requirements

end () <begin () is false.

Effects

Determines size of range.

Reference Manual 19

20

Returns
end () —begin ()
4215 bool empty() const

Effects

Determines if range is empty.
Returns
! (begin () <end())
4216 size_type grainsize() const
Returns
Grain size of range.

4.2.1.7 bool is_divisible() const

Requirements
! (end () <begin ())

Effects
Determines if range can be split into subranges.
Returns
True if size () >grainsize () ; false otherwise.
42.1.8 const_iterator begin() const
Returns
Inclusive lower bound on range.
4219 const_iterator end() const

Returns

Exclusive upper bound on range.

315415-016US

Algorithms

4.2.2 blocked_range2d Template Class

Summary

Template class that represents recursively divisible two-dimensional half-open interval.

Syntax

template<typename RowValue, typename ColValue> class
blocked range2d;

Header
#include "tbb/blocked range2d.h"

Description

A blocked range2d<RowValue, ColValue> represents a half-open two dimensional
range [ip,jo)x[i1,j1). Each axis of the range has its own splitting threshold. The
RowValue and ColValue must meet the requirements in Table 9. A blocked range is
splittable if either axis is splittable. A blocked range models the Range concept (4.2).

Members
namespace tbb {
template<typename RowValue, typename ColValue=RowValue>
class blocked range2d ({
public:
// Types
typedef blocked range<RowValue> row range type;
typedef blocked range<ColValue> col range type;

// Constructors
blocked range2d (
RowValue row begin, RowValue row end,
typename row range type::size type row grainsize,
ColvValue col begin, ColValue col end,
typename col range type::size type col grainsize);
blocked range2d(RowValue row begin, RowValue row_end,
ColValue col begin, ColValue col end);
blocked range2d(blocked range2d& r, split);

// Capacity
bool empty () const;

// Access
bool is divisible() const;
const row range type& rows() const;

Reference Manual 21

22

const col range type& cols() const;

i

Example

The code that follows shows a serial matrix multiply, and the corresponding parallel
matrix multiply that uses a blocked range2d to specify the iteration space.

const size t L = 150;
const size t M = 225;
const size t N = 300;

void SerialMatrixMultiply(float c[M][N], float a[M][L], float
b[L] [N]) {

for(size t i=0; i<M; ++i) {
for(size t j=0; Jj<N; ++j) {
float sum = 0;
for(size t k=0; k<L; ++k)
sum += a[i] [k]*b[k][]];
clil[J] = sum;

#include "tbb/parallel for.h"
#include "tbb/blocked range2d.h"

using namespace tbb;

150;
const size t M = 225;
300;

const size t L

const size t N

class MatrixMultiplyBody2D {
float (*my a) [L];
float (*my b) [N];
float (*my c) [N];

public:
void operator () (const blocked range2d<size t>& r) const ({
float (*a)[L] = my a;
float (*b) [N] = my b;
float (*c) [N] = my c;
for(size t i=r.rows() .begin(); il=r.rows().end(); ++i

315415-016US

) {

Algorithms

intel)

for(size t j=r.cols().begin(); jl!=r.cols().end(); ++J

float sum = 0;

for(size t k=0; k<L; ++k)
sum += al[i] [k]*b[k][F];

cli]l[J] = sum;

}

MatrixMultiplyBody2D(float c[M] [N], float a[M][L], float
b[L] [N])

my a(a), my b(b), my c(c)

{}
i
void ParallelMatrixMultiply (float c[M][N], float a[M][L], float
b[L][N]) {

parallel for(blocked range2d<size t>(0, M, 16, 0, N, 32),

MatrixMultiplyBody2D(c,a,b));

}

The blocked range2d enables the two outermost loops of the serial version to become
parallel loops. The parallel for recursively splits the blocked range2d until the
pieces are no larger than 16x32. It invokes MatrixMultiplyBody2D: :operator () ON
each piece.

4.2.2.1 row_range_type

Description

A blocked range<RowValue>. That is, the type of the row values.
422.2 col_range_type

Description

A blocked range<ColValue>. That is, the type of the column values.

Reference Manual 23

24

4223 blocked_range2d<RowValue,ColValue>(RowValue
row_begin, RowValue row_end, typename
row_range_type:size_type row_grainsize, ColValue
col_begin, ColValue col_end, typename
col_range_type:size_type col_grainsize)

Effects

Constructs a blocked range2d representing a two dimensional space of values. The
space is the half-open Cartesian product [row begin,row end)x [col begin,col end),
with the given grain sizes for the rows and columns.

Example

The statement "blocked range2d<char,int> r(’a’, ’'z’+1, 3, 0, 10, 2);”

constructs a two-dimensional space that contains all value pairs of the form (i, j),
where i ranges from ’a’ to 'z’ with a grain size of 3, and j ranges from 0 to 9 with a

grain size of 2.

4224 blocked_range2d<RowValue,ColValue>(RowValue
row_begin, RowValue row_end, ColValue col_begin,
ColValue col_end)

Effects

Same as blocked range2d(row begin,row end,1l,col begin,col end, l).

4225 blocked_range2d<RowValue,ColValue> (blocked_range2d&
range, split)

Effects

Partitions range into two subranges. The newly constructed blocked_range2d is
approximately the second half of the original range, and range is updated to be the
remainder. Each subrange has the same grain size as the original range. The split is
either by rows or columns. The choice of which axis to split is intended to cause, after
repeated splitting, the subranges to approach the aspect ratio of the respective row
and column grain sizes. For example, if the row grainsize is twice col grainsize,

the subranges will tend towards having twice as many rows as columns.

4226 bool empty() const

Effects

Determines if range is empty.

315415-016US

Algorithms

Returns

rows () .empty () | [cols () .empty ()
4227 bool is_divisible() const

Effects

Determines if range can be split into subranges.

Returns

rows () .is _divisible () | |cols () .is_divisible ()
4228 const row_range_type& rows() const

Returns

Range containing the rows of the value space.
4229 const col_range_type& cols() const

Returns

Range containing the columns of the value space.

4.2.3 blocked_range3d Template Class

Summary

Template class that represents recursively divisible three-dimensional half-open
interval.

Syntax

template<typename PageValue, typename RowValue, typename ColValue>
class blocked range3d;

Header
#include "tbb/blocked range3d.h"

Description

A blocked range3d<PageValue,RowValue, ColValue> is the three-dimensional
extension of blocked range2d.

Members
namespace tbb {

Reference Manual 25

26

template<typename PageValue, typename RowValue=PageValue, typename

ColValue=RowValue>

class blocked range3d ({

public:
// Types

typedef blocked range<PageValue> page range type;

typedef blocked range<RowValue> row range type;

typedef blocked range<ColValue> col range type;

// Constructors
blocked range3d (
PageValue page begin, PageValue page end,

typename
RowValue
typename
Colvalue
typename

page range type::size type page grainsize,
row_begin, RowValue row_end,

row_range type::size type row grainsize,
col begin, ColValue col end,

col range type::size type col grainsize);

blocked range3d(PageValue page begin, PageValue page_ end,

RowValue row begin, RowValue row end,
ColValue col begin, ColValue col end);

blocked range3d(blocked range3d& r, split);

// Capacity

bool empty () const;

// RAccess

bool is divisible() const;

const page range type& pages () const;
const row range type& rows() const;
const col range type& cols() const;

43 Partitioners

Summary

A partitioner specifies how a loop template should partition its work among threads.

Description

The default behavior of the loop templates parallel for (4.4), parallel reduce
(4.5), and parallel scan (4.6) tries to recursively split a range into enough parts to
keep processors busy, not necessarily splitting as finely as possible. An optional

315415-016US

intel)

partitioner parameter enables other behaviors to be specified, as shown in Table 10.

The first column of the table shows how the formal parameter is declared in the loop

templates. An affinity partitioner is passed by non-const reference because it is
updated to remember where loop iterations run.

Table 10: Partitioners

Partitioner Loop Behavior

const auto partitioners Performs sufficient splitting to balance load, not
(default)’ necessar?ly splitjcin'g as finely.as .
Range::is divisible permits. When used with
classes such as blocked range, the selection of an
appropriate grainsize is less important, and often
acceptable performance can be achieved with the
default grain size of 1.

affinity partitioneré& Similar to auto partitioner, but improves cache
affinity by its choice of mapping subranges to
worker threads. It can improve performance
significantly when a loop is re-executed over the
same data set, and the data set fits in cache.

const simple partitioners | Recursively splits a range until it is no longer
divisible. The Range: :is_divisible function is
wholly responsible for deciding when recursive
splitting halts. When used with classes such as
blocked range, the selection of an appropriate
grainsize is critical to enabling concurrency while
limiting overheads (see the discussion in Section
4.2.1).

4.3.1 auto_partitioner Class

Summary

Specify that a parallel loop should optimize its range subdivision based on work-
stealing events.

Syntax

class auto_partitioner;

*In Intel® TBB 2.1, simple partitioner was the default. Intel® TBB 2.2
changed the default to auto partitioner to simplify common usage of the
loop templates. To get the old default, compile with the preprocessor symbol
TBB DEPRECATED=1.

Reference Manual 27

TIP:

28

Header
#include "tbb/partitioner.h"

Description

A loop template with an auto_partitioner attempts to minimize range splitting while
providing ample opportunities for work-stealing.

The range subdivision is initially limited to S subranges, where S is proportional to the
number of threads specified by the task scheduler init (12.2.1). Each of these
subranges is not divided further unless it is stolen by an idle thread. If stolen, it is
further subdivided to create additional subranges. Thus a loop template with an
auto_partitioner creates additional subranges only when necessary to balance load.

When using auto partitioner and a blocked range for a parallel loop, the body may
be passed a subrange larger than the blocked range’s grainsize. Therefore do not

assume that the grainsize is an upper bound on the size of the subrange. Use a
simple partitioner if an upper bound is required.

Members
namespace tbb {
class auto partitioner ({
public:
auto partitioner();
~auto partitioner();

43.1.1 auto_partitioner()

Construct an auto_partitioner.

43.1.2 ~auto_partitioner()

Destroy this auto _partitioner.

43.2 affinity_partitioner

Summary

Hint that loop iterations should be assigned to threads in a way that optimizes for
cache affinity.

Syntax

class affinity partitioner;

315415-016US

Algorithms

TIP:

intel)

Header
#include "tbb/partitioner.h"

Description

An affinity partitioner hints that execution of a loop template should assign

iterations to the same processors as another execution of the loop (or another loop)
with the same affinity partitioner object.

Unlike the other partitioners, it is important that the same affinity partitioner
object be passed to the loop templates to be optimized for affinity. The Tutorial
(Section 3.2.3 "Bandwidth and Cache Affinity”) discusses affinity effects in detail.

The affinity_partitioner generally improves performance only when:
e The computation does a few operations per data access.

e The data acted upon by the loop fits in cache.

e The loop, or a similar loop, is re-executed over the same data.

e There are more than two hardware threads available.

Members
namespace tbb {
class affinity partitioner ({
public:
affinity partitioner();
~affinity partitioner();

Example

The following example can benefit from cache affinity. The example simulates a one
dimensional additive automaton.

#include "tbb/blocked range.h"
#include "tbb/parallel for.h"
#include "tbb/partitioner.h"

using namespace tbb;

const int N = 1000000;
typedef unsigned char Cell;
Cell Arrayl[2][N];

int FlipFlop;

struct TimeStepOverSubrange {

Reference Manual 29

30

void operator () (const blocked range<int>& r) const {
int j = r.end();
const Cell* x = Array[FlipFlop];
Cell* y = Array[!FlipFlop];
for(int i=r.begin(); 1i!=j; ++1i)
y[i]l = x[1]"x[i+1];

void DoAllTimeSteps(int m) {
affinity partitioner ap;
for(int k=0; k<m; ++k) {
parallel for(blocked range<int>(0,N-1),
TimeStepOverSubrange (),
ap);
FlipFlop "= 1;

}

For each time step, the old state of the automaton is read from Array[FlipFlop], and
the new state is written into Array[!FlipFlop]. Then FlipFlop flips to make the new
state become the old state. The aggregate size of both states is about 2 MByte, which
fits in most modern processors’ cache. Improvements ranging from 50%-200% have
been observed for this example on 8 core machines, compared with using an
auto_partitioner instead.

The affinity partitioner must live between loop iterations. The example
accomplishes this by declaring it outside the loop that executes all iterations. An
alternative would be to declare the affinity partitioner at the file scope, which
works as long as DoAl1TimeSteps itself is not invoked concurrently. The same instance

of affinity partitioner should not be passed to two parallel algorithm templates
that are invoked concurrently. Use separate instances instead.

43.2.1 affinity_partitioner()

Construct an affinity partitioner.

43.2.2 ~affinity_partitioner()

Destroy this affinity partitioner.

315415-016US

Algorithms

TIP:

intel)

43.3 simple_partitioner Class

Summary

Specify that a parallel loop should recursively split its range until it cannot be
subdivided further.

Syntax

class simple partitioner;

Header
#include "tbb/partitioner.h"

Description

A simple partitioner specifies that a loop template should recursively divide its
range until for each subrange r, the condition !r.is divisible () holds. This is the
default behavior of the loop templates that take a range argument.

When using simple partitioner and a blocked range for a parallel loop, be careful
to specify an appropriate grainsize for the blocked_range. The default grainsize is 1,
which may make the subranges much too small for efficient execution.

Members
namespace tbb {
class simple partitioner ({
public:
simple partitioner();
~simple partitioner();

433.1 simple_partitioner()

Construct a simple partitioner.

433.2 ~simple_partitioner()

Destroy this simple partitioner.

Reference Manual 31

32

44 parallel_for Template Function

Summary

Template function that performs parallel iteration over a range of values.

Syntax
template<typename Index, typename Func>
Func parallel for(Index first, Index type last, const Funcé& £

[, task_group context& group]) ;

template<typename Index, typename Func>
Func parallel for(Index first, Index type last,
Index step, const Funcé& £

[, task _group contexts& group]);

template<typename Range, typename Body>
void parallel for(const Range& range, const Bodyé& body,

[, partitioner[, task group contexté& group]]);

where the optional partitioner declares any of the partitioners as shown in column 1 of
Table 10.

Header
#include "tbb/parallel for.h"

Description
A parallel for(first,last,step,f) represents parallel execution of the loop:
for (auto i=first; i<last; i+=step) £(i);

The index type must be an integral type. The loop must not wrap around. The step
value must be positive. If omitted, it is implicitly 1. There is no guarantee that the
iterations run in parallel. Deadlock may occur if a lesser iteration waits for a greater
iteration. The partitioning strategy is always auto partitioner.

A parallel for (range, body,partitioner) provides a more general form of parallel
iteration. It represents parallel execution of body over each value in range. The
optional partitioner specifies a partitioning strategy. Type Range must model the
Range concept (4.2). The body must model the requirements in Table 11.

315415-016US

Algorithms

intel)

Table 11: Requirements for parallel_for Body

Pseudo-Signature Semantics
Body: :Body (const Bodyé&) Copy constructor.
Body: : ~Body () Destructor.
void Body::operator () (Range& range) const Apply body to range.

A parallel for recursively splits the range into subranges to the point such that

is divisible() is false for each subrange, and makes copies of the body for each of
these subranges. For each such body/subrange pair, it invokes Body: :operator (). The
invocations are interleaved with the recursive splitting, in order to minimize space
overhead and efficiently use cache.

Some of the copies of the range and body may be destroyed after parallel for
returns. This late destruction is not an issue in typical usage, but is something to be
aware of when looking at execution traces or writing range or body objects with
complex side effects.

When worker threads are available (12.2), parallel for executes iterations is non-

deterministic order. Do not rely upon any particular execution order for correctness.
However, for efficiency, do expect parallel for to tend towards operating on

consecutive runs of values.

When no worker threads are available, parallel for executes iterations from left to
right in the following sense. Imagine drawing a binary tree that represents the
recursive splitting. Each non-leaf node represents splitting a subrange r by invoking the
splitting constructor Range (r, split ()). The left child represents the updated value of

r. The right child represents the newly constructed object. Each leaf in the tree
represents an indivisible subrange. The method Body: :operator () is invoked on each

leaf subrange, from left to right.

All overloads can be passed a task group context object so that the algorithm’s
tasks are executed in this group. By default the algorithm is executed in a bound group
of its own.

Complexity

If the range and body take O(1) space, and the range splits into nearly equal pieces,
then the space complexity is O(P log(N)), where N is the size of the range and P is the
number of threads.

Example

This example defines a routine ParallelAverage that sets output[i] to the average
of input[i-1], input[i], and input[i+1], for 1<i<n.

#include "tbb/parallel for.h"

Reference Manual 33

34

#include "tbb/blocked range.h"
using namespace tbb;

struct Average {
const float* input;
float* output;
void operator () (const blocked range<int>& range) const ({
for(int i=range.begin(); i'!=range.end(); ++1i)
output[i] = (input[i-1]+input[i]+input[i+1])*(1/3.f);

}:

// Note: Reads input[0..n] and writes output[l..n-1].
void ParallelAverage(float* output, const float* input, size t n
) |

Average avg;

avg.input = input;

avg.output = output;

parallel for(blocked range<int>(1, n), avg);

Example

This example is more complex and requires familiarity with STL. It shows the power of
parallel for beyond flat iteration spaces. The code performs a parallel merge of two
sorted sequences. It works for any sequence with a random-access iterator. The
algorithm (Akl 1987) works recursively as follows:

1. If the sequences are too short for effective use of parallelism, do a sequential
merge. Otherwise perform steps 2-6.

2. Swap the sequences if necessary, so that the first sequence [beginl,endl) is at
least as long as the second sequence [begin2,end?2).

3. Set m1l to the middle position in [beginl,endl). Call the item at that location key.
4. Set m2 to where key would fall in [begin2,end?2).

5. Merge [beginl,m1) and [begin2,m2) to create the first part of the merged
sequence.

6. Merge [m1,endl) and [m2,end2) to create the second part of the merged
sequence.

The Intel® Threading Building Blocks implementation of this algorithm uses the range
object to perform most of the steps. Predicate is divisible performs the test in step
1, and step 2. The splitting constructor does steps 3-6. The body object does the
sequential merges.

#include "tbb/parallel for.h"

315415-016US

Algorithms

#include <algorithm>
using namespace tbb;

template<typename Iterator>
struct ParallelMergeRange {
static size t grainsize;

Iterator beginl, endl; // [beginl,endl) is 1lst sequence to be
merged

Iterator begin2, end2; // [begin2,end2) is 2nd sequence to be
merged

Iterator out; // where to put merged sequence
bool empty () const {return (endl-beginl)+ (end2-begin2)==0;}
bool is divisible() const {

return std::min(endl-beginl, end2-begin2) > grainsize;

}
ParallelMergeRange (ParallelMergeRange& r, split) {
if(r.endl-r.beginl < r.end2-r.begin2) {
std::swap(r.beginl,r.begin?2) ;
std::swap(r.endl,r.end?2);
}
Iterator ml = r.beginl + (r.endl-r.beginl)/2;

Iterator m2 std::lower bound(r.begin2, r.end2, *ml);
beginl = ml;

begin2 = m2;

endl = r.endl;
end?2 = r.end2;
out = r.out + (ml-r.beginl) + (m2-r.begin?);

r.endl = ml;
r.end2 = m2;
}
ParallelMergeRange (Iterator beginl , Iterator endl ,
Iterator begin2 , Iterator end2 ,
Iterator out)
beginl (beginl), endl(endl),
begin2 (begin2), end2(end2), out (out)
{}
bi

template<typename Iterator>
size t ParallelMergeRange<Iterator>::grainsize = 1000;

template<typename Iterator>
struct ParallelMergeBody {
void operator () (ParallelMergeRange<Iterator>& r) const {

Reference Manual 35

36

std: :merge(r.beginl, r.endl, r.begin2, r.end2, r.out);
)i 8

template<typename Iterator>

void ParallelMerge(Iterator beginl, Iterator endl, Iterator
begin2, Iterator end2, Iterator out) {

parallel for(
ParallelMergeRange<Iterator>(beginl,endl,begin2, end2,out),
ParallelMergeBody<Iterator> (),
simple partitioner ()

) ;

Because the algorithm moves many locations, it tends to be bandwidth limited.
Speedup varies, depending upon the system.

45 parallel_reduce Template Function

Summary

Computes reduction over a range.

Syntax
template<typename Range, typename Value,
typename Func, typename Reduction>
Value parallel reduce(const Rangeé& range, const Value& identity,
const Funcé& func, const Reduction& reduction,

[, partitioner[, task group contexts& group]]);

template<typename Range, typename Body>
void parallel reduce(const Rangeé& range, const Bodyé& body

[, partitioner[, task group context& group]]);

where the optional partitioner declares any of the partitioners as shown in column 1 of
Table 10.

Header
#include "tbb/parallel reduce.h"

315415-016US

intel)

Algorithms
Description
The parallel reduce template has two forms. The functional form is designed to be
easy to use in conjunction with lambda expressions. The imperative form is designed to
minimize copying of data.
The functional form parallel reduce (range,identity,func,reduction) performs a
parallel reduction by applying func to subranges in range and reducing the results
using binary operator reduction. It returns the result of the reduction. Parameter func
and reduction can be lambda expressions. Table 12 summarizes the type requirements
on the types of identity, func, and reduction.
Table 12: Requirements for Func and Reduction
Pseudo-Signature Semantics
Value Identity; Left identity element for
Func: :operator () .

Value Func::operator () (const Range& range,

Const Values X) Accumulate result for subrange,

starting with initial value x.
Value Reduction::operator () (const Value& x,
const Values y); | Combine results x and y.
The imperative form parallel reduce (range, body) performs parallel reduction of
body over each value in range. Type Range must model the Range concept (4.2). The
body must model the requirements in Table 13.
Table 13: Requirements for parallel_reduce Body

Pseudo-Signature Semantics

Body: :Body (Bodys&, split); Splitting constructor (4.1). Must
be able to run concurrently with
operator () and method join.

Body: : ~Body () Destructor.

void Body::operator () (const Range& range); Accumulate result for subrange.

void Body::join(Body& rhs); Join results. The result in rhs
should be merged into the
result of this.

A parallel reduce recursively splits the range into subranges to the point such that
is divisible() is false for each subrange. A parallel reduce uses the splitting
constructor to make one or more copies of the body for each thread. It may copy a

Reference Manual 37

38

Figure 1:

body while the body’s operator () or method join runs concurrently. You are
responsible for ensuring the safety of such concurrency. In typical usage, the safety
requires no extra effort.

When worker threads are available (12.2.1), parallel reduce invokes the splitting
constructor for the body. For each such split of the body, it invokes method join in
order to merge the results from the bodies. Define join to update this to represent the
accumulated result for this and rhs. The reduction operation should be associative, but
does not have to be commutative. For a noncommutative operation op,
“left.i0in(right)” should update /eft to be the result of left op right.

A body is split only if the range is split, but the converse is not necessarily so. Figure 1
diagrams a sample execution of parallel reduce. The root represents the original
body b0 being applied to the half-open interval [0,20). The range is recursively split at
each level into two subranges. The grain size for the example is 5, which yields four
leaf ranges. The slash marks (/) denote where copies (b; and b,) of the body were
created by the body splitting constructor. Bodies by and b; each evaluate one leaf.
Body b, evaluates leaf [10,15) and [15,20), in that order. On the way back up the tree,
parallel reduce invokes bg.join(b;) and bg.join(b;) to merge the results of the leaves.

by [0,20)
by [0,10) b, [10,20)
by [0,5) b, [5,10) b, [10,15) b, [15,20)

Execution of parallel_reduce over blocked_range<int>(0,20,5)

Figure 1 shows only one possible execution. Other valid executions include splitting b,
into b, and bs, or doing no splitting at all. With no splitting, by evaluates each leaf in
left to right order, with no calls to join. A given body always evaluates one or more
subranges in left to right order. For example, in Figure 1, body b, is guaranteed to
evaluate [10,15) before [15,20). You may rely on the left to right property for a given
instance of a body. However, you t must neither rely on a particular choice of body
splitting nor on the subranges processed by a given body object being consecutive.
parallel reduce makes the choice of body splitting nondeterministically.

by [0,20)
by [0,10) b, [10,20)
by [0.5) b, [5,10) by [10,15) by [15,20)

315415-016US

Figure 2: Example Where Body b, Processes Non-consecutive Subranges.

The subranges evaluated by a given body are not consecutive if there is an intervening
join. The joined information represents processing of a gap between evaluated
subranges. Figure 2 shows such an example. The body by performs the following
sequence of operations:

bo([0,5))

bg.join()(by) where b; has already processed [5,10)
bo([10,15))

bo([15,20))

In other words, body by gathers information about all the leaf subranges in left to right
order, either by directly processing each leaf, or by a join operation on a body that
gathered information about one or more leaves in a similar way. When no worker
threads are available, parallel reduce executes sequentially from left to right in the
same sense as for parallel for (4.4). Sequential execution never invokes the
splitting constructor or method join.

All overloads can be passed a task group context object so that the algorithm’s
tasks are executed in this group. By default the algorithm is executed in a bound group
of its own.

Complexity

If the range and body take O(1) space, and the range splits into nearly equal pieces,
then the space complexity is O(P log(N)), where N is the size of the range and P is the
number of threads.

Example (Imperative Form)

The following code sums the values in an array.

#include "tbb/parallel reduce.h"
#include "tbb/blocked range.h"

using namespace tbb;

struct Sum {
float value;

Sum () : value (0) {}
Sum (Sumé& s, split) {value = 0;}
void operator () (const blocked range<float*>& r) {

float temp = value;
for(float* a=r.begin(); al!=r.end(); ++a) {

Reference Manual 39

40

temp += *a;
}

value = temp;

}

void join(Sum& rhs) {value += rhs.value;}

i

float ParallelSum(float arrayl[], size t n) {
Sum total;
parallel reduce(blocked range<float*>(array, array+n),
total);
return total.value;

}

The example generalizes to reduction for any associative operation op as follows:

e Replace occurrences of 0 with the identity element for op
e Replace occurrences of += with op= or its logical equivalent.

e Change the name sum to something more appropriate for op.

The operation may be noncommutative. For example, op could be matrix
multiplication.

Example with Lambda Expressions

The following is analogous to the previous example, but written using lambda
expressions and the functional form of parallel reduce.

#include "tbb/parallel reduce.h"
#include "tbb/blocked range.h"

using namespace tbb;

float ParallelSum(float array[], size t n) {
return parallel reduce (
blocked range<float*>(array, array+n),
0.f,
[] (const blocked range<float*>& r, float init)->float {
for(float* a=r.begin(); a'=r.end(); ++a)
init += *a;
return init;

[1(float x, float y)->float {
return x+ty;

315415-016US

intel)

}

STL generalized numeric operations and functions objects can be used to write the
example more compactly as follows:

#include <numeric>

#include <functional>

#include "tbb/parallel reduce.h"
#include "tbb/blocked range.h"

using namespace tbb;

float ParallelSum(float arrayl[], size t n) {
return parallel reduce (
blocked range<float*>(array, array+n),
0.f,
[1 (const blocked range<float*>& r, float value)->float ({
return std::accumulate(r.begin(),r.end(),value);
}I
std::plus<float>()

46 parallel_scan Template Function

Summary

Template function that computes parallel prefix.

Syntax
template<typename Range, typename Body>
void parallel scan(const Rangeé& range, Bodyé& body);

template<typename Range, typename Body>

void parallel scan(const Rangeé& range, Body& body, const
auto partitioneré&);

template<typename Range, typename Body>
void parallel scan(const Rangeé& range, Body& body, const

simple partitioneré&);

Header
#include "tbb/parallel scan.h"

Reference Manual 41

TIP:

Description

A parallel scan(range,body) computes a parallel prefix, also known as parallel scan.
This computation is an advanced concept in parallel computing that is sometimes
useful in scenarios that appear to have inherently serial dependences.

A mathematical definition of the parallel prefix is as follows. Let ® be an associative
operation @ with left-identity element idg. The parallel prefix of @ over a sequence xo,
X1, ...Xn-1 IS @ SEQUENCE Yo, V1, V2, .--Yn-1 Where:

e Yo =ide ® Xo
* Vi=VYii1 DX

For example, if @ is addition, the parallel prefix corresponds a running sum. A serial
implementation of parallel prefix is:

T temp = ide;

for(int i=1; i<=n; ++1i) {
temp = temp © x[i];
y[i] = temp;

}

Parallel prefix performs this in parallel by reassociating the application of ® and using
two passes. It may invoke @ up to twice as many times as the serial prefix algorithm.
Given the right grain size and sufficient hardware threads, it can out perform the serial
prefix because even though it does more work, it can distribute the work across more
than one hardware thread.

Because parallel scan needs two passes, systems with only two hardware threads
tend to exhibit small speedup. parallel scan is best considered a glimpse of a
technique for future systems with more than two cores. It is nonetheless of interest
because it shows how a problem that appears inherently sequential can be parallelized.

The template parallel scan<Range,Body> implements parallel prefix generically. It
requires the signatures described in Table 14.

Table 14: parallel_scan Requirements

42

Pseudo-Signature Semantics

void Body: :operator () (const Range& r, Accumulate summary for range r.

pre scan tag)

void Body::operator () (const Rangeé& r, Compute scan result and

final scan taq) summary for range r.

Body: :Body (Body& b, split) Split b so that this and b can
accumulate summaries separately.
Body *this is object a in the table
row below.

315415-016US

Algorithms

intel)

Pseudo-Signature Semantics

void Body::reverse join(Body& a) Merge summary accumulated by a
into summary accumulated by
this, where this was created
earlier from a by a's splitting
constructor. Body *this is object
b in the table row above.

void Body::assign(Body& b) Assign summary of b to this.

A summary contains enough information such that for two consecutive subranges r and
s:

e If r has no preceding subrange, the scan result for s can be computed from knowing
s and the summary for r.

e A summary of r concatenated with s can be computed from the summaries of r and
s.

For example, if computing a running sum of an array, the summary for a range ris the
sum of the array elements corresponding to r.

Figure 3 shows one way that parallel scan might compute the running sum of an
array containing the integers 1-16. Time flows downwards in the diagram. Each color
denotes a separate Body object. Summaries are shown in brackets.

7. The first two steps split the original blue body into the pink and yellow bodies. Each
body operates on a quarter of the input array in parallel. The last quarter is
processed later in step 5.

8. The blue body computes the final scan and summary for 1-4. The pink and yellow
bodies compute their summaries by prescanning 5-8 and 9-12 respectively.

9. The pink body computes its summary for 1-8 by performing a reverse_join with the
blue body.

10. The yellow body computes its summary for 1-12 by performing a reverse_join with
the pink body.

11. The blue, pink, and yellow bodies compute final scans and summaries for portions
of the array.

12. The yellow summary is assigned to the blue body. The pink and yellow bodies are
destroyed.

Note that two quarters of the array were not prescanned. The parallel scan template
makes an effort to avoid prescanning where possible, to improve performance when
there are only a few or no extra worker threads. If no other workers are available,
parallel_scan processes the subranges without any pre_scans, by processing the
subranges from left to right using final scans. That’s why final scans must compute a
summary as well as the final scan result. The summary might be needed to process the
next subrange if no worker thread has prescanned it yet.

Reference Manual 43

44

input array 12314 56 78 9 10 11 12 13 14 15 16

H_J N\ v J N v J . v J
original body
[0]
original body split
[0] [0]
split
[0]
v l v
final_scan pre_scan pre_scan
0136 [10] [26] [42]

N

reverse_join

[36]
\ 4
reverse_join
[78]
final_scan final_scan final_scan

10 15 21 28 [36] 36 45 55 66 [78] 78 91 105 120 [136]

|

assign
[136]

Figure 3: Example Execution of parallel_scan

The following code demonstrates how the signatures could be implemented to use

parallel scan to compute the same result as the earlier sequential example involving
®.

using namespace tbb;
class Body {
T sum;

T* const y;
const T* const x;

315415-016US

Algorithms

public:
Body(T y [], const T x []) : sum(ide), x(x), y(v_) {}
T get sum() const {return sum;}

template<typename Tag>

void operator () (const blocked range<int>& r, Tag) {
T temp = sum;
for(int i=r.begin(); i<r.end(); ++1i) {

temp = temp @ x[i];
if(Tag::is_final scan())

y[i] = temp;
}
sum = temp;
}
Body (Bodyé& b, split) : x(b.x), y(b.y), sum(idg) {}
void reverse join(Body& a) { sum = a.sum @ sum;}
void assign(Body& b) {sum = b.sum;}

}:

float DoParallelScan(T y[], const T x[], int n) {
Body body (y, x) ;
parallel scan(blocked range<int>(0,n), body);
return body.get sum();

}

The definition of operator () demonstrates typical patterns when using

parallel scan.

e A single template defines both versions. Doing so is not required, but usually saves
coding effort, because the two versions are usually similar. The library defines static
method is _final scan() to enable differentiation between the versions.

e The prescan variant computes the ® reduction, but does not update y. The prescan
is used by parallel scan to generate look-ahead partial reductions.

e The final scan variant computes the ® reduction and updates y.

The operation reverse join is similar to the operation join used by

parallel reduce, except that the arguments are reversed. That is, this is the right
argument of ®@. Template function parallel scan decides if and when to generate
parallel work. It is thus crucial that @ is associative and that the methods of Body
faithfully represent it. Operations such as floating-point addition that are somewhat
associative can be used, with the understanding that the results may be rounded
differently depending upon the association used by parallel scan. The reassociation
may differ between runs even on the same machine. However, if there are no worker
threads available, execution associates identically to the serial form shown at the
beginning of this section.

Reference Manual 45

If you change the example to use a simple partitioner, be sure to provide a
grainsize. The code below shows the how to do this for a grainsize of 1000:

parallel scan(blocked range<int>(0,n,1000), total,
simple partitioner());

4.6.1 pre_scan_tag and final_scan_tag Classes

Summary

Types that distinguish the phases of parallel scan..

Syntax
struct pre scan_ tag;
struct final scan_ tag;

Header
#include "tbb/parallel scan.h"

Description

Types pre_scan_tag and final scan tag are dummy types used in conjunction with
parallel scan. See the example in Section 4.6 for how they are used in the signature
of operator ().

Members

namespace tbb {
struct pre scan_ tag {
static bool is final scan();
}i
struct final scan tag {

static bool is final scan();

}i

46.1.1 bool is_final_scan()

Returns

True for a final scan_tag, otherwise false.

315415-016US

Algorithms

Table 15:

intel)

4,7 parallel_do Template Function

Summary

Template function that processes work items in parallel.

Syntax
template<typename Inputlterator, typename Body>
void parallel do(Inputlterator first, Inputlterator last,

Body body[, task group context& group]);

Header
#include "tbb/parallel do.h"

Description

A parallel do(first,last,body) applies a function object body over the half-open
interval [first,last). Items may be processed in parallel. Additional work items can
be added by body if it has a second argument of type parallel do feeder (4.7.1).
The function terminates when body (x) returns for all items x that were in the input
sequence or added to it by method parallel do feeder::add (4.7.1.1).

The requirements for input iterators are specified in Section 24.1 of the ISO C++
standard. Table 15 shows the requirements on type Body.

parallel_do Requirements for Body B and its Argument Type T

Pseudo-Signature Semantics

B: :operator () (Process item. Template
cv-qualifiers T& item, parallel do may concurrently
invoke operator() for the same

<T> .
parallel do feeder<T>& feeder this but different item.

LSt The signature with feeder permits

OR additional work items to be

B::operator () (cv-qualifiers T& item) added.
const

T(const T&) Copy a work item.

~T::T() Destroy a work item.

CAUTION:

For example, a unary function object, as defined in Section 20.3 of the C++ standard,
models the requirements for B.

Defining both the one-argument and two-argument forms of operator () is not
permitted.

Reference Manual 47

TIP:

48

The parallelism in parallel do is not scalable if all of the items come from an input
stream that does not have random access. To achieve scaling, do one of the following:

e Use random access iterators to specify the input stream.
e Design your algorithm such that the body often adds more than one piece of work.

e Use parallel for instead.

To achieve speedup, the grainsize of B: :operator () needs to be on the order of at
least ~100,000 clock cycles. Otherwise, the internal overheads of parallel do swamp
the useful work.

The algorithm can be passed a task _group context object so that its tasks are

executed in this group. By default the algorithm is executed in a bound group of its
own.

Example

The following code sketches a body with the two-argument form of operator ().

struct MyBody {
void operator() (item t item,
parallel do feeder<item t>& feeder) {
for each new piece of work implied by item do {
item t new item = initializer;
feeder.add (new_item);

}i

4.7.1 parallel_do_feeder<ltem> class

Summary

Inlet into which additional work items for a parallel do can be fed.
Syntax
template<typename Item>

class parallel do feeder;

Header
#include "tbb/parallel do.h"

Description

A parallel do feeder enables the body of a parallel do to add more work items.

315415-016US

Algorithms

intel)

Only class parallel do (4.7) can create or destroy a parallel do feeder. The only
operation other code can perform on a parallel do feeder is to invoke method
parallel do feeder::add.

Members
namespace tbb {
template<typename Item>
struct parallel do feeder {
void add(const Item& item);

i

4.7.1.1 void add(const ltem& item)

Requirements

Must be called from a call to body .operator () created by parallel do. Otherwise,
the termination semantics of method operator () are undefined.

Effects

Adds item to collection of work items to be processed.

48 parallel_for_each Template Function

Summary

Parallel variant of std::for each.

Syntax

template<typename Inputlterator, typename Func>

void parallel for each (Inputlterator first, Inputlterator last,
const Funcé& f

[, task _group context& group]);

Header
#include "tbb/parallel for each.h"

Description

A parallel for each(first,last,f) applies £ to the result of dereferencing every
iterator in the range [first,last), possibly in parallel. It is provided for PPL
compatibility and equivalent to parallel do(first, last, £) without "feeder"
functionality.

Reference Manual 49

TIP:

50

If the group argument is specified, the algorithm’s tasks are executed in this group. By
default the algorithm is executed in a bound group of its own.

49 pipeline Class

Summary

Class that performs pipelined execution.

Syntax

class pipeline;

Header
#include "tbb/pipeline.h"

Description

A pipeline represents pipelined application of a series of filters to a stream of items.
Each filter operates in a particular mode: parallel, serial in order, or serial out of order
(MacDonald 2004). See class filter (4.9.6) for details.

A pipeline contains one or more filters, denoted here as f;, where i denotes the position
of the filter in the pipeline. The pipeline starts with filter f;, followed by fi, f5, etc. The
following steps describe how to use class pipeline.

13.

14.

15.
16.

17.

Derive each class f; from filter. The constructor for f; specifies its mode as a
parameter to the constructor for base class filter (4.9.6.1).

Override virtual method filter::operator () to perform the filter’s action on the
item, and return a pointer to the item to be processed by the next filter. The first
filter f, generates the stream. It should return NULL if there are no more items in
the stream. The return value for the last filter is ignored.

Create an instance of class pipeline.

Create instances of the filters f; and add them to the pipeline, in order from first to
last. An instance of a filter can be added at most once to a pipeline. A filter should
never be a member of more than one pipeline at a time.

Call method pipeline::run. The parameter max number of live tokens puts an
upper bound on the number of stages that will be run concurrently. Higher values
may increase concurrency at the expense of more memory consumption from
having more items in flight. See the Tutorial, in the section on class pipeline, for
more about effective use of max number of live tokens.

Given sufficient processors and tokens, the throughput of the pipeline is limited to the
throughput of the slowest serial filter.

315415-016US

Algorithms

NOTE:

Function parallel pipeline provides a strongly typed lambda-friendly way to build
and run pipelines.

Members
namespace tbb {
class pipeline {
public:
pipeline () ;
~pipeline () ;°
void add filter(filteré& £);
void run(size t max number of live tokens

[, task _group contexts& group]);
void clear ()

4.9.1 pipeline()

Effects

Constructs pipeline with no filters.

4.9.2 ~pipeline()
Effects

Removes all filters from the pipeline and destroys the pipeline

493 void add_filter(filter& f)

Effects

Appends filter f to sequence of filters in the pipeline. The filter f must not already be in
a pipeline.

> Though the current implementation declares the destructor virtual, do not
rely on this detail. The virtual nature is deprecated and may disappear in
future versions of Intel® TBB.

Reference Manual 51

52

494 void run(size_t max_number_of_live_tokens/,
task_group_context& group])

Effects

Runs the pipeline until the first filter returns NULL and each subsequent filter has
processed all items from its predecessor. The number of items processed in parallel
depends upon the structure of the pipeline and number of available threads. At most
max_number of live tokens are in flight at any given time.

A pipeline can be run multiple times. It is safe to add stages between runs. Concurrent
invocations of run on the same instance of pipeline are prohibited.

If the group argument is specified, pipeline’s tasks are executed in this group. By
default the algorithm is executed in a bound group of its own.

495 void clear()

Effects

Removes all filters from the pipeline.

496 filter Class

Summary

Abstract base class that represents a filter in a pipeline.

Syntax

class filter;

Header
#include "tbb/pipeline.h"

Description

A filter represents a filter in a pipeline (0). There are three modes of filters:

e A parallel filter can process multiple items in parallel and in no particular order.

e A serial out_of_ order filter processes items one at a time, and in no particular
order.

e A serial_in_order filter processes items one at a time. All serial in order filters
in a pipeline process items in the same order.

315415-016US

Algorithms

TIP:

CAUTION:

NOTE:

intel)

The mode of filter is specified by an argument to the constructor. Parallel filters are
preferred when practical because they permit parallel speedup. If a filter must be
serial, the out of order variant is preferred when practical because it puts less
contraints on processing order.

Class filter should only be used in conjunction with class pipeline (0).

Use a serial in order input filter if there are any subsequent serial in order
stages that should process items in their input order.

Intel® TBB 2.0 and prior treated parallel input stages as serial. Later versions of
Intel® TBB can execute a parallel input stage in parallel, so if you specify such a stage,
ensure that its operator () is thread safe.

Members
namespace tbb {
class filter {

public:

enum mode {
parallel = implementation-defined,
serial in order = implementation-defined,
serial out of order = implementation-defined

bi

bool is serial () const;

bool is ordered() const;

virtual void* operator () (void* item) = 0;

virtual void finalize(void* item) {}

virtual ~filter();
protected:
filter (mode);

}:

Example

See the example filters MyInputFilter, MyTransformFilter, and MyOutputFilter in
the Tutorial (doc/Tutorial.pdf).

496.1 filter(mode filter_mode)

Effects

Constructs a filter of the specified mode.

Intel® TBB 2.1 and prior had a similar constructor with a bool argument is _serial.
That constructor exists but is deprecated (Section A.2.1).

Reference Manual 53

54

4962 ~filter()

Effects

Destroys the filter. If the filter is in @ pipeline, it is automatically removed from that
pipeline.

496.3 bool is_serial() const

Returns

False if filter mode is parallel; true otherwise.

4964 bool is_ordered() const

Returns

True if filter mode is serial in order, false otherwise.
496.5 virtual void* operator()(void * item)

Description

The derived filter should override this method to process an item and return a pointer
to an item to be processed by the next filter. The item parameter is NULL for the
first filter in the pipeline.

Returns

The first filter in @ pipeline should return NULL if there are no more items to process.
The result of the last filter in a pipeline is ignored.

496.6 virtual void finalize(void * item)

Description

A pipeline can be cancelled by user demand or because of an exception. When a
pipeline is cancelled, there may be items returned by a filter’s operator() that have not
yet been processed by the next filter. When a pipeline is cancelled, the next filter
invokes finalize () on each item instead of operator (). In contrast to operator (),
method finalize () does not return an item for further processing. A derived filter
should override finalize () to perform proper cleanup for an item. A pipeline will not
invoke any further methods on the item.

Effects

The default definition has no effect.

315415-016US

Algorithms

CAUTION:

Reference Manual

intel)

49.7 thread_bound_filter Class

Summary

Abstract base class that represents a filter in a pipeline that a thread must service
explicitly.

Syntax

class thread bound filter;

Header
#include "tbb/pipeline.h"

Description

A thread bound filter is a special kind of filter (4.9.6) that is explicitly serviced
by a particular thread. It is useful when a filter must be executed by a particular
thread.

Use thread bound filter only if you need a filter to be executed on a particular
thread. The thread that services a thread bound filter must not be the thread that
calls pipeline::run().

Members
namespace tbb {
class thread bound filter: public filter ({
protected:
thread bound filter (mode filter mode);
public:
enum result type {
success,
item not available,
end of stream
bi
result type try process item();
result type process item();

Example

The example below shows a pipeline with two filters where the second filter is a
thread bound filter serviced by the main thread.

#include <iostream>
#include "tbb/pipeline.h"

55

56

#include "tbb/compat/thread"
#include "tbb/task scheduler init.h"

using namespace tbb;
char InputString[] = "abcdefg\n";

class InputFilter: public filter ({
char* my ptr;
public:
void* operator () (void*) {
if (*my ptr)
return my ptr++;
else
return NULL;
}
InputFilter ()

filter(serial in order), my ptr(InputString)

{}
b8

class OutputFilter: public thread bound filter ({
public:
void* operator () (void* item) {
std::cout << *(char*)item;
return NULL;
}

OutputFilter () : thread bound filter(serial in order) ({}

}i

void RunPipeline (pipeline* p) {
p->run (8) ;

int main () {
// Construct the pipeline
InputFilter f;
OutputFilter g;
pipeline p;
p.add filter (f);
p.add filter(g);

// Another thread initiates execution of the
std::thread t (RunPipeline, &p);

pipeline

315415-016US

// Process the thread bound filter with the current thread.
while (g.process item() !=thread bound filter::end of stream)
continue;

// Wait for pipeline to finish on the other thread.
t.join();
return 0;

}

The main thread does the following after constructing the pipeline:

18. Start the pipeline on another thread.
19. Service the thread bound filter until it reaches end of stream.
20. Wait for the other thread to finish.

The pipeline is run on a separate thread because the main thread is responsible for

servicing the thread bound filter g. The roles of the two threads can be reversed. A
single thread cannot do both roles.

49.7.1 thread_bound_filter(mode filter_mode)

Effects

Constructs a filter of the specified mode. Section 4.9.6 describes the modes.
497.2 result_type try_process_item()

Effects

If an item is available and it can be processed without exceeding the token limit,
process the item with filter: :operator().

Returns

Table 16: Return Values From try process_item

Return Value Description

success Applied filter: :operator () to one item.

item_not_available No item is currently available to process, or the token limit

(4.9.4) would be exceeded.

end_of_stream No more items will ever arrive at this filter.

Reference Manual 57

CAUTION:

58

49.7.3 result_type process_item()

Effects

Like try process item, but waits until it can process an item or the end of the stream
is reached.

Returns

Either success or end of stream. See Table 16 for details.

The current implementation spin waits until it can process an item or reaches the end
of the stream.

410 parallel_pipeline Function

Summary

Strongly typed interface for pipelined execution.

Syntax
void parallel pipeline(size t max number of live tokens,
const filter t<void,void>& filter chain

[, task group contexts group]);

Header
#include "tbb/pipeline.h"

Description

Function parallel pipeline is a strongly typed lambda-friendly interface for building
and running pipelines. The pipeline has characteristics similar to class pipeline, except
that the stages of the pipeline are specified via functors instead of class derivation.

To build and run a pipeline from functors gy, g1, g>,...9n , Write:

parallel pipeline(max number of live tokens,
make filter<void, I,>(modey, gy) &
make filter<I,, I,>(modei, q1) &
make filter<I,, Is>(mode,, 9;) &

make filter<I,,void>(mode,, gn))

In general, functor g; should define its operator () to map objects of type I; to objects
of type I;,1. Functor gq is a special case, because it notifies the pipeline when the end
of the input stream is reached. Functor go must be defined such that for a flow_control

315415-016US

Algorithms

intel)

object fc, the expression gq (fc) either returns the next value in the input stream, or if
at the end of the input stream, invokes fc.stop() and returns a dummy value.

The value max number of live tokens has the same meaning as it does for
pipeline: :run.

If the group argument is specified, pipeline’s tasks are executed in this group. By
default the algorithm is executed in a bound group of its own.

Example

The following example uses parallel pipeline compute the root-mean-square of a
sequence defined by [first,last). The example is only for demonstrating syntactic
mechanics. It is not as a practical way to do the calculation because parallel overhead
would be vastly higher than useful work. Operator & requires that the output type of its
first filter t argument matches the input type of its second filter t argument.

float RootMeanSquare(float* first, float* last) {
float sum=0;
parallel pipeline(/*max number of live token=*/16,
make filter<void, float *>(
filter::serial,
[&] (flow _controlé& fc)-> float*{
if(first<last) {
return first++;
} else {
fc.stop();
return NULL;

) &
make filter<float*, float>(
filter::parallel,
[](float™* p) {return (*p)*(*p):}
) &
make filter<float,void>(
filter::serial,
[&] (float x) {sumt+=x;}

) ;
return sqgrt (sum) ;

}

See the Intel® Threading Building Blocks Tutorial for a non-trivial example of
parallel pipeline.

Reference Manual 59

60

410.1 filter_t Template Class

Summary

A filter or composite filter used in conjunction with function parallel pipeline.

Syntax
template<typename T, typename U> class filter t;
template<typename T, typename U, typename Func>
filter t<T,U> make filter(filter::mode mode, const Func& f);
template<typename T, typename V, typename U>
filter t<T,U> operator&(const filter t<T,V>& left,

const filter t<V,U>& right);

Header
#include "tbb/pipeline.h"

Description

A filter t is a strongly typed filter that specifies its input and output types. A

filter t can be constructed from a functor or by composing of two filter t objects
with operators. See 4.4 for an example. The same filter t object can be shared by

multiple & expressions.

Members
namespace tbb {
template<typename T, typename U>
class filter t ({
public:
filter t();
filter t(const filter t<T,U>& rhs);
template<typename Func>
filter t(filter::mode mode, const Funcé& func);
void operator=(const filter t<T,U>& rhs);
~filter t();
void clear () ;

}i

template<typename T, typename U, typename Func>
filter t<T,U> make filter(filter::mode mode, const Funcé& f
template<typename T, typename V, typename U>
filter t<T,U> operatoré&(const filter t<T,V>& left,
const filter t<V,U>& right);

) ;

315415-016US

Algorithms

CAUTION:

NOTE:

intel)

4.10.1.1 filter_t()

Effects

Construct an undefined filter.

The effect of using an undefined filter by operators or parallel pipeline is
undefined.

410.1.2 filter_t(const filter_t<T,U>&rhs)
Effects

Construct a copy of rhs.

410.1.3 template<typename Func> filter_t(filter:mode mode, const
Func& f)

Effects

Construct a filter t that uses a copy of functor £ to map an input value ¢ of type T to
an output value u of type U.

When parallel pipeline usesthe filter t, it computes u by evaluating £(t),
unless T is void. In the void case u is computed by the expression u=f(fc), where fc
is of type flow control.

See 4.9.6 for a description of the mode argument.
410.1.4 void operator=(const filter_t<T,U>& rhs)

Effects

Update *this to use the functor associated with rhs.
410.1.5 ~filter_t()

Effects

Destroy the filter t.

4.10.1.6 void clear()

Effects

Set *this to an undefined filter.

Reference Manual 61

62

4.10.1.7 template<typename T, typename U, typename Func>
filter_t<T,U> make_filter(filter::mode mode, const Func& f)

Returns

filter_t<T,U>(mode,f)

410.1.8 template<typename T, typename V, typename U>
filter_t<T,U> operator& (const filter_t<T,V>& left, const
filter_t<V,U>& right)

Requires

The output type of 1eft must match the input type of right.

Returns

A filter t representing the composition of filters ieft and right. The composition
behaves as if the output value of 1eft becomes the input value of right.

410.2 flow_control Class

class flow control;

Summary

Enables the first filter in a composite filter to indicate when the end of input has been
reached.

Syntax

class flow control;

Header
#include "tbb/pipeline.h"

Description

Template function parallel pipeline passes a flow control object fc to the input

functor of a filter_t. When the input functor reaches the end of its input, it should
invoke fc.stop () and return a dummy value. See 4.4 for an example.

Members
namespace tbb {
class flow control ({
public:
void stop ()

315415-016US

Algorithms

Table 17:

411 parallel_sort Template Function

Summary

Sort a sequence.

Syntax
template<typename RandomAccessIterator>

void parallel sort (RandomAccessIterator begin,
RandomAccessIterator end);

template<typename RandomAccessIterator, typename Compare>
void parallel sort (RandomAccessIterator begin,
RandomAccesslIterator end,
const Compareé& comp) ;

Header
#include "tbb/parallel sort.h"

Description

Performs an unstable sort of sequence [beginl, end1). An unstable sort might not
preserve the relative ordering of elements with equal keys. The sort is deterministic;
sorting the same sequence will produce the same result each time. The requirements
on the iterator and sequence are the same as for std: :sort. Specifically,
RandomAccessIterator must be a random access iterator, and its value type T must
model the requirements in Table 17.

Requirements on Value Type T of RandomAccesslterator for parallel_sort

Pseudo-Signature Semantics

void swap(T& x, T& y) Swap x and y.

bool Compare::operator() (const T& x, True if x comes before y;
false otherwise.

const T& y)

A call parallel sort(i,j,comp) sortsthe sequence [i,j) using the argument comp
to determine relative orderings. If comp (%, y) returns true then x appears before y in
the sorted sequence.

A call parallel sort(i,j) is equivalent to parallel sort(i,j,std::less<T>).

Reference Manual 63

64

Complexity

parallel sort is comparison sort with an average time complexity of O(N log (N)),

where N is the humber of elements in the sequence. When worker threads are
available (12.2.1), parallel sort creates subtasks that may be executed

concurrently, leading to improved execution times.

Example

The following example shows two sorts. The sort of array a uses the default
comparison, which sorts in ascending order. The sort of array b sorts in descending
order by using std: :greater<float> for comparison.

#include "tbb/parallel sort.h"
#include <math.h>

using namespace tbb;
const int N = 100000;
float al[N];

float b[N];

void SortExample () {
0

for(int i = 0; 1 < N; i++) {
ali] = sin((double)i);
b[i] = cos((double)i);

}
parallel sort(a, a + N);
parallel sort(b, b + N, std::greater<float>());

412 parallel_invoke Template Function

Summary

Template function that evaluates several functions in parallel.

315415-016US

Algorithms

Syntax®
template<typename Func(O, typename Funcl>
void parallel invoke (const FuncO& £0, const Funclé& f1);

template<typename Func(O, typename Funcl, typename Func2>

void parallel invoke (const FuncO& £0, const Funclé& f1, const
Func2& £2);

template<typename Func(O, typename Funcl .. typename Func9>

void parallel invoke (const FuncO& £0, const Funclé& f1 .. const
Func9& £9);

Header
#include "tbb/parallel invoke.h"

Description

The expression parallel invoke (fo, f;...f,) evaluates £,(), £, (),..f, possibly in

parallel. There can be from 2 to 10 arguments. Each argument must have a type for
which operator () is defined. Typically the arguments are either function objects or
pointers to functions. Return values are ignored.

Example

The following example evaluates £ (), g(), and h () in parallel. Notice how g and h are
function objects that can hold local state.

#include "tbb/parallel invoke.h"
using namespace tbb;

void f();
extern void bar (int);

class MyFunctor ({

int arg;
public:
MyFunctor (int a) : arg(a) {}
void operator () () const {bar(arg);}

}i

% When support for C++0x rvalue references become prevalent, the formal
parameters may change to rvalue references.

Reference Manual 65

66

void RunFunctionsInParallel () {
MyFunctor g (2);
MyFunctor h(3);
tbb::parallel invoke(f, g, h);

Example with Lambda Expressions

Here is the previous example rewritten with C++0x lambda expressions, which

generate function objects.

#include "tbb/parallel invoke.h"
using namespace tbb;

void f£();
extern void bar (int);

void RunFunctionsInParallel () {
tbb::parallel invoke(f, []{bar(2);},

[]1{bar(3);}

) ;

315415-016US

intel)

Containers
5 Containers
The container classes permit multiple threads to simultaneously invoke certain
methods on the same container.
Like STL, Intel® Threading Building Blocks (Intel® TBB) containers are templated with
respect to an allocator argument. Each container uses its allocator to allocate
memory for user-visible items. A container may use a different allocator for strictly
internal structures.
L]
5.1 Container Range Concept
Summary
View set of items in a container as a recursively divisible range.
Requirements
A Container Range is a Range (4.2) with the further requirements listed in Table 18.
Table 18: Requirements on a Container Range R (In Addition to Table 8)
Pseudo-Signature Semantics
R::value type Item type
R::reference Item reference type
R::const reference Item const reference type
R::difference type Type for difference of two
iterators
R::iterator Iterator type for range
R::iterator R::begin () First item in range
R::iterator R::end() One past last item in range
R::size type R::grainsize() const Grain size
Model Types

Classes concurrent hash map (5.4.4) and concurrent vector (5.8.5) both have
member types range type and const_range type that model a Container Range.

Use the range types in conjunction with parallel for (4.4), parallel reduce (4.5),
and parallel scan (4.6) to iterate over items in a container.

Reference Manual 67

5.2 concurrent_unordered_map Template

Class

Summary

Template class for associative container that supports concurrent insertion and
traversal.

Syntax
template <typename Key,

typename Element,

typename Hasher = tbb hash<Key>,

typename Equality = std::equal to<Key >,

typename Allocator = tbb::tbb allocator<std::pair<const

Key, Element > > >
class concurrent unordered map;

Header

#include "tbb/concurrent unordered map.h"

Description

A concurrent_unordered_map supports concurrent insertion and traversal, but not
concurrent erasure. The interface has no visible locking. It may hold locks internally,
but never while calling user defined code. It has semantics similar to the C++0x
std: :unordered map except as follows:

68

Methods requiring C++0x language features (such as rvalue references and
std::initializer list) are currently omitted.

The erase methods are prefixed with unsafe , to indicate that they are not
concurrency safe.

Bucket methods are prefixed with unsafe as a reminder that they are not
concurrency safe with respect to insertion.

The insert methods may create a temporary pair that is destroyed if another thread
inserts the same key concurrently.

Like std::1ist, insertion of new items does not invalidate any iterators, nor change
the order of items already in the map. Insertion and traversal may be concurrent.

The iterator types iterator and const_iterator are of the forward iterator
category.

Insertion does not invalidate or update the iterators returned by equal range, so
insertion may cause non-equal items to be inserted at the end of the range.
However, the first iterator will nonethless point to the equal item even after an
insertion operation.

315415-016US

Containers

NOTE:

CAUTION:

intel)

The key differences between classes concurrent_unordered_map and
concurrent_hash_map each are:

e concurrent_unordered_map: permits concurrent traversal and insertion, no visible
locking, closely resembles the C++0x unordered_map.

e concurrent_hash_map: permits concurrent erasure, built-in locking

As with any form of hash table, keys that are equal must have the same hash code,
and the ideal hash function distributes keys uniformly across the hash code space.

Members

In the following synopsis, methods in bold may be concurrently invoked. For example,
three different threads can concurrently call methods insert, begin, and size. Their
results might be non-deterministic. For example, the result from size might
correspond to before or after the insertion.

template <typename Key,
typename Element,
typename Hasher = tbb hash<Key>,
typename Equal = std::equal to<Key>,
typename Allocator = tbb::tbb allocator<std::pair<const
Key, Element > > >
class concurrent unordered map {
public:
/I types
typedef Key key type;
typedef std::pair<const Key, T> value type;
typedef Element mapped type;
typedef Hash hasher;
typedef Equality key equal;
typedef Alloc allocator type;
typedef typename allocator type::pointer pointer;
typedef typename allocator type::const pointer const pointer;
typedef typename allocator type::reference reference;

typedef typename allocator type::const reference
const reference;

typedef implementation-defined size type;

typedef implementation-defined difference type;
typedef implementation-defined iterator;

typedef implementation-defined const iterator;
typedef implementation-defined local iterator;
typedef implementation-defined const local iterator;

/I construct/destroy/copy

explicit concurrent unordered map (size type n =
implementation-defined,

Reference Manual 69

70

const Hasher& hf = hasher (),
const key equal& eql = key equal(),
const allocator type& a = allocator type());
template <typename Inputlterator>
concurrent unordered map (
InputIterator first, Inputlterator last,
size type n = implementation-defined,
const hasher& hf = hasher(),
const key equal& eql = key equal(),
const allocator type& a = allocator type());
concurrent unordered map (const concurrent unordered mapé&) ;
concurrent unordered map (const Allocé&);

concurrent unordered map (const concurrent unordered mapg,
const Allocé);

~concurrent unordered map () ;
concurrent unordered mapé& operator=(const
concurrent unordered mapé&) ;

allocator type get allocator () const;

I/ size and capacity

bool empty () const; /I May take linear time!
size type size() const; // May take linear time!
size type max size() const;

// iterators

iterator begin() ;

const iterator begin() const;
iterator end() ;

const iterator end() const;
const iterator cbegin() const;
const iterator cend() const;

/I modifiers

std::pair<iterator, bool> insert(const value typeé& x);

iterator insert(const iterator hint, const value typeé& x);

template<class InputlIterator> void insert (Inputlterator first,
InputIterator last);

iterator unsafe erase(const iterator position);
size type unsafe erase(const key type& k);

iterator unsafe erase (const iterator first, const iterator
last) ;

void clear();

void swap (concurrent unordered mapé&) ;

315415-016US

Containers

/I observers
hasher hash function() const;
key equal key eq() const;

I/ lookup

iterator find(const key typeé& k);

const iterator find(const key type& k) const;

size type count (const key type& k) const;

std::pair<iterator, iterator> equal_range (const key type& k);
std::pair<const iterator, const iterator> equal_ range (const

key type& k) const;

}i

Reference Manual

mapped typeé& operator[] (const key types& k);
mapped type& at(const key type& k);
const mapped type& at(const key type& k) const;

/I parallel iteration

typedef implementation defined range type;
typedef implementation defined const range type;
range type range();

const range type range () const;

// bucket interface - for debugging

size type unsafe bucket count () const;

size type unsafe max bucket count () const;

size type unsafe bucket size(size type n);

size type unsafe bucket (const key typeé& k) const;
local iterator unsafe begin(size type n);

const local iterator unsafe begin(size type n) const;
local iterator unsafe end(size type n);

const local iterator unsafe end(size type n) const;
const local iterator unsafe cbegin(size type n) const;
const local iterator unsafe cend(size type n) const;

// hash policy

float load factor () const;
float max load factor () const;
void max load factor (float z);
void rehash (size type n);

71

72

5.2.1 Construct, Destroy, Copy

5.2.1.1 explicit concurrent_unordered_map (size_type n =
implementation-defined, const hasher& hf = hasher(),const
key_equal& eql = key_equal(), const allocator_type& a =
allocator_type())

Effects

Construct empty table with n buckets.

52.1.2 template <typename Inputlterator>
concurrent_unordered_map (Inputiterator first,
Inputlterator last, size_type n = implementation-defined,
const hasher& hf = hasher(), const key_equal& eql =
key_equal(), const allocator_type& a = allocator_type())

Effects

Construct table with n buckets initialized with value type (*i) where i is in the half
open interval [first, last).

5213 concurrent_unordered_map(const unordered_map& m)

Effects

Construct copy of map m.

5214 concurrent_unordered_map(const Alloc& a)

Construct empy map using allocator a.

5215 concurrent_unordered_map(const unordered_map&, const
Alloc& a)

Effects

Construct copy of map m using allocator a.

315415-016US

Containers

CAUTION:

CAUTION:

CAUTION:

52.16 ~concurrent_unordered_map()

Effects

Destroy the map.

52.1.7 concurrent_ unordered_map& operator=(const
concurrent_unordered_map& m);

Effects

Set *this to a copy of map m.

52.1.8 allocator_type get_allocator() const;

Get copy of the allocator associated with *this.

5.2.2 Size and capacity

52.2.1 bool empty() const
Returns
size () !=0.

5222 size_type size() const
Returns

Number of items in *this.

Though the current implementation takes time O(1), possible future implementations
might take time O(P), where P is the humber of hardware threads.

5223 size_type max_size() const

Returns
Upper bound on number of items that *this can hold.

The upper bound may be much higher than what the container can actually hold.

Reference Manual

73

74

5.2.3 Iterators

Template class concurrent unordered map supports forward iterators; that is,

iterators that can advance only forwards across a table. Reverse iterators are not
supported. Concurrent operations (count, find, insert) do not invalidate any existing

iterators that point into the table. Note that an iterator obtained via begin() will no
longer point to the first item if insert inserts an item before it.

Methods cbegin and cend follow C++0x conventions. They return const_iterator
even if the object is non-const.

5.2.3.1 iterator begin()

Returns

iterator pointing to first item in the map.

5232 const_iterator begin() const

Returns

const_iterator pointing to first item in in the map.

5233 iterator end()

Returns

iterator pointing to immediately past last item in the map.
5234 const_iterator end() const

Returns

const_iterator pointing to immediately past last item in the map.
5235 const_iterator cbegin() const

Returns

const_iterator pointing to first item in the map.
5236 const_iterator cend() const

Returns

const_iterator pointing to immediately after the last item in the map.

315415-016US

Containers

NOTE:

5.24 Madifiers

524.1 std::pair<iterator, bool> insert(const value_type& x)

Effects

Constructs copy of x and attempts to insert it into the map. Destroys the copy if the
attempt fails because there was already an item with the same key.

Returns

std: :pair (iterator,success). The value iterator points to an item in the map with a
matching key. The value of success is true if the item was inserted; false otherwise.

5242 iterator insert(const_iterator hint, const value_type& x)
Effects
Same as insert (x).
The current implementation ignores the hint argument. Other implementations might
not ignore it. It exists for similarity with the C++0x class unordered map. It hints to

the implementation about where to start searching. Typically it should point to an item
adjacent to where the item will be inserted.

Returns

Iterator pointing to inserted item, or item already in the map with the same key.

5243 template<class Inputlterator> void insert(Inputlterator first,
Inputlterator last)

Effects
Does insert (*i) where i is in the half-open interval [first, last).
5244 iterator unsafe_erase(const_iterator position)

Effects

Remove item pointed to by position from the map.

Returns

Iterator pointing to item that was immediately after the erased item, or end () if erased
item was the last item in the map.

Reference Manual 75

76

5245 size_type unsafe_erase(const key_type& k)

Effects

Remove item with key k if such an item exists.

Returns

1 if an item was removed; 0 otherwise.

5246 iterator unsafe_erase(const_iterator first, const_iterator
last)

Effects

Remove *i where i is in the half-open interval [first, last).

Returns

last
5.24.7 void clear()

Effects

Remove all items from the map.
5248 void swap(concurrent_unordered_map& m)

Effects

Swap contents of *this and m.

5.2.5 Observers

5.25.1 hasher hash_function() const

Returns

Hashing functor associated with the map.

315415-016US

Containers

525.2 key_equal key_eq() const

Returns

Key equivalence functor associcated with the map.

5.2.6 Lookup

5.26.1 iterator find(const key_type& k)

Returns

iterator pointing to item with key equivalent to k, or end () if no such item exists.
526.2 const_iterator find(const key_type& k) const

Returns

const_ iterator pointing to item with key equivalent to k, or end () if no such item
exists.

5263 size_type count(const key_type& k) const
Returns
Number of items with keys equivalent to k.

5264 std:pair<iterator, iterator> equal_range(const key_type& k)
Returns

Range containing all keys in the map that are equivalent to «.

5265 std:pair<const_iterator, const_iterator> equal_range(const
key_type& k) const

Returns

Range containing all keys in the map that are equivalent to k.
5266 mapped_type& operator[](const key_type& k)

Effects

Inserts a new item if item with key equivalent to k is not already present.

Reference Manual 77

Returns

Reference to x.second, where x is item in map with key equivalent to «%.
526.7 mapped_type& at(const key_type& k)

Effects

Throws exception if item with key equivalent to k is not already present.

Returns

Reference to x.second, where x is the item in map with key equivalent to k.

5268 const mapped_type& at(const key_type& k) const

Effects

Throws exception if item with key equivalent to k is not already present.

Returns

Const reference to x.second, where x is the item in map with key equivalent to «%.

5.2.7 Parallel Iteration

Types const_range type and range type model the Container Range concept (5.1).
The types differ only in that the bounds for a const_range type are of type
const_iterator, whereas the bounds for a range type are of type iterator.

5.2.7.1 const_range_type range() const

Returns

const_range_ type object representing all keys in the table.
52.7.2 range_type range()

Returns

range_ type object representing all keys in the table.

315415-016US

Containers

5.2.8 Bucket Interface

The bucket interface is intended for debugging. It is not concurrency safe. The mapping
of keys to buckets is implementation specific. The interface is similar to the bucket
interface for the C++0x class unordered map, except that the prefix unsafe has been
added as a reminder that the methods are unsafe to use during concurrent insertion.

Buckets are numbered from 0 to unsafe bucket count ()-1. To iterate over a bucket

use a local iterator Or const local iterator.

5.2.8.1 size_type unsafe_bucket_count() const
Returns
Number of buckets.
5282 size_type unsafe_max_bucket_count() const
Returns
Upper bound on possible number of buckets.
5283 size_type unsafe_bucket_size(size_type n)
Returns
Number of items in bucket n.
5284 size_type unsafe_bucket(const key_type& k) const
Returns
Index of bucket where item with key k would be placed.
5285 local_iterator unsafe_begin(size_type n)
Returns
local iterator pointing to first item in bucket n.
5286 const_local_iterator unsafe_begin(size_type n) const

Returns

const local iterator pointing to first item in bucket n.

Reference Manual 79

80

5287 local_iterator unsafe_end(size_type n)

Returns

local iterator pointing to immediately after the last item in bucket n.

5288 const_local_iterator unsafe_end(size_type n) const

Returns

const local iterator pointing to immediately after the last item in bucket n.
5289 const_local_iterator unsafe_cbegin(size_type n) const

Returns

const local iterator pointing to first item in bucket n.
5.28.10 const_local_iterator unsafe_cend(size_type n) const

Returns

const_local iterator pointing to immediately past last item in bucket n.

5.29 Hash policy

5.2.9.1 float load_factor() const

Returns

Average number of elements per bucket.
529.2 float max_load_factor() const

Returns

Maximum size of a bucket. If insertion of an item causes a bucket to be bigger, the
implementaiton may repartition or increase the number of buckets.

5293 void max_load_factor(float 2)

Effects

Set maximum size for a bucket to z.

315415-016US

Containers

5294 void rehash(size_type n)

Requirements

n must be a power of two.

Effects

No effect if current number of buckets is at least n. Otherwise increases number of
buckets to n.

5.3 concurrent_unordered_set Template
Class

Summary

Template class for a set container that supports concurrent insertion and traversal.

Syntax
template <typename Key,
typename Hasher = tbb hash<Key>,
typename Equality = std::equal to<Key>,
typename Allocator = tbb::tbb allocator<Key>
class concurrent unordered set;

Header

#include "tbb/concurrent unordered set.h"

Description

A concurrent_unordered_set supports concurrent insertion and traversal, but not
concurrent erasure. The interface has no visible locking. It may hold locks internally,
but never while calling user defined code. It has semantics similar to the C++0x
std: :unordered_set except as follows:

e Methods requiring C++0x language features (such as rvalue references and
std::initializer list) are currently omitted.

e The erase methods are prefixed with unsafe , to indicate that they are not
concurrency safe.

e Bucket methods are prefixed with unsafe as a reminder that they are not
concurrency safe with respect to insertion.

e The insert methods may create a temporary pair that is destroyed if another thread
inserts the same key concurrently.

Reference Manual 81

e Like std::1ist, insertion of new items does not invalidate any iterators, nor change
the order of items already in the set. Insertion and traversal may be concurrent.

e The iterator types iterator and const_iterator are of the forward iterator

category.

¢ Insertion does not invalidate or update the iterators returned by equal range, so
insertion may cause non-equal items to be inserted at the end of the range.
However, the first iterator will nonethless point to the equal item even after an
insertion operation.

CAUTION: As with any form of hash table, keys that are equal must have the same hash code,
and the ideal hash function distributes keys uniformly across the hash code space.
Members
In the following synopsis, methods in bold may be concurrently invoked. For example,
three different threads can concurrently call methods insert, begin, and size. Their
results might be non-deterministic. For example, the result from size might
correspond to before or after the insertion.
template <typename Key,

typename Hasher = tbb hash<Key>,
typename Equal = std::equal to<Key>,
typename Allocator = tbb::tbb allocator<Key>
class concurrent unordered set {
public:
/I types
typedef Key key type;
typedef Key value type;
typedef Key mapped type;
typedef Hash hasher;
typedef Equality key equal;
typedef Alloc allocator type;
typedef typename allocator type::pointer pointer;
typedef typename allocator type::const pointer const pointer;
typedef typename allocator type::reference reference;
typedef typename allocator type::const reference
const reference;
typedef implementation-defined size type;
typedef implementation-defined difference type;
typedef implementation-defined iterator;
typedef implementation-defined const iterator;
typedef implementation-defined local iterator;
typedef implementation-defined const local iterator;
/I construct/destroy/copy
82 315415-016US

Containers

explicit concurrent unordered set(size type n =

implementation-defined,

const Hasher& hf = hasher(),
const key equal& eql = key equal(),
const allocator type& a = allocator type());
template <typename Inputlterator>
concurrent unordered set (
InputIterator first, InputlIterator last,
size type n = implementation-defined,
const hasher& hf = hasher(),
const key equalé& eql = key equal(),

const allocator type& a = allocator type());

ntel.

concurrent unordered set (const concurrent unordered set&);

concurrent unordered set (const Allocé&);

concurrent unordered set (const concurrent unordered setg,
const Allocé&);

~concurrent unordered set () ;

concurrent unordered set& operator=(const

concurrent unordered seté&);

Reference Manual

allocator type get allocator () const;

/l size and capacity

bool empty () const; /I May take linear time!
size type size() const; // May take linear time!
size type max size() const;

// iterators

iterator begin() ;

const iterator begin() const;
iterator end() ;

const iterator end() const;
const iterator cbegin() const;
const iterator cend() const;

/I modifiers

std::pair<iterator, bool> insert(const value typeé& x);

iterator insert (const iterator hint, const value type& x);
template<class InputlIterator> void insert (Inputlterator first,

InputIterator last);

iterator unsafe erase(const iterator position);
size type unsafe erase(const key type& k);

iterator unsafe erase(const iterator first, const iterator
last) ;

void clear () ;

83

void swap (concurrent unordered seté&);

/I observers
hasher hash function() const;
key equal key eq() const;

/' lookup

iterator find(const key typeé& k);

const iterator find(const key type& k) const;

size type count (const key type& k) const;

std::pair<iterator, iterator> equal_range (const key type& k);

std::pair<const iterator, const iterator> equal_ range (const
key type& k) const;

/I parallel iteration

typedef implementation defined range type;
typedef implementation defined const range type;
range type range();

const range type range() const;

// bucket interface - for debugging

size type unsafe bucket count () const;

size type unsafe max bucket count () const;

size type unsafe bucket size(size type n);

size type unsafe bucket (const key typeé& k) const;
local iterator unsafe begin(size type n);

const local iterator unsafe begin(size type n) const;
local iterator unsafe end(size type n);

const local iterator unsafe end(size type n) const;
const local iterator unsafe cbegin(size type n) const;
const local iterator unsafe cend(size type n) const;

// hash policy

float load factor () const;
float max load factor () const;
void max load factor (float z);
void rehash(size type n);

i

315415-016US

Containers |ntel>

5.3.1 Construct, Destroy, Copy

53.1.1 explicit concurrent_unordered_set (size_type n =
implementation-defined, const hasher& hf = hasher(),const
key_equal& eql = key_equal(), const allocator_type& a =
allocator_type())

Effects

Construct empty set with n buckets.

53.1.2 template <typename Inputlterator>
concurrent_unordered_set (Inputlterator first, Inputlterator
last, size_type n = implementation-defined, const hasher&
hf = hasher(), const key_equal& eql = key_equal(), const
allocator_type& a = allocator_type())

Effects

Construct set with n buckets initialized with value type (*i) where i is in the half
open interval [first, last).

5313 concurrent_unordered_set(const unordered_set& m)

Effects

Construct copy of set m.

5314 concurrent_unordered_set(const Alloc& a)

Construct empy set using allocator a.

53.15 concurrent_unordered_set(const unordered_set&, const
Alloc& a)

Effects

Construct copy of set m using allocator a.

Reference Manual 85

53.16 ~concurrent_unordered_set()

Effects

Destroy the set.

53.1.7 concurrent_ unordered_set& operator=(const
concurrent_unordered_set& m);

Effects

Set *this to a copy of set m.

53.1.8 allocator_type get_allocator() const;

Get copy of the allocator associated with *this.

5.3.2 Size and capacity

5.3.2.1 bool empty() const
Returns
size () !=0.

53.2.2 size_type size() const
Returns

Number of items in *this.

CAUTION: Though the current implementation takes time O(1), possible future implementations
might take time O(P), where P is the humber of hardware threads.

5323 size_type max_size() const

Returns
CAUTION: Upper bound on number of items that *this can hold.

CAUTION: The upper bound may be much higher than what the container can actually hold.

86 315415-016US

Containers

5.3.3 [terators

Template class concurrent unordered_set supports forward iterators; that is,

iterators that can advance only forwards across a set. Reverse iterators are not
supported. Concurrent operations (count, find, insert) do not invalidate any existing

iterators that point into the set. Note that an iterator obtained via begin() will no longer
point to the first item if insert inserts an item before it.

Methods cbegin and cend follow C++0x conventions. They return const_iterator
even if the object is non-const.

5.3.3.1 iterator begin()

Returns

iterator pointing to first item in the set.

5332 const_iterator begin() const
Returns
const_iterator pointing to first item in in the set.
5333 iterator end()

Returns

iterator pointing to immediately past last item in the set.

5334 const_iterator end() const

Returns

const_iterator pointing to immediately past last item in the set.

5335 const_iterator cbegin() const
Returns
const_iterator pointing to first item in the set.
5336 const_iterator cend() const

Returns

const_iterator pointing to immediately after the last item in the set.

Reference Manual 87

NOTE:

88

534 Madifiers

534.1 std::pair<iterator, bool> insert(const value_type& x)

Effects

Constructs copy of x and attempts to insert it into the set. Destroys the copy if the
attempt fails because there was already an item with the same key.

Returns

std: :pair (iterator,success). The value iterator points to an item in the set with a
matching key. The value of success is true if the item was inserted; false otherwise.

534.2 iterator insert(const_iterator hint, const value_type& x)

Effects

Same as insert (x).

The current implementation ignores the hint argument. Other implementations might
not ignore it. It exists for similarity with the C++0x class unordered_set. It hints to

the implementation about where to start searching. Typically it should point to an item
adjacent to where the item will be inserted.

Returns

Iterator pointing to inserted item, or item already in the set with the same key.

5343 template<class Inputlterator> void insert(Inputiterator first,
Inputlterator last)

Effects
Does insert (*i) where i is in the half-open interval [first, last).
5344 iterator unsafe_erase(const_iterator position)

Effects

Remove item pointed to by position from the set.

Returns

Iterator pointing to item that was immediately after the erased item, or end () if erased
item was the last item in the set.

315415-016US

Containers |ntel>

5345 size_type unsafe_erase(const key_type& k)

Effects

Remove item with key k if such an item exists.

Returns

1 if an item was removed; 0 otherwise.

5346 iterator unsafe_erase(const_iterator first, const_iterator
last)

Effects

Remove *i where i is in the half-open interval [first, last).

Returns

last
534.7 void clear()

Effects

Remove all items from the set.
5348 void swap(concurrent_unordered_set& m)

Effects

Swap contents of *this and m.

535 Observers

5.35.1 hasher hash_function() const

Returns

Hashing functor associated with the set.

Reference Manual 89

535.2 key_equal key_eq() const

Returns

Key equivalence functor associcated with the set.

5.3.6 Lookup

5.3.6.1 iterator find(const key_type& k)

Returns

iterator pointing to item with key equivalent to k, or end () if no such item exists.

5.36.2 const_iterator find(const key_type& k) const

Returns

const_iterator pointing to item with key equivalent to k, or end () if no such item
exists.

5363 size_type count(const key_type& k) const

Returns

Number of items with keys equivalent to «.
5364 std:pair<iterator, iterator> equal_range(const key_type& k)

Returns

Range containing all keys in the set that are equivalent to k.

5.36.5 std:pair<const_iterator, const_iterator> equal_range(const
key_type& k) const

Returns

Range containing all keys in the set that are equivalent to «.

315415-016US

Containers

5.3.7 Parallel Iteration

Types const_range type and range type model the Container Range concept (5.1).
The types differ only in that the bounds for a const _range type are of type
const_iterator, whereas the bounds for a range type are of type iterator.

53.7.1 const_range_type range() const
Returns
const_range type object representing all keys in the set.
53.7.2 range_type range()

Returns

range type object representing all keys in the set.

5.3.8 Bucket Interface

The bucket interface is intended for debugging. It is not concurrency safe. The mapping
of keys to buckets is implementation specific. The interface is similar to the bucket
interface for the C++0x class unordered_set, except that the prefix unsafe has been
added as a reminder that the methods are unsafe to use during concurrent insertion.

Buckets are numbered from 0 to unsafe bucket count ()-1. To iterate over a bucket
use a local iterator Or const local iterator.

5.3.8.1 size_type unsafe_bucket_count() const
Returns
Number of buckets.

5382 size_type unsafe_max_bucket_count() const
Returns
Upper bound on possible number of buckets.

5383 size_type unsafe_bucket_size(size_type n)

Returns

Number of items in bucket n.

Reference Manual 91

92

5384 size_type unsafe_bucket(const key_type& k) const

Returns

Index of bucket where item with key k would be placed.
5385 local_iterator unsafe_begin(size_type n)
Returns
local iterator pointing to first item in bucket n.
5.3.86 const_local_iterator unsafe_begin(size_type n) const
Returns
const local iterator pointing to first item in bucket n.
5.38.7 local_iterator unsafe_end(size_type n)

Returns

local iterator pointing to immediately after the last item in bucket n.

5388 const_local_iterator unsafe_end(size_type n) const

Returns

const_local iterator pointing to immediately after the last item in bucket n.
5.3.89 const_local_iterator unsafe_cbegin(size_type n) const

Returns

const_local iterator pointing to first item in bucket n.
5.3.8.10 const_local_iterator unsafe_cend(size_type n) const

Returns

const_local iterator pointing to immediately past last item in bucket n.

315415-016US

Containers

5.39 Hash policy

5.3.9.1 float load_factor() const

Returns

Average number of elements per bucket.
5.39.2 float max_load_factor() const

Returns

Maximum size of a bucket. If insertion of an item causes a bucket to be bigger, the
implementaiton may repartition or increase the number of buckets.

5393 void max_load_factor(float z)

Effects

Set maximum size for a bucket to z.
5394 void rehash(size_type n)

Requirements

n must be a power of two.

Effects

No effect if current number of buckets is at least n. Otherwise increases number of
buckets to n.

54 concurrent_hash_map Template Class

Summary

Template class for associative container with concurrent access.

Syntax
template<typename Key, typename T,
typename HashCompare=tbb hash compare<Key>,
typename A=tbb allocator<std::pair<Key, T> > >
class concurrent hash map;

Reference Manual

93

Table 19:

Header
#include "tbb/concurrent hash map.h"

Description

A concurrent hash map maps keys to values in a way that permits multiple threads to
concurrently access values. The keys are unordered. There is at most one element in a
concurrent hash map for each key. The key may have other elements in flight but not
in the map as described in Section 5.4.3. The interface resembles typical STL
associative containers, but with some differences critical to supporting concurrent
access. It meets the Container Requirements of the ISO C++ standard.

Types Key and T must model the CopyConstructible concept (2.2.3).

Type HashCompare specifies how keys are hashed and compared for equality. It must
model the HashCompare concept in Table 19.

HashCompare Concept

Pseudo-Signature Semantics

HashCompare: :HashCompare (const HashCompareé&) Copy constructor.

HashCompare: : ~HashCompare () Destructor.

bool HashCompare::equal (const Key& 7, True if keys are equal.
const Key& k) const

size t HashCompare::hash(const Key& k) const Hashcode for key.

CAUTION:

CAUTION:

94

As for most hash tables, if two keys are equal, they must hash to the same hash code.
That is for a given HashCompare h and any two keys j and k, the following assertion
must hold: “'h.equal (§,k) || h.hash(j)==h.hash (k)"”. The importance of this
property is the reason that concurrent hash map makes key equality and hashing
function travel together in a single object instead of being separate objects. The hash
code of a key must not change while the hash table is non-empty.

Good performance depends on having good pseudo-randomness in the low-order bits
of the hash code.

Example

When keys are pointers, simply casting the pointer to a hash code may cause poor
performance because the low-order bits of the hash code will be always zero if the
pointer points to a type with alignment restrictions. A way to remove this bias is to
divide the casted pointer by the size of the type, as shown by the underlined blue text
below.

size t MyHashCompare::hash(Key* key) const {
return reinterpret cast<size t>(key)/sizeof (Key):;

315415-016US

Containers

Members

intel.

namespace tbb {

Reference Manual

template<typename Key, typename T, typename HashCompare,

typename Alloc=tbb allocator<std::pair<Key,T> > >

class concurrent hash map ({
public:

// types

typedef Key key type;

typedef T mapped type;

typedef std::pair<const Key,T> value type;
typedef size t size type;

typedef ptrdiff t difference type;

typedef value type* pointer;

typedef const value type* const pointer;
typedef value type& reference;

typedef Alloc allocator type;

// whole-table operations
concurrent hash map (
const allocator typeé& a=allocator type());
concurrent hash map (
size type n,
const allocator type &a = allocator type());
concurrent hash map (
const concurrent hash mapég,
const allocator typeé& a=allocator type());
template<typename Inputlterator>
concurrent hash map (
Inputlterator first, Inputlterator last,
const allocator type& a = allocator type())
~concurrent hash map () ;
concurrent hash map operator=(const concurrent hash mapé&)
void rehash(size type n=0);
void clear();
allocator type get allocator () const;

// concurrent access
class const_accessor;

class accessor;

// concurrent operations on a table

’

bool find(const accessoré& result, const Keyé& key) const;

bool find(accessoré& result, const Key& key);
bool insert(const accessoré& result, const Key& key);
bool insert(accessor& result, const Key& key);

95

96

bool insert(const accessoré& result, const value typeé&

value);

bool insert(accessoré& result, const value type& value
bool insert(const value typeé& value);
template<typename I> void insert(I first, I last);
bool erase(const Keyé& key);

bool erase(const accessor& item accessor);

bool erase(accessoré& item accessor);

// parallel iteration

typedef implementation defined range type;

typedef implementation defined const range type;
range type range(size t grainsize=1l);

const range type range(size t grainsize=l) const;

// capacity

size type size () const;

bool empty() const;

size type max size() const;
size type bucket count() const;

// iterators

typedef implementation defined iterator;

typedef implementation defined const iterator;
iterator begin();

iterator end();

const iterator begin() const;

const iterator end() const;

std::pair<iterator, iterator> equal range(const Key&

std::pair<const iterator, const iterator>
equal range(const Key& key) const;

}:

template<typename Key, typename T, typename HashCompare,
typename Al, typename A2>
bool operator==(
const concurrent hash map<Key, T, HashCompare,Al> &a,
const concurrent hash map<Key,T,HashCompare,A2> &b);

template<typename Key, typename T, typename HashCompare,
typename Al, typename A2>
bool operator!=(const
concurrent hash map<Key, T, HashCompare,Al> &a,
const concurrent hash map<Key,T,HashCompare,A2> &b);

315415-016US

)7

key

Containers

NOTE:

template<typename Key, typename T, typename HashCompare,
typename A>

void swap (concurrent hash map<Key, T,HashCompare,A>& a,
concurrent hash map<Key, T, HashCompare,A>& Db)

}

Exception Safey

The following functions must not throw exceptions:

e The hash function

e The destructors for types Key and T.

The following hold true:

o If an exception happens during an insert operation, the operation has no effect.

e If an exception happens during an assignment operation, the container may be in a
state where only some of the items were assigned, and methods size() and empty()
may return invalid answers.

5.4.1 Whole Table Operations

These operations affect an entire table. Do not concurrently invoke them on the same
table.

5411 concurrent_hash_map(const allocator_type& a =
allocator_type())

Effects

Constructs empty table.

54.1.2 concurrent_hash_map(size_type n, const allocator_type& a
= allocator_type())

Effects

Construct empty table with preallocated buckets for at least n items.

In general, thread contention for buckets is inversely related to the number of buckets.
If memory consumption is not an issue and P threads will be accessing the
concurrent hash map, set n>4P.

Reference Manual 97

98

5413 concurrent_hash_map(const concurrent_hash_map& table,
const allocator_type& a = allocator_type())

Effects

Copies a table. The table being copied may have const operations running on it
concurrently.

5414 template<typename Inputiterator> concurrent_hash_map(
Inputlterator first, Inputliterator last, const allocator_type&
a = allocator_type())

Effects

Constructs table containing copies of elements in the iterator half-open interval
[first,last).

5415 ~concurrent_hash_map()

Effects

Invokes clear (). This method is not safe to execute concurrently with other methods
on the same concurrent hash map.

5416 concurrent_hash_map& operator= (concurrent_hash_map&
source)

Effects

If source and destination (this) table are distinct, clears the destination table and
copies all key-value pairs from the source table to the destination table. Otherwise,
does nothing.

Returns

Reference to the destination table.

54.1.7 void swap(concurrent_hash_map& table)

Effects

Swaps contents and allocators of this and table.

315415-016US

Containers

CAUTION:

NOTE:

intel)

54.18 void rehash(size_type n=0)

Effects

Internally, the table is partitioned into buckets. Method rehash reorgnizes these
internal buckets in a way that may improve performance of future lookups. Raises
number of internal buckets to n if n>0 and n exceeds the current humber of buckets.

The current implementation never reduces the number of buckets. A future
implementation might reduce the number of buckets if n is less than the current

number of buckets.

The ratio of items to buckets affects time and space usage by a table. A high ratio
saves space at the expense of time. A low ratio does the opposite. The default ratio is
0.5 to 1 items per bucket on average.

5419 void clear()

Effects

Erases all key-value pairs from the table. Does not hash or compare any keys.

If TBB_USE PERFORMANCE WARNINGS is nonzero, issues a performance warning if the
randomness of the hashing is poor enough to significantly impact performance.

54.1.10 allocator_type get_allocator() const

Returns

Copy of allocator used to construct table.

54.2 Concurrent Access

Member classes const_accessor and accessor are called accessors. Accessors allow
multiple threads to concurrently access pairs in a shared concurrent hash map. An
accessor acts as a smart pointer to a pair in a concurrent_hash map. It holds an
implicit lock on a pair until the instance is destroyed or method release is called on
the accessor.

Classes const_accessor and accessor differ in the kind of access that they permit.

Table 20: Differences Between const_accessor and accessor

Class value_type Implied Lock on pair

const_accessor const std::pair<const Key,T> Reader lock - permits
shared access with other
readers.

Reference Manual 99

Class value_type Implied Lock on pair

accessor std: :pair<const Key, T> Writer lock - permits
exclusive access by a
thread. Blocks access by
other threads.

Accessors cannot be assigned or copy-constructed, because allowing such would
greatly complicate the locking semantics.

54.2.1 const_accessor

Summary

Provides read-only access to a pair in a concurrent hash map.

Syntax

template<typename Key, typename T, typename HashCompare, typename
A>

class concurrent hash map<Key,T,HashCompare,A>::const accessor;

Header

#include "tbb/concurrent hash map.h"

Description

A const_accessor permits read-only access to a key-value pair in a

concurrent hash map.

Members
namespace tbb {

template<typename Key, typename T, typename HashCompare,
typename A>

class concurrent hash map<Key,T,HashCompare,A>::const accessor

public:
// types
typedef const std::pair<const Key,T> value type;

// construction and destruction
const accessor();
~const accessor();

// inspection

bool empty () const;

const value typeé& operator* () const;
const value type* operator->() const;

100 315415-016US

Containers

// early release
void release();

bi
54.2.1.1 bool empty() const
Returns
True if instance points to nothing; false if instance points to a key-value pair.

542.1.2 void release()

Effects

If lempty (), releases the implied lock on the pair, and sets instance to point to
nothing. Otherwise does nothing.

54213 const value_type& operator*() const

Effects

Raises assertion failure if empty () and TBB_USE_ASSERT (3.2.1) is defined as
nonzero.

Returns

Const reference to key-value pair.

54214 const value_type* operator->() const
Returns

soperator* ()

54215 const_accessor()

Effects

Constructs const_accessor that points to nothing.
54.2.1.6 ~const_accessor

Effects

If pointing to key-value pair, releases the implied lock on the pair.

Reference Manual

101

54.2.2 accessor

Summary

Class that provides read and write access to a pair in a concurrent hash map.

Syntax

template<typename Key, typename T, typename HashCompare,
typename Alloc>

class concurrent hash map<Key,T,HashCompare,A>::accessor;

Header

#include "tbb/concurrent hash map.h"

Description

An accessor permits read and write access to a key-value pair in a
concurrent hash map. It is derived from a const_accessor, and thus can be
implicitly cast to a const_accessor.

Members
namespace tbb {

template<typename Key, typename T, typename HashCompare,
typename Alloc>

class concurrent hash map<Key, T, HashCompare,Alloc>::accessor:

concurrent hash map<Key,T,HashCompare,Alloc>::const accessor {
public:
typedef std::pair<const Key,T> value type;
value type& operator* () const;
value type* operator->() const;

}:

54221 value_type& operator*() const

Effects

Raises assertion failure if empty () and TBB_USE_ASSERT (3.2.1) is defined as nonzero.

Returns

Reference to key-value pair.

102 315415-016US

Containers

CAUTION:

TIP:

TIP:

CAUTION:

TIP:

54.2.2.2 value_type* operator->() const

Returns
&operator* ()

543 Concurrent Operations

The operations count, find, insert, and erase are the only operations that may be
concurrently invoked on the same concurrent hash _map. These operations search the
table for a key-value pair that matches a given key. The find and insert methods
each have two variants. One takes a const_accessor argument and provides read-only
access to the desired key-value pair. The other takes an accessor argument and
provides write access. Additionally, insert has a variant without any accessor.

The concurrent operations (count, find, insert, and erase) invalidate any iterators
pointing into the affected instance even with const qualifier. It is unsafe to use these
operations concurrently with any other operation. An exception to this rule is that
count and find do not invalidate iterators if no insertions or erasures have occurred
after the most recent call to method rehash.

In serial code, the equal range method should be used instead of the £ind method for
lookup, since equal range is faster and does not invalidate iterators.

If the nonconst variant succeeds in finding the key, the consequent write access blocks
any other thread from accessing the key until the accessor object is destroyed. Where
possible, use the const variant to improve concurrency.

Each map operation in this section returns true if the operation succeeds, false
otherwise.

Though there can be at most one occurrence of a given key in the map, there may be
other key-value pairs in flight with the same key. These arise from the semantics of the
insert and erase methods. The insert methods can create and destroy a temporary
key-value pair that is not inserted into a map. The erase methods remove a key-value
pair from the map before destroying it, thus permitting another thread to construct a
similar key before the old one is destroyed.

To guarantee that only one instance of a resource exists simultaneously for a given
key, use the following technique:

e To construct the resource: Obtain an accessor to the key in the map before
constructing the resource.

e To destroy the resource: Obtain an accessor to the key, destroy the resource, and
then erase the key using the accessor.

Below is a sketch of how this can be done.

Reference Manual 103

extern tbb::concurrent hash map<Key,Resource, HashCompare> Map;

void ConstructResource(Key key) {
accessor acc;
if(Map.insert (acc,key)) {
// Current thread inserted key and has exclusive access.
...construct the resource here...

}

// Implicit destruction of acc releases lock

void DestroyResource(Key key) {
accessor acc;
if(Map.find(acc,key)) {
// Current thread found key and has exclusive access.
...destroy the resource here...
// Erase key using accessor.
Map.erase (acc);

5431 size_type count(const Key& key) const

CAUTION: This method may invalidate previously obtained iterators. In serial code, you can
instead use equal_range that does not have such problems.

Returns
1 if map contains key; 0 otherwise.
5432 bool find(const_accessor& result, const Key& key) const

Effects

Searches table for pair with given key. If key is found, sets result to provide read-only
access to the matching pair.

CAUTION: This method may invalidate previously obtained iterators. In serial code, you can
instead use equal_range that does not have such problems.

Returns

True if key was found; false if key was not found.

104 315415-016US

Containers

CAUTION:

intel)

5433 bool find(accessor& result, const Key& key)

Effects

Searches table for pair with given key. If key is found, sets result to provide write
access to the matching pair

This method may invalidate previously obtained iterators. In serial code, you can
instead use equal_range that does not have such problems.

Returns

True if key was found; false if key was not found.

5434 bool insert(const_accessor& result, const Key& key)
Effects
Searches table for pair with given key. If not present, inserts new pair (key, T ()) into

the table. Sets result to provide read-only access to the matching pair.

Returns

True if new pair was inserted; false if key was already in the map.

5435 bool insert(accessor& result, const Key& key)
Effects
Searches table for pair with given key. If not present, inserts new pair (key,T()) into

the table. Sets result to provide write access to the matching pair.

Returns

True if new pair was inserted; false if key was already in the map.

5436 bool insert(const_accessor& result, const value_type&
value)

Effects

Searches table for pair with given key. If not present, inserts new pair copy-
constructed from value into the table. Sets result to provide read-only access to the
matching pair.

Reference Manual 105

Returns

True if new pair was inserted; false if key was already in the map.
5437 bool insert(accessor& result, const value_type& value)

Effects

Searches table for pair with given key. If not present, inserts new pair copy-
constructed from value into the table. Sets result to provide write access to the
matching pair.

Returns
True if new pair was inserted; false if key was already in the map.
54.38 bool insert(const value_type& value)

Effects

Searches table for pair with given key. If not present, inserts new pair copy-
constructed from value into the table.

Returns

True if new pair was inserted; false if key was already in the map.

TIP: If you do not need to access the data after insertion, use the form of insert that does
not take an accessor; it may work faster and use fewer locks.

5439 template<typename Inputlterator> void insert(
Inputlterator first, Inputiterator last)

Effects

For each pair p in the half-open interval [first,last), does insert (p). The order of
the insertions, or whether they are done concurrently, is unspecified.

CAUTION: The current implementation processes the insertions in order. Future implementations
may do the insertions concurrently. If duplicate keys exist in [first,last), be careful to
not depend on their insertion order.

106 315415-016US

Containers | n tel))

543.10 bool erase(const Key& key)

Effects

Searches table for pair with given key. Removes the matching pair if it exists. If there
is an accessor pointing to the pair, the pair is nonetheless removed from the table but
its destruction is deferred until all accessors stop pointing to it.

Returns

True if pair was removed by the call; false if key was not found in the map.

54311 bool erase(const_accessor& item_accessor)

Requirements

1 tem accessor.empty ()==false

Effects

Removes pair referenced by item accessor. Concurrent insertion of the same key
creates a new pair in the table.

Returns
True if pair was removed by this thread; false if pair was removed by another thread.
54.3.12 bool erase(accessor& item_accessor)

Requirements

item accessor.empty ()==false

Effects

Removes pair referenced by item accessor. Concurrent insertion of the same key
creates a new pair in the table.

Returns

True if pair was removed by this thread; false if pair was removed by another thread.

544 Parallel Iteration

Types const_range type and range type model the Container Range concept (5.1).
The types differ only in that the bounds for a const_range type are of type
const_iterator, whereas the bounds for a range type are of type iterator.

Reference Manual 107

NOTE:

NOTE:

NOTE:

108

Do not call concurrent operations, including count and find while iterating the table.
Use concurrent unordered map if concurrent traversal and insertion are required.

54.4.1 const_range_type range(size_t grainsize=1) const

Effects

Constructs a const_range type representing all keys in the table. The parameter
grainsize is in units of hash table buckets. Each bucket typically has on average
about one key-value pair.

Returns

const_range_ type object for the table.

544.2 range_type range(size_t grainsize=1)

Returns

range_type object for the table.

545 Capacity

545.1 size_type size() const

Returns
Number of key-value pairs in the table.

This method takes constant time, but is slower than for most STL containers.
545.2 bool empty() const

Returns
size ()==0.

This method takes constant time, but is slower than for most STL containers.
5453 size_type max_size() const

Returns

Inclusive upper bound on number of key-value pairs that the table can hold.

315415-016US

Containers

NOTE:

intel)

5454 size_type bucket_count() const

Returns

Current number of internal buckets. See method rehash for discussion of buckets.

5.4.6 Iterators

Template class concurrent hash _map supports forward iterators; that is, iterators that
can advance only forwards across a table. Reverse iterators are not supported.
Concurrent operations (count, find, insert, and erase) invalidate any existing
iterators that point into the table, An exception to this rule is that count and find do
not invalidate iterators if no insertions or erasures have occurred after the most recent
call to method rehash.

Do not call concurrent operations, including count and find while iterating the table.
Use concurrent unordered map if concurrent traversal and insertion are required.

54.6.1 iterator begin()

Returns

iterator pointing to beginning of key-value sequence.

546.2 iterator end()

Returns

iterator pointing to end of key-value sequence.
5463 const_iterator begin() const

Returns

const_iterator with pointing to beginning of key-value sequence.
5464 const_iterator end() const

Returns

const_iterator pointing to end of key-value sequence.

Reference Manual 109

TIP:

110

5465 std::pair<iterator, iterator> equal_range(const Key& key);

Returns

Pair of iterators (i,j) such that the half-open range [/,j) contains all pairs in the map
(and only such pairs) with keys equal to key. Because the map has no duplicate keys,
the half-open range is either empty or contains a single pair.

This method is serial alternative to concurrent count and f£ind methods.

546.6 std:pair<const_iterator, const_iterator> equal_range(const
Kev& key) const;
Description
See 5.4.6.5.

5.4.7 Global Functions

These functions in namespace tbb improve the STL compatibility of
concurrent hash map.

54.7.1 template<typename Key, typename T, typename
HashCompare, typename A1, typename A2> bool
operator==(const
concurrent_hash_map<Key, T,HashCompare,A1>& a, const
concurrent_hash_map<Key, T,HashCompare,A2>& b);

Returns

True if a and b contain equal sets of keys and for each pair (k, vy) ea and pair , v,) €b,
the expression bool (vi==v5) is true.

547.2 template<typename Key, typename T, typename
HashCompare, typename A1, typename A2> bool
operatorl=(const
concurrent_hash_map<Key, T,HashCompare,A1> &3, const
concurrent_hash_map<Key, T,HashCompare,A2> &b);

Returns

! (a==Db)

315415-016US

Containers

5473 template<typename Key, typename T, typename
HashCompare, typename A> void
swap(concurrent_hash_map<Key, T, HashCompare, A> &a,
concurrent_hash_map<Key, T, HashCompare, A> &b)

Effects

a.swap (b)

548 tbb_hash_compare Class

Summary

Default HashCompare for concurrent hash map.

Syntax

template<typename Key> struct tbb hash compare;

Header
#include "tbb/concurrent hash map.h"

Description

A tbb_hash compare<Key> is the default for the HashCompare argument of template
class concurrent_hash map. The built-in definition relies on operator== and
tbb_hasher as shown in the Members description. For your own types, you can define
a template specialization of tbb_hash compare or define an overload of tbb_hasher.

There are built-in definitions of tbb_hasher for the following Key types:

e Types that are convertible to a size_t by static_cast<T>
e Pointer types
e std::basic_string

e std::pair<kKl, k2> where k1 and k2 are hashed using tbb hasher.

Members
namespace tbb {
template<typename Key>
struct tbb hash compare {
static size t hash(const Key& a) {
return tbb hasher (a);
}
static bool equal (const Key& a, const Key& b) {
return a==b;

Reference Manual 111

112

i

template<typename T>
size t tbb hasher (const T&);

template<typename T>
size t tbb_hasher (T*);

template<typename T, typename Traits, typename Alloc>
size t tbb hasher (const std::basic string<T, Traits,Alloc>&);

template<typename T1, typename T2>
size t tbb hasher (const std::pair<T1,T2>&);

5.5 concurrent_queue Template Class

Summary

Template class for queue with concurrent operations.

Syntax

template<typename T, typename Alloc=cache aligned allocator<T> >
class concurrent queue;

Header
#include "tbb/concurrent queue.h"

Description

A concurrent queue is a first-in first-out data structure that permits multiple threads
to concurrently push and pop items. Its capacity is unbounded’, subject to memory
limitations on the target machine.

7 In Intel® TBB 2.1, a concurrent queue could be bounded. Intel® TBB 2.2
moves this functionality to concurrent bounded queue. Compile with

TBB DEPRECATED=1 to restore the old functionality, or (recommended) use
concurrent bounded gqueue instead.

315415-016US

Containers

intel.

The interface is similar to STL std: : queue except where it must differ to make
concurrent modification safe.

Table 21: Differences Between STL queue and Intel® Threading Building Blocks

concurrent_queue

Feature

STL std: :queue

concurrent_queue

Access to front and
back

Methods front and back

Not present. They would be
unsafe while concurrent
operations are in progress.

size type

unsigned integral type

signed integral type

unsafe size()

Returns number of items in
queue

Returns number of items in
queue. May return incorrect
value if any push or try pop
operations are concurrently in
flight.

Copy and pop item
unless queue g is
empty.

bool b=!qg.empty();

if (b) |
x=q.front () ;
g.pop();

bool b = g.try_pop (x)

Members
namespace tbb {

template<typename T,

typename Alloc=cache aligned allocator<T> >

class concurrent queue {

public:
// types
typedef T value type;
typedef T& reference;
typedef const T& const reference;
typedef std::ptrdiff t size type;
typedef std::ptrdiff t difference type;
typedef Alloc allocator type;
explicit concurrent queue (const Alloc& a = Alloc ());

Reference Manual

concurrent queue (const concurrent queue& src,
const Alloc& a = Alloc());
template<typename InputlIterator>
concurrent queue (Inputlterator first, Inputlterator last,
const Alloc& a = Alloc());
~concurrent queue () ;

void push(const T& source);

113

bool try_popg(T& destination);
void clear () ;

size type unsafe size() const;
bool empty () const;
Alloc get allocator () const;

typedef implementation-defined iterator;
typedef implementation-defined const iterator;

// 1iterators (these are slow and intended only for
debugging)

iterator unsafe begin();

iterator unsafe end();

const iterator unsafe begin() const;
const iterator unsafe end() const;

5.5.1 concurrent_queue(const Alloc& a = Alloc ())

Effects

Constructs empty queue.

5.5.2 concurrent_queue(const concurrent_queue&
src, const Alloc& a = Alloc())

Effects

Constructs a copy of src.

8 Called pop if present in Intel® TBB 2.1. Compile with TBB DEPRECATED=1
to use the old name.

315415-016US

Containers

(intel”

5.5.3 template<typename Inputiterator>
concurrent_queue(Inputlterator first,
Inputlterator last, const Alloc& a = Alloc())

Effects

Constructs a queue containing copies of elements in the iterator half-open interval
[first,last).

554 ~concurrent_queue()

Effects

Destroys all items in the queue.

5.5.5 void push(const T& source)

Effects

Pushes a copy of source onto back of the queue.

5.5.6 bool try_pop (T& destination)

Effects

If value is available, pops it from the queue, assigns it to destination, and destroys the

original value. Otherwise does nothing.

Returns

True if value was popped; false otherwise.

5.5.7 void clear()

Effects

Clears the queue. Afterwards size () ==0.

Reference Manual

115

CAUTION:

116

558 size_type unsafe_size() const

Returns

Number of items in the queue. If there are concurrent modifications in flight, the value
might not reflect the actual humber of items in the queue.

559 bool empty() const

Returns

true if queue has no items; false otherwise.

5.5.10 Alloc get_allocator() const

Returns

Copy of allocator used to construct the queue.

5,511 Iterators

A concurrent queue provides limited iterator support that is intended solely to allow
programmers to inspect a queue during debugging. It provides iterator and
const_iterator types. Both follow the usual STL conventions for forward iterators. The
iteration order is from least recently pushed to most recently pushed. Modifying a
concurrent queue invalidates any iterators that reference it.

The iterators are relatively slow. They should be used only for debugging.

Example

The following program builds a queue with the integers 0..9, and then dumps the
queue to standard output. Its overall effectisto print0 1 2 3 4 5 6 7 8 9.

#include "tbb/concurrent queue.h"
#include <iostream>

using namespace std;
using namespace tbb;

int main() {
concurrent queue<int> queue;
for(int i=0; i<10; ++i)
queue.push (1) ;

315415-016US

Containers

intel)

for(iter 1i(queue.unsafe begin()); i!=queue.unsafe end(); ++1i)
cout << *i << " ";

cout << endl;

return 0;

typedef concurrent queue<int>::iterator iter;

55.111 iterator unsafe_begin()

Returns

iterator pointing to beginning of the queue.

55.11.2 iterator unsafe_end()
Returns
iterator pointing to end of the queue.
55113 const_iterator unsafe_begin() const
Returns
const_iterator with pointing to beginning of the queue.
55114 const_iterator unsafe_end() const

Returns

const_iterator pointing to end of the queue.

5.6 concurrent_bounded_queue Template
Class

Summary

Template class for bounded dual queue with concurrent operations.

Syntax

template<typename T, class Alloc=cache aligned allocator<T> >

Reference Manual 117

class concurrent bounded queue;

Header
#include "tbb/concurrent queue.h"

Description

A concurrent bounded queue is similar to a concurrent_queue, but with the following
differences:

e Adds the ability to specify a capacity. The default capacity makes the queue
practically unbounded.

e Changes the push operation so that it waits until it can complete without exceeding
the capacity.

e Adds a waiting pop operation that waits until it can pop an item.
e Changes the size type to a signed type.

e Changes the size () operation to return the number of push operations minus the
number of pop operations. For example, if there are 3 pop operations waiting on an
empty queue, size () returns -3.

e Adds an abort operation that causes any waiting push or pop operation to abort and
throw an exception.

Members

To aid comparison, the parts that differ from concurrent queue are in bold and
annotated.

namespace tbb {
template<typename T, typename
Alloc=cache aligned allocator<T> >
class concurrent bounded queue {
public:
// types
typedef T value type;
typedef T& reference;
typedef const T& const reference;
typedef Alloc allocator type;
// size type is signed type
typedef std::ptrdiff t size type;
typedef std::ptrdiff t difference type;

explicit concurrent bounded queue (const allocator typeé& a
= allocator type());

concurrent bounded queue(const concurrent bounded queue&
src, const allocator type& a = allocator type()):;

template<typename InputlIterator>

118 315415-016US

Containers

intel)

concurrent bounded queue(InputlIterator begin,

InputIterator end, const allocator type& a = allocator type());

~concurrent bounded queue () ;

// waits until it can push without exceeding capacity.
void push(const T& source);

// waits if *this is empty

void pop(T& destination);

// skips push if it would exceed capacity.
bool try_pushg(const T& source);

bool try pop'’(T& destination);

void abort();

void clear () ;

// safe to call during concurrent modification, can return

negative size.

size type size () const;

bool empty () const;

size type capacity() const;

void set capacity(size type capacity);
allocator type get allocator () const;

typedef implementation-defined iterator;
typedef implementation-defined const iterator;

// iterators (these are slow an intended only for

debugging)

}i
}

iterator unsafe begin();

iterator unsafe end();

const iterator unsafe begin() const;
const iterator unsafe end() const;

Because concurrent bounded queue is similar to concurrent queue, the following
subsections described only methods that differ.

°® Method try push was called push if not full in Intel® TBB 2.1.

10 Method try pop was called pop if present in Intel® TBB 2.1.

Reference Manual

119

5.6.1 void push(const T& source)

Effects

Waits until size()<capacity, and then pushes a copy of source onto back of the queue.

5.6.2 void pop(T& destination)

Effects

Waits until a value becomes available and pops it from the queue. Assigns it to
destination. Destroys the original value.

5.6.3 void abort()

Effects

Wakes up any threads that are waiting on the queue via the push and pop operations
and raises the tbb: :user abort exception on those threads. This feature is
unavailable if TBB USE_EXCEPTIONS is not set.

564 bool try_push(const T& source)

Effects

If size()<capacity, pushes a copy of source onto back of the queue.

Returns

True if a copy was pushed; false otherwise.

5.6.5 bool try_pop(T& destination)

Effects

If a value is available, pops it from the queue, assigns it to destination, and destroys
the original value. Otherwise does nothing.

Returns

True if a value was popped; false otherwise.

120 315415-016US

Containers

intel)

5.6.6 size_type size() const

Returns

Number of pushes minus number of pops. The result is negative if there are pop
operations waiting for corresponding pushes. The result can exceed capacity () if the
queue is full and there are push operations waiting for corresponding pops.

5.6.7 bool empty() const
Returns
size ()<=0
5.6.8 size_type capacity() const

Returns

Maximum number of values that the queue can hold.

5.6.9 void set_capacity(size_type capacity)

Effects

Sets the maximum number of values that the queue can hold.

5.7 concurrent_priority_queue Template
Class

Summary

Template class for priority queue with concurrent operations.

Syntax

template<typename T, typename Compare=std::less<T>, typename
Alloc=cache aligned allocator<T> >

class concurrent priority queue;

Header
#include “tbb/concurrent priority queue.h”

Reference Manual 121

Description

A concurrent priority queue is a container that permits multiple threads to
concurrently push and pop items. Items are popped in priority order as determined by
a template parameter. The queue’s capacity is unbounded, subject to memory
limitations on the target machine.

The interface is similar to STL std: :priority queue except where it must differ to
make concurrent modification safe.

Table 43: Differences between STL priority_queue and Intel® Threading Building Blocks
concurrent_priority_queue

Feature STL std: :priority queue | concurrent priority_ queue
Choice of Sequence template parameter No choice of underlying
underlying container; allocator choice is
container provided instead

Access to highest

const value typeé& top ()

Not available. Unsafe for

}

priority item const concurrent container
bool b=!g.empty();
Copy and pop item |if (b) { bool b = g.try pop(x);
if present x=q.top () ;
gq.pop ()i

items in queue

Get number of size type size() const |Same, but may be inaccurate due
items in queue to pending concurrent push or
pop operations
Check if there are bool empty () const Same, but may be inaccurate due

to pending concurrent push or
pop operations

Members

namespace tbb {
template <typename T,

typename Compare=std::less<T>,

typename A=cache aligned allocator<T> >

class concurrent priority queue {

typedef
typedef
typedef
typedef
typedef
typedef

T value type;

T& reference;

const T& const reference;
size t size type;
ptrdiff t difference type;
A allocator type;

concurrent priority queue (const allocator type& a =

122

315415-016US

Containers

}i

intel)

allocator type());
concurrent priority queue(size type init capacity,
const allocator type& a = allocator type());
template<typename Inputlterator>
concurrent priority queue (InputlIterator begin,
InputIterator end, const allocator type& a =
allocator type());
concurrent priority queue (const
concurrent priority queue& src, const
allocator type& a = allocator type());
concurrent priority queue& operator=(const
concurrent priority queue& src);
~concurrent priority queue();

bool empty() const;

size type size() const;

void push(const reference elem);

bool try pop (reference elem);

void clear();

void swap (concurrent priority queue& other);
allocator type get allocator () const;

5.7.1 concurrent_priority_queue(const

allocator_type& a = allocator_type())

Effects

Constructs empty queue.

5.7.2 concurrent_priority_queue(size_type

init_capacity, const allocator_type& a =
allocator_type())

Effects

Constructs an empty queue with an initial capacity.

Reference Manual

123

124

5.73 concurrent_priority_queue(Inputlterator begin,
Inf)utlterator end, const allocator_type& a =
allocator_type())

Effects

Constructs a queue containing copies of elements in the iterator half-open interval
[begin, end).

574 concurrent_priority_queue (const
concurrent _prlorlty_clueue& src, const
allocator_type& a = allocator_type())

Effects

Constructs a copy of src. This operation is not thread-safe and may result in an error
or an invalid copy of src if another thread is concurrently modifying src.

5.75 concurrent_priority_queue& operator=(const
concurrent_priority_queue& src)

Effects

Assign contents of src to *this. This operation is not thread-safe and may result in an
error or an invalid copy of src if another thread is concurrently modifying src.

5.76 ~concurrent_priority_queue()

Effects

Destroys all items in the queue, and the container itself, so that it can no longer be
used.

5.7.7 bool empty() const

Returns

true if queue has no items; false otherwise. May be inaccurate when concurrent
push Or try pop operations are pending. This operation reads shared data and may
trigger a race condition in race detection tools when used concurrently.

315415-016US

Containers

intel)

5.7.8 size_type size() const

Returns

Number of items in the queue. May be inaccurate when concurrent push or try pop
operations are pending. This operation reads shared data and may trigger a race
condition in race detection tools when used concurrently.

5.79 void push(const_reference elem)

Effects

Pushes a copy of elem into the queue. This operation is thread-safe with other push
and try pop operations.

5.7.10 bool try_pop(reference elem)

Effects

If the queue is not empty, copies the highest priority item from the queue and assigns
it to elem, and destroys the popped item in the queue; otherwise, does nothing. This
operation is thread-safe with other push and try pop operations.

Returns

true if an item was popped; false otherwise.

5.7.11 void clear()

Effects

Clears the queue; results in size () ==0. This operation is not thread-safe.

5.7.12 void swap(concurrent_priority_queue& other)

Effects

Swaps the queue contents with those of other. This operation is not thread-safe.

Reference Manual 125

5.7.13 allocator_type get_allocator() const

Returns

Copy of allocator used to construct the queue.

58 concurrent_vector

Summary

Template class for vector that can be concurrently grown and accessed.

Syntax
template<typename T, class Alloc=cache aligned allocator<T> >
class concurrent vector;

Header

#include "tbb/concurrent vector.h"

Description

A concurrent vector is a container with the following features:

¢ Random access by index. The index of the first element is zero.
e Multiple threads can grow the container and append new elements concurrently.
e Growing the container does not invalidate existing iterators or indices.

A concurrent vector meets all requirements for a Container and a Reversible
Container as specified in the ISO C++ standard. It does not meet the Sequence
requirements due to absence of methods insert () and erase () .

Members
namespace tbb {

template<typename T, typename Alloc=cache aligned allocator<T>
>

class concurrent vector {
public:
typedef size t size type;
typedef allocator-A-rebound-for-T'' allocator type;

1 This rebinding follows practice established by both the Microsoft and GNU
implementations of std: :vector.

126 315415-016US

Containers I n tel ¢

typedef T value type;

typedef ptrdiff t difference type;

typedef T& reference;

typedef const T& const reference;

typedef T* pointer;

typedef const T *const pointer;

typedef implementation-defined iterator;

typedef implementation-defined const iterator;

typedef implementation-defined reverse iterator;
typedef implementation-defined const reverse iterator;

// Parallel ranges

typedef implementation-defined range type;
typedef implementation-defined const range type;
range_ type range(size t grainsize);

const range type range(size t grainsize) const;

// Constructors
explicit concurrent vector (const allocator type& a =
allocator type());
concurrent vector(const concurrent vectoré& x);
template<typename M>
concurrent vector (const concurrent vector<T, M>& x);

explicit concurrent vector(size type n,

const T& t=T(),

const allocator type& a = allocator type());
template<typename Inputlterator>

concurrent_vector(InputIterator first, Inputlterator
last,

const allocator typeé& a=allocator type());

// Assignment
concurrent vectoré& operator=(const concurrent vectoré& x

template<class M>

concurrent vectoré& operator=(const
concurrent vector<T, M>& X);

void assign(size type n, const T& t);
template<class Inputlterator >
void assign(InputIterator first, Inputlterator last

Reference Manual 127

// Concurrent growth operations'?

iterator grow by(size type delta);

iterator grow by(size type delta, const T& t);
iterator grow to at least(size type n);
iterator push back(const T& item);

// Items access

reference operator([] (size type index);

const reference operator[] (size type index) const;
reference at(size type index);

const reference at(size type index) const;
reference front();

const reference front() const;

reference back() ;

const reference back() const;

// Storage

bool empty() const;

size type capacity() const;

size type max size() const;

size type size () const;

allocator type get allocator () const;

// Non-concurrent operations on whole container
void reserve(size type n);

void compact () ;

void swap(concurrent vector& vector);

void clear();

~concurrent vector();

// Iterators

iterator begin();

iterator end();

const iterator begin() const;
const iterator end() const;
reverse iterator rbegin();
reverse iterator rend();

12 The return types of the growth methods are different in Intel® TBB 2.2 than
in prior versions. See footnotes in the descriptions of the individual methods
for details.

128 315415-016US

Containers I n tel ¢

const reverse iterator rbegin() const;
const reverse iterator rend() const;

// C++0x extensions

const iterator cbegin() const;

const iterator cend() const;

const reverse iterator crbegin() const;
const reverse iterator crend() const;

)i 8

// Template functions
template<typename T, class Al, class A2>
bool operator==(const concurrent vector<T, Al>& a,
const concurrent vector<T, A2>& b);

template<typename T, class Al, class A2>
bool operator!=(const concurrent vector<T, Al>& a,
const concurrent vector<T, A2>& b);

template<typename T, class Al, class A2>
bool operator<(const concurrent vector<T, Al>& a,
const concurrent vector<T, A2>& b);

template<typename T, class Al, class A2>
bool operator>(const concurrent vector<T, Al>& a,
const concurrent vector<T, A2>& b);

template<typename T, class Al, class A2>
bool operator<=(const concurrent vector<T, Al>& a,
const concurrent vector<T, A2>& b);

template<typename T, class Al, class A2>
bool operator>=(const concurrent vector<T, Al>& a,
const concurrent vector<T, A2>& b);

template<typename T, class A>

void swap (concurrent vector<T, A>& a, concurrent vector<T,
A>& b);

Reference Manual 129

Exception Safety

Concurrent growing is fundamentally incompatible with ideal exception safety.3
Nonetheless, concurrent vector offers a practical level of exception safety.

Element type T must meet the following requirements:

e Its destructor must not throw an exception.
e If its default constructor can throw an exception, its destructor must be non-virtual
and work correctly on zero-filled memory.

Otherwise the program’s behavior is undefined.

Growth (5.8.3) and vector assignment (5.8.1) append a sequence of elements to a
vector. If an exception occurs, the impact on the vector depends upon the cause of
the exception:

e If the exception is thrown by the constructor of an element, then all subsequent
elements in the appended sequence will be zero-filled.

e Otherwise, the exception was thrown by the vector's allocator. The vector becomes
broken. Each element in the appended sequence will be in one of three states:

o constructed
o zero-filled

o unallocated in memory

Once a vector becomes broken, care must be taken when accessing it:

e Accessing an unallocated element with method at causes an exception
std: :range_error. Any other way of accessing an unallocated element has undefined
behavior.

e The values of capacity () and size () may be less than expected.

e Access to a broken vector via back () has undefined behavior.

However, the following guarantees hold for broken or unbroken vectors:

e Let k be an index of an unallocated element. Then size ()<capacity ()<k.
e Growth operations never cause size () or capacity () to decrease.

If a concurrent growth operation successfully completes, the appended sequence
remains valid and accessible even if a subsequent growth operations fails.

13 For example, consider P threads each appending N elements. To be
perfectly exception safe, these operations would have to be serialized,
because each operation has to know that the previous operation succeeded
before allocating more indices.

130 315415-016US

Fragmentation

Unlike a std: :vector, a concurrent vector never moves existing elements when it
grows. The container allocates a series of contiguous arrays. The first reservation,
growth, or assignment operation determines the size of the first array. Using a small
number of elements as initial size incurs fragmentation across cache lines that may
increase element access time. The method shrink to fit () merges several smaller

arrays into a single contiguous array, which may improve access time.

5.8.1 Construction, Copy, and Assignment

Safety

These operations must not be invoked concurrently on the same vector.

58.1.1 concurrent_vector(const allocator_type& a =
allocator_type())

Effects

Constructs empty vector using optionally specified allocator instance.

58.1.2 concurrent_vector(size_type n, const_reference t=T(),
const allocator_type& a = allocator_type())i

Effects

Constructs vector of n copies of t, using optionally specified allocator instance. If t is
not specified, each element is default constructed instead of copied.

58.1.3 template<typename Inputlterator> concurrent_vector(
Inputlterator first, Inputiterator last, const allocator_type&
a = allocator_type())

Effects

Constructs vector that is copy of the sequence [first, last), making only N calls to
the copy constructor of T, where N is the distance between first and last.

5814 concurrent_vector(const concurrent_vector& src)

Effects

Constructs copy of src.

Reference Manual 131

132

58.15 concurrent_vector& operator=(const concurrent_vector&
Src)

Effects
Assigns contents of src to *this.
Returns

Reference to left hand side.

58.16 template<typename M>
concurrent_vector& operator=(const concurrent_vector<T,
M>& src)
Assign contents of src to *this.
Returns
Reference to left hand side.
58.1.7 void assign(size_type n, const_reference t)

Assign n copies of t.

58.18 template<class Inputlterator >
void assign(Inputlterator first, Inputlterator last)

Assign copies of sequence [first,last), making only N calls to the copy constructor of
T, where N is the distance between first and last.

5.8.2 Whole Vector Operations
Safety

Concurrent invocation of these operations on the same instance is not safe.
58.2.1 void reserve(size_typen)

Effects

Reserves space for at least n elements.

Throws

std::length error if n>max_size (). It can also throw an exception if the allocator
throws an exception.

315415-016US

Containers

TIP:

Safety

If an exception is thrown, the instance remains in a valid state.

58.2.2 void shrink_to_fit()'4

Effects

Compacts the internal representation to reduce fragmentation.

58.23 void swap(concurrent_vector& x)

Swap contents of two vectors. Takes O(1) time.

5824 void clear()
Effects
Erases all elements. Afterwards, size () ==0. Does not free internal arrays.!’

To free internal arrays, call shrink to fit () after clear().

5.8.2.5 ~concurrent_vector()

Effects

Erases all elements and destroys the vector.

5.83 Concurrent Growth

Safety

The methods described in this section may be invoked concurrently on the same
vector.

14 Method shrink to fit was called compact () in Intel® TBB 2.1. It was
renamed to match the C++0X std: :vector::shrink to fit ().

15 The original release of Intel® TBB 2.1 and its “update 1” freed the arrays.
The change in “update 2" reverts back to the behavior of Intel® TBB 2.0. The
motivation for not freeing the arrays is to behave similarly to
std::vector::clear ().

Reference Manual 133

TIP:

134

5.8.3.1 iterator grow_by(size_type delta, const_reference t=T()
)16

Effects

Appends a sequence comprising delta copies of t to the end of the vector. If ¢ is not
specified, the new elements are default constructed.

Returns

Iterator pointing to beginning of appended sequence.
58.3.2 iterator grow_to_at_least(size_type n)17

Effects

Appends minimal sequence of elements such that vector.size () >=n. The new
elements are default constructed. Blocks until all elements in range [0..n) are allocated
(but not necessarily constructed if they are under construction by a different thread).

If a thread must know whether construction of an element has completed, consider the
following technique. Instantiate the concurrent vector using a zero allocator
(8.5). Define the constructor 7() such that when it completes, it sets a field of T to
non-zero. A thread can check whether an item in the concurrent vector is
constructed by checking whether the field is non-zero.

Returns

Iterator that points to beginning of appended sequence, or pointer to (*this) [n] if no
elements were appended.

5833 iterator push_back(const_reference value)18

Effects

Appends copy of value to the end of the vector.

16 Return type was size type in Intel® TBB 2.1.
17 Return type was void in Intel® TBB 2.1.

18 Return type was size type in Intel® TBB 2.1.

315415-016US

Containers

Returns

Iterator that points to the copy.

584 Access
Safety

The methods described in this section may be concurrently invoked on the same vector
as methods for concurrent growth (5.8.3). However, the returned reference may be to
an element that is being concurrently constructed.

5.84.1 reference operator[](size_type index)
Returns
Reference to element with the specified index.
584.2 const_refrence operator[](size_type index) const
Returns
Const reference to element with the specified index.
5843 reference at(size_type index)
Returns
Reference to element at specified index.
Throws
std::out_of range if index > size ().
5844 const_reference at(size_type index) const
Returns
Const reference to element at specified index.

Throws

std::out_of range if index > size () or index is for broken portion of vector.

Reference Manual 135

5845 reference front()
Returns
(*this) [0]
5846 const_reference front() const
Returns
(*this) [0]
584.7 reference back()
Returns
(*this) [size ()-1]
5848 const_reference back() const

Returns

(*this) [size () -1]

5.8.5 Parallel Iteration

Types const_range type and range type model the Container Range concept (5.1).
The types differ only in that the bounds for a const_range type are of type
const_iterator, whereas the bounds for a range type are of type iterator.

5.8.5.1 range_type range(size_t grainsize=1)

Returns

Range over entire concurrent vector that permits read-write access.
585.2 const_range_type range(size_t grainsize=1) const

Returns

Range over entire concurrent vector that permits read-only access.

136 315415-016US

Containers | n tel))

5.86 Capacity

586.1 size_type size() const

Returns

Number of elements in the vector. The result may include elements that are allocated
but still under construction by concurrent calls to any of the growth methods (5.8.3).

586.2 bool empty() const
Returns
size ()==0

586.3 size_type capacity() const
Returns

Maximum size to which vector can grow without having to allocate more memory.

NOTE: Unlike an STL vector, a concurrent vector does not move existing elements if it
allocates more memory.

5864 size_type max_size() const

Returns

Highest possible size of the vector could reach.

5.8.7 Iterators

Template class concurrent vector<T> supports random access iterators as defined in
Section 24.1.4 of the ISO C++ Standard. Unlike a std: :vector, the iterators are not

raw pointers. A concurrent vector<T> meets the reversible container requirements in
Table 66 of the ISO C++ Standard.

58.7.1 iterator begin()

Returns

iterator pointing to beginning of the vector.

Reference Manual 137

138

58.7.2 const_iterator begin() const

Returns

const_iterator pointing to beginning of the vector.

58.73 iterator end()
Returns
iterator pointing to end of the vector.
5874 const_iterator end() const

Returns

const_ iterator pointing to end of the vector.
5875 reverse_iterator rbegin()

Returns

reverse iterator pointing to beginning of reversed vector.

58.76 const_reverse_iterator rbegin() const

Returns

const_reverse iterator pointing to beginning of reversed vector.

58.7.7 iterator rend()

Returns

const_reverse iterator pointing to end of reversed vector.

58.78 const_reverse_iterator rend()

Returns

const_reverse iterator pointing to end of reversed vector.

315415-016US

Flow Graph

intel)

6 Flow Graph

There are some applications that best express dependencies as messages passed
between nodes in a flow graph. These messages may contain data or simply act as
signals that a predecessor has completed. The graph class and its associated node
classes can be used to express such applications. All graph-related classes and
functions are in the tbb::flow namespace.

Primary Components

There are 3 types of components used to implement a graph:
A graph object

Nodes

Edges

The graph object is the owner of the tasks created on behalf of the flow graph. Users
can wait on the grapnh if they need to wait for the completion of all of the tasks related
to the flow graph execution. One can also register external interactions with the graph
and run tasks under the ownership of the flow graph.

Nodes invoke user-provided function objects or manage messages as the flow to/from
other nodes. There are pre-defined nodes that buffer, filter, broadcast or order items
as they flow through the graph.

Edges are the connections between the nodes, created by calls to the make edge
function.

Message Passing Protocol

In an Intel® TBB flow graph, edges dynamically switch between a push and pull
protocol for passing messages. An Intel® TBB flow graph G = (V, S, L), where V is
the set of nodes, S is the set of edges that are currently using a push protocol, and L is
the set of edges that are currently using a pull protocol. For each edge (Vi, Vj), Vi is
the predecessor / sender and Vj is the successor / receiver. When in the push set S,
messages over an edge are initiated by the sender, which tries to put to the receiver.
When in the pull set, messages are initiated by the receiver, which tries to get from the
sender.

If a message attempt across an edge fails, the edge is moved to the other set. For
example, if a put across the edge (Vi, Vj) fails, the edge is removed from the push set
S and placed in the pull set L. This dynamic push/pull protocol is the key to
performance in a non-preemptive tasking library such as Intel® TBB, where simply

Reference Manual 139

repeating failed sends or receives is not an efficient option. Figure 4 summarizes this
dynamic protocol.

PuttoV, Requestfrom
accepted V, accepted

Putto V, rejected

Use Push
Protcol for
(Vy, Vi)

Use Pull
Protcol for

(Ve Vi)

Requestfrom
V, rejected

Figure 4: The dynamic push / pull protocol.

CAUTION:

140

Body Objects

Some nodes execute user-provided body objects. These objects can be created by
instatiating function objects or lambda expressions. The nodes that use body objects
include cotinue node, function node and source node.

The body objects passed to the flow graph nodes are copied. Therefore updates to
member variables will not affect the original object used to construct the node. If the
state held within a body object must be inspected from outside of the node, the
copy_body function described in 6.24 can be used to obtain an updated copy.

Dependency Flow Graph Example
#include <cstdio>
#include "tbb/flow graph.h"

using namespace tbb::flow;

struct body {
std::string my name;

body (const char *name) : my name (name) {}
void operator () (continue msg) const ({
printf ("$s\n", my name.c str());
}
bi
int main () {
graph g;

315415-016US

Flow Graph I n tel ‘

broadcast node< continue msg > start;

continue node<continue msg> a(g, body("A"));
continue node<continue msg> b(g, body("B"));
continue node<continue msg> c(g, body("C"));
continue node<continue msg> d(g, body("D"));
continue node<continue msg> e(g, body("E"));

make edge(start, a);

make edge(start, b);

(
(
make edge(a, ¢);
make edge(b, c);
make edge(c, d);
make edge(a, e);
for (int i = 0; 1 < 3; ++i) {
start.try put(continue msg());

g.wait for all();

return 0;
}
In this example, five computations A-E are setup with the partial ordering shown in

Figure 5. For each edge in the flow graph, the node at the tail of the edge must
complete its execution before the node at the head may begin.

NOTE: This is a simple syntactic example only. Since each node in a flow graph may execute
as an independent task, the granularity of each node should follow the general
guidelines for tasks as described in Section 3.2.3 of the Intel® Threading Building
Blocks Tutorial.

Reference Manual 141

Figure 5: A simple dependency graph.

142

In this example, nodes A-E print out their names. All of these nodes are therefore able
to use struct body to construct their body objects.

In function main, the flow graph is set up once and then run three times. All of the
nodes in this example pass around continue msg objects. This type is described in
Section 6.4 and is used to communicate that a node has completed its execution.

The first line in function main instantiates a graph object, g. On the next line, a
broadcast node named start is created. Anything passed to this node will be
broadcast to all of its successors. The node start is used in the for loop at the bottom
of main to launch the execution of the rest of the flow graph.

In the example, five continue node objects are created, named a - e. Each node is
constructed with a reference to graph g and the function object to invoke when it
runs. The successor / predecessor relationships are set up by the make edge calls that
follow the declaration of the nodes.

After the nodes and edges are set up, the try put in each iteration of the for loop
results in a broadcast of a continue msg to both a and b. Both a and b are waiting for
a single continue msg, since they both have only a single predecessor, start.

When they receive the message from start, they execute their body objects. When
complete, they each forward a continue msg to their successors, and so on. The graph

315415-016US

Flow Graph

intel)

uses tasks to execute the node bodies as well as to forward messages between the
nodes, allowing computation to execute concurrently when possible.

The classes and functions used in this example are described in detail in the remaining
sections in Appendix D.

Message Flow Graph Example
#include <cstdio>
#include "tbb/flow graph.h"

using namespace tbb::flow;

struct square {
int operator () (int v) { return v*v; }

}:

struct cube {
int operator () (int v) { return v*v*v; }

}:

class sum {
int &my sum;

public:
sum(int &s) : my sum(s) {}
int operator () (std::tuple< int, int > v) {

my sum += std::get<0>(v) + std::get<l>(v);
return my sum;
}
bi

int main () {
int result = 0;

graph g;
broadcast node<int> input;
function node<int,int> squarer(g, unlimited, square());
function node<int,int> cuber(g, unlimited, cube());
join node< std::tuple<int,int>, queueing > join(g);
function node<std::tuple<int,int>,int>

summer (g, serial, sum(result));
make edge(input, squarer);
make edge (input, cuber);

(
(
make edge(squarer, std::get<0>(join.inputs()));
make edge (cuber, std::get<l>(join.inputs()));

Reference Manual 143

NOTE:

CAUTION:

144

make edge(join, summer);

for (int 1 = 1; 1 <= 10; ++1)
input.try put(i);
g.wait for all();

printf ("Final result is %d\n", result);
return 0;

This example calculates the sum of x*x + x*x*x for all x = 1 to 10.

This is a simple syntactic example only. Since each node in a flow graph may execute
as an independent task, the granularity of each node should follow the general
guidelines for tasks as described in Section 3.2.3 of the Intel® Threading Building
Blocks Tutorial.

The layout of this example is shown in Figure 6. Each value enters through the
broadcast node<int> input. This node broadcasts the value to both squarer and
cuber, which calculate x*x and x*x*x respectively. The output of each of these nodes
is put to one of join’s ports. A tuple containing both values is created by join node<
tuple<int,int> > join and forwarded to summer, which adds both values to the
running total. Both squarer and cuber allow unlimited concurrency, that is they each
may process multiple values simultaneously. The final summer, which updates a shared
total, is only allowed to process a single incoming tuple at a time, eliminating the need
for a lock around the shared value.

The classes square, cube and sum define the three user-defined operations. Each class
is used to create a function node.

In function main, the flow graph is setup and then the values 1 - 10 are put into the

node input. All the nodes in this example pass around values of type int. The nodes
used in this example are all class templates and therefore can be used with any type
that supports copy construction, including pointers and objects.

Values are copied as they pass between nodes and therefore passing around large
objects should be avoided. To avoid large copy overheads, pointers to large objects
can be passed instead.

315415-016US

Flow Graph

squarer

summer

Figure 6: A simple message flow graph.

CAUTION:

The classes and functions used in this example are described in detail in the remaining
sections of Appendix D.

6.1 graph Class

Summary

Class that serves as a handle to a flow graph of nodes and edges.

Syntax

class graph;

Header
#include "tbb/flow graph.h"

Description

A graph object contains a root task that is the parent of all tasks created on behalf of
the flow graph and its nodes. It provides methods that can be used to access the root
task, to wait for the children of the root task to complete, to explicitly increment or
decrement the root task’s reference count, and to run a task as a child of the root task.

Destruction of flow graph nodes before calling wait for all on their associated graph
object has undefined behavior and can lead to program failure.

Members
namespace tbb {
namespace flow {

Reference Manual 145

class graph {
public:

graph () ;
~graph();

void increment wait count();
void decrement wait count();

template< typename Receiver, typename Body >
void run(Receiver &r, Body body);
template< typename Body >

void run(Body body);

void wait for all();

task * root task();

6.1.1 graph()

Effects

Constructs a graph with no nodes. Instantiates a root task of class empty task to
serve as a parent for all of the tasks generated during runs of the graph. Sets
ref count of the root task to 1.

6.1.2 ~graph()

Effects

Calls wait_for all on the graph, then destroys the root task.

6.1.3 void increment_wait_count()

Description

Used to register that an external entity may still interact with the graph.

Effects

Increments the ref count of the root task.

146 315415-016US

Flow Graph

intel)

6.1.4 void decrement_wait_count()

Description
Used to unregister an external entity that may have interacted with the graph.

Effects

Decrements the ref count of the root task.

6.1.5 template< typename Receiver, typename Body
> void run(Receiver &r, Body body)

Description
This method can be used to enqueue a task that runs a body and puts its output to a

specific receiver. The task is created as a child of the graph’s root task and therefore
wait for all will not return until this task completes.

Effects

Enqueues a task that invokes r.try put(body()). It does not wait for the task to
complete. The enqueued task is a child of the root task.

6.1.6 template< typename Body > void run(Body
body)

Description

This method enqueues a task that runs as a child of the graph’s root task. Calls to
wait for all will not return until this enqueued task completes.

Effects

Enqueues a task that invokes body (). It does not wait for the task to complete.

6.1.7 void wait_for_all()
Effect

Blocks until all tasks associated with the root task have completed and the number of
decrement wait count calls equals the number of increment wait count calls.
Because it calls wait for all on the root graph task, the calling thread may
participate in work-stealing while it is blocked.

Reference Manual 147

6.1.8 task *root_task()

Retuns

Returns a pointer to the root task of the flow graph.

6.2 sender Template Class

Summary

An abstract base class for nodes that act as message senders.

Syntax

template< typename T > class sender;

Header
#include "tbb/flow graph.h"

Description

The sender template class is an abstract base class that defines the interface for nodes
that can act as senders. Default implementations for several functions are provided.

Members
namespace tbb {
namespace flow {

template< typename T >

class sender {

public:
typedef T output type;
typedef receiver<output type> successor type;
virtual ~sender();
virtual bool register successor(successor type &r) = 0;
virtual bool remove successor(successor type &r) = 0;
virtual bool try get(output type &) { return false; }

virtual bool try reserve(output type &) { return false; }
virtual bool try release() { return false; }
virtual bool try consume() { return false; }

148 315415-016US

Flow Graph

intel)

6.2.1 ~sender()

Description

The destructor.

6.2.2 (b)ool register_successor(successor_type &r) =

Description

A pure virtual method that describes the interface for adding a successor node to the
set of successors for the sender.

Returns

True if the successor is added. False otherwise.

6.2.3 8ool remove_successor(successor_type &r) =

Description

A pure virtual method that describes the interface for removing a successor node from
the set of successors for a sender.

Returns

True if the successor is removed. False otherwise.

6.2.4 bool try_get(output_type &)
Description
Requests an item from a sender.

Returns

The default implementation returns false.

Reference Manual 149

150

6.2.5 bool try_reserve(output_type &)

Description

Reserves an item at the sender.

Returns

The default implementation returns false.

6.2.6 bool try_release()

Description

Releases the reservation held at the sender.

Returns

The default implementation returns false.

6.2.7 bool try_consume()

Description

Consumes the reservation held at the sender.

Effect

The default implementation returns false.

6.3 receiver Template Class

Summary

An abstract base class for nodes that act as message receivers.

Syntax

template< typename T > class receiver;

Header
#include "tbb/flow graph.h"

315415-016US

Flow Graph

Description

The receiver template class is an abstract base class that defines the interface for
nodes that can act as receivers. Default implementations for several functions are
provided.

Members
namespace tbb {
namespace flow {

template< typename T >
class receiver {
public:
typedef T input type;
typedef sender<input type> predecessor type;
virtual ~receiver();
virtual bool try put(const input type &v) = 0;
virtual bool register predecessor(predecessor type &p) {
return false; }
virtual bool remove predecessor (predecessor type &p) {
return false; }

6.3.1 ~receiver()

Description

The destructor.

6.3.2 bc;ol register_predecessor(predecessor_type &
p

Description
Adds a predecessor to the node’s set of predecessors.

Returns

True if the predecessor is added. False otherwise. The default implementation returns
false.

Reference Manual 151

6.3.3 bc;ol remove_predecessor(predecessor_type &
P

Description

Removes a predecessor from the node’s set of predecessors.

Returns

True if the predecessor is removed. False otherwise. The default implementation
returns false.

6.34 bool try_put(const input_type &v)=0

Description

A pure virtual method that represents the interface for putting an item to a receiver.

64 continue_msg Class

Summary

An empty class that represent a continue message. This class is used to indicate that
the sender has completed.

Syntax

class continue msg;

Header
#include "tbb/flow graph.h"

Members

namespace tbb { namespace flow { class continue msg {}; } }

152 315415-016US

Flow Graph

6.5 continue_receiver Class

Summary

An abstract base class for nodes that act as receivers of continue msg objects. These
nodes call a method execute when the number of try put calls reaches a threshold
that represents the number of known predecessors.

Syntax

class continue receiver;

Header
#include "tbb/flow graph.h"

Description

This type of node is triggered when its method try put has been called a number of
times that is equal to the number of known predecessors. When triggered, the node
calls the method execute, then resets and will fire again when it receives the correct
number of try put calls. This node type is useful for dependency graphs, where each
node must wait for its predecessors to complete before executing, but no explicit data
is passed across the edge.

Members
namespace tbb {
namespace flow {

class continue receiver : public receiver< continue msg > {
public:
typedef continue msg input type;
typedef sender< input type > predecessor type;
continue receiver (int num predecessors = 0);
continue receiver (const continue receiveré& src);
virtual ~continue receiver();
virtual bool try put(const input type &v);
virtual bool register predecessor (predecessor type &p);
virtual bool remove predecessor (predecessor type &p);

protected:
virtual void execute() = 0;

}i

Reference Manual 153

154

6.5.1 continue_receiver(int num_predecessors =0)
Effect

Constructs a continue receiver that is initialized to trigger after receiving
num_predecessors calls to try put.

6.5.2 con;cinue_receiver(const continue_receiver&
Src

Effect

Constructs a continue receiver that has the same initial state that src had after its
construction. It does not copy the current count of try puts received, or the current
known number of predecessors. The continue receiver that is constructed will only
have a non-zero threshold if src was constructed with a non-zero threshold.

6.5.3 ~continue_receiver()
Effect

Destructor.

6.5.4 bool try_put(const input_type &)
Effect

Increments the count of try put calls received. If the incremented count is equal to
the number of known predecessors, a call is made to execute and the internal count of
try put calls is reset to zero. This method performs as if the call to execute and the
updates to the internal count occur atomically.

Returns

True.

6.5.5 bool register_predecessor(predecessor_type &

r)
Effect

Increments the number of known predecessors.

315415-016US

Flow Graph

CAUTION:

CAUTION:

intel)

Returns

True.

6.5.6 bool remove_predecessor(predecessor_type &

r)
Effect

Decrements the number of know predecessors.

The method execute is not called if the count of try put calls received becomes equal

to the number of known predecessors as a result of this call. That is, a call to
remove predecessor Will never call execute.

6.5.7 void execute() =0

Description

A pure virtual method that is called when the number of try put calls is equal to the
number of known predecessors. Must be overridden by the child class.

This method should be very fast or else enqueue a task to offload its work, since this
method is called while the sender is blocked on try put.

6.6 graph_node Class

Summary

A base class for all graph nodes.

Syntax

class graph node;

Header
#include "tbb/flow _graph.h"

Description

The class graph node is a base class for all flow graph nodes. The virtual destructor
allows flow graph nodes to be destroyed through pointers to graph node. For
example, a vector< graph node * > could be used to hold the addresses of flow
graph nodes that will later need to be destroyed.

Reference Manual 155

156

Members
namespace tbb {
namespace flow {

class graph node {
public:

virtual ~graph node() {}
bi

6.7 continue_node Template Class

Summary

A template class that is a graph _node, continue receiver and a sender<T>. It
executes a specified body object when triggered and broadcasts the generated value to
all of its successors.

Syntax

template< typename Output > class continue node;

Header
#include "tbb/flow graph.h"

Description

This type is used for nodes that wait for their predecessors to complete before
executing, but no explicit data is passed across the incoming edges. The output of the
node can be a continue msg or a value.

An continue node maintains an internal threshold, T, and an internal counter, C. If a
value for the number of predecessors is provided at construction, then T is set to the
provided value and C=0. Otherwise, C=T=0.

At each call to method register predecessor, the threshold T is incremented. At
each call to method remove predecessor, the threshold T is decremented. The
functions make edge and remove edge appropriately call register predecessor and
remove predecessor When edges are added to or removed from a continue node.

At each call to method try put, Cis incremented. If after the increment, C>=T, then
Cis reset to 0 and a task is enqueued to broadcast the result of body () to all
successors. The increment of C, enqueueing of the task, and the resetting of C are all

315415-016US

intel)

Flow Graph
done atomically with respect to the node. If after the increment, C<T, no additional
action is taken.
The value generated by an execution of the body object is broadcast to all successors.
Rejection of messages by successors is handled using the protocol in Figure 4.
A continue node can serve as a terminal node in the graph. The convention is to use
an output of continue msg and attach no successor.
The Body concept for continue node is shown in Table 22.

Table 22: continue_node<Output> Body Concept
Pseudo-Signature Semantics

B::B(const B&) Copy constructor.
B::~B() Destructor.
void'® operator=(const B&) Assignment
Output B::operator () (const Perform operation and return value of
continue msg &v) const type Output.

CAUTION: The body object passed to a continue node is copied. Therefore updates to member

variables will not affect the original object used to construct the node. If the state held
within a body object must be inspected from outside of the node, the copy body
function described in 6.24 can be used to obtain an updated copy.

Output must be copy-constructible and assignable.

Members
namespace tbb {
namespace flow {

template< typename Output >
class continue node
public graph node, public continue receiver,
public sender<Output> {
public:
template<typename Body>
continue node(graph &g, Body body);
template<typename Body>
continue node(graph &g, int number of predecessors,

9The return type void in the pseudo-signature denotes that operator= is not
required to return a value. The actual operator= can return a value, which will
be ignored.

Reference Manual 157

Body body)
continue node(const continue node& src);

// continue receiver

typedef continue msg input type;

typedef sender<input type> predecessor type;

bool try put(const input type &v);

bool register predecessor (predecessor type &p);
bool remove predecessor (predecessor type &p);

// sender<Output>

typedef Output output type;

typedef receiver<output type> successor type;
bool register successor(successor type &r);
bool remove successor(successor type &r);
bool try get(output type &v);

bool try reserve(output type &);

bool try release();

bool try consume();

6.7.1 template< tyci)ename Bod3é>
continue_node(graph &g, Body body)

Effect

Constructs an continue node that will invoke body.

6.72 template< typename Body>
continue_no e(graph &g, int
number_of_predecessors, Body body)

Effect

Constructs an continue node that will invoke body. The threshold T is initialized to
number of predecessors.

158 315415-016US

Flow Graph

CAUTION:

CAUTION:

6.7.3 continue_node(const continue_node & src)
Effect

Constructs a continue node that has the same initial state that src had after its
construction. It does not copy the current count of try puts received, or the current
known number of predecessors. The continue node that is constructed will have a
reference to the same graph object as src, have a copy of the initial body used by
src, and only have a non-zero threshold if src was constructed with a non-zero
threshold.

The new body object is copy constructed from a copy of the original body provided to

src at its construction. Therefore changes made to member variables in src’s body
after the construction of src will not affect the body of the new continue node.

6.7.4 b())ol register_predecessor(predecessor_type &
r

Effect

Increments the number of known predecessors.

Returns

True.

6.7.5 bool remove_predecessor(predecessor_type &

r)
Effect

Decrements the number of know predecessors.

The body is not called if the count of try put calls received becomes equal to the

number of known predecessors as a result of this call. That is, a call to
remove predecessor Will never invoke the body.

6.7.6 bool try_put(const input_type &)
Effect

Increments the count of try put calls received. If the incremented count is equal to
the number of known predecessors, a task is enqueued to execute the body and the
internal count of try put calls is reset to zero. This method performs as if the

Reference Manual 159

160

enqueueing of the body task and the updates to the internal count occur atomically.
does not wait for the execution of the body to complete.

Returns

True.

6.7.7 bool register_successor(successor_type & r)
Effect

Adds r to the set of successors.

Returns

True.

6.7.8 bool remove_successor(successor_type &r)
Effect

Removes r from the set of successors.

Returns

True.

6.7.9 bool try_get(output_type &v)

Description

The continue node does not contain buffering. Therefore it always rejects try get
calls.

Returns

False.

6.7.10 bool try_reserve(output_type &)

Description

The continue node does not contain buffering. Therefore it cannot be reserved.

It

315415-016US

Flow Graph

Returns

False.

6.7.11 bool try_release()

Description

The continue node does not contain buffering. Therefore it cannot be reserved.

Returns

False.

6.7.12 bool try_consume()

Description

The continue node does not contain buffering. Therefore it cannot be reserved.

Returns

False.

6.8 function_node Template Class

Summary

A template class that is a graph_node, receiver<Input> and a sender<Output>. This
node may have concurrency limits as set by the user. By default, a function node
has an internal FIFO buffer at its input. Messages that cannot be immediately
processed due to concurrency limits are temporarily stored in this FIFO buffer. A
template argument can be used to disable this internal buffer. If the FIFO buffer is
disabled, incoming message will be rejected if they cannot be processed immediately
while respecting the concurreny limits of the node.

Syntax
template < typename Input,

typename Output = continue msg,

graph buffer policy = queueing,

typename Allocator=cache aligned allocator<Input> >
class function node;

Reference Manual 161

Table 23:

Header
#include "tbb/flow graph.h"

Description

A function node receives messages of type Input at a single input port and generates
a single output message of type output that is broadcast to all successors. Rejection
of messages by successors is handled using the protocol in Figure 4.

If graph_buffer policy==queueing, an internal unbounded input buffer is
maintained using memory obtained through an allocator of type Allocator.

A function node maintains an internal constant threshold T and an internal counter C.
At construction, C=0 and T is set the value passed in to the constructor. The behavior
of a call to try put is determined by the value of T and C as shown in Table 23.

Behavior of a call to a function_node’s try_put
Value of threshold T Value of counter C bool try_put(input_type v)
T == flow::unlimited NA A task is enqueued that broadcasts

the result of body(v) to all
successors. Returns true.

T != flow::unlimited C<T Increments C. A task is enqueued
that broadcasts the result of
body (v) to all successors and then
decrements C. Returns true.

T != flow::unlimited C>=T If the template argument
graph buffer policy==queueing,
v is stored in an internal FIFO
buffer until C < T. When T
becomes less than C, C is
incremented and a task is
enqueued that broadcasts the
result of body (v) to all successors
and then decrements C. Returns
true.

If the template argument
graph buffer policy==rejecting
and C >=T, returns false.

162

A function node has a user-settable concurrency limit. It can have flow::unlimited
concurrency, which allows an unlimited number of invocations of the body to execute
concurrently. It can have flow::serial concurrency, which allows only a single call of
body to execute concurrently. The user can also provide a value of type size t to
limit concurrency to a value between 1 and unlimited.

A function node With graph buffer policy==rejecting Wwill maintain a predecessor
set as described in Figure 4. If the function node transitions from a state where C >=
T to a state where C < T, it will try to get new messages from its set of predecessors
until C >= T or there are no valid predecessors left in the set.

315415-016US

Flow Graph

NOTE:

Table 24:

intel)

A function node can serve as a terminal node in the graph. The convention is to use
an output of continue msg and attach no successor.

The Body concept for function node is shown in Table 24.

function_node<InputType, OutputType> Body Concept

Pseudo-Signature Semantics

B::B(const B&) Copy constructor.

B::~B() Destructor.

void®® operator=(const B&) Assignment

Output B::operator () (const Input Perform operation on v and return value
&v) const of type OutputType.

CAUTION:

The body object passed to a function node is copied. Therefore updates to member

variables will not affect the original object used to construct the node. If the state held
within a body object must be inspected from outside of the node, the copy body

function described in 6.24 can be used to obtain an updated copy.

Input and Output must be copy-constructible and assignable.

Members
namespace tbb {
namespace flow {

enum graph buffer policy {
rejecting, reserving, queueing, tag matching };

template < typename Input, typename Output = continue msg,
graph buffer policy = queueing, typename
Allocator=cache aligned allocator<Input> >
class function node
public graph node, public receiver<Input>,
public sender<Output> {
public:
template<typename Body>
function node(graph &g, size t concurrency, Body body);
function node(const function node é&src);

20The return type void in the pseudo-signature denotes that operator= is not
required to return a value. The actual operator= can return a value, which will
be ignored.

Reference Manual 163

CAUTION:

164

// receiver<Input>

typedef Input input type;
typedef sender<input type> predecessor type;

bool

bool register predecessor (predecessor type &p);
bool remove predecessor (predecessor type &p);

try put(const input type &v);

// sender<Output>
typedef Output output type;
typedef receiver<output type> successor type;

bool
bool
bool
bool
bool
bool

6.8.1

register successor(successor type &r);

remove successor (successor type &r);
try get(output type &v);

try reserve(output type &);

try release();

try consume ();

template< typename Body>

function_node(graph &g, size_t concurrency,

Body body)

Description

Constructs a function node that will invoke a copy of body. At most concurrency
calls to body may be made concurrently.

6.8.2
Effect

function_node(const function_node &src)

Constructs a function node that has the same initial state that src had when it was
constructed. The function node that is constructed will have a reference to the same
graph object as src, will have a copy of the initial body used by src, and have the
same concurrency threshold as src. The predecessors and successors of src will not

be copied.

The new body object is copy constructed from a copy of the original body provided to
src at its construction. Therefore changes made to member variables in src’s body
after the construction of src will not affect the body of the new function node.

315415-016US

Flow Graph

6.8.3 bc;ol register_predecessor(predecessor_type &
p

Effect

Adds p to the set of predecessors.

Returns

true.

6.84 bc;ol remove_predecessor(predecessor_type &
P

Effect

Removes p from the set of predecessors.

Returns

true.

6.8.5 bool try_put(const input_type &v)
Effect

See Table 23 for a description of the behavior of try put.

Returns

true.

6.8.6 bool register_successor(successor_type &r)
Effect

Adds r to the set of successors.

Returns

true.

Reference Manual 165

166

6.8.7 bool remove_successor(successor_type &r)
Effect

Removes r from the set of successors.

Returns

true.

6.8.8 bool try_get(output_type &v)

Description

A function node does not contain buffering of its output. Therefore it always rejects
try get calls.

Returns

false.

6.8.9 bool try_reserve(output_type &)

Description

A function node does not contain buffering of its output. Therefore it cannot be
reserved.

Returns

false.

6.8.10 bool try_release()

Description

A function node does not contain buffering of its output. Therefore it cannot be
reserved.

Returns

false.

315415-016US

Flow Graph

intel)

6.8.11 Dbool try_consume()

Description

A function node does not contain buffering of its output. Therefore it cannot be
reserved.

Returns

false.

6.9 source_node Class

Summary

A template class that is both a graph node and a sender<output>. This node can
have no predecessors. It executes a user-provided body function object to generate

messages that are broadcast to all successors. It is a serial node and will never call its
body concurrently. It is able to buffer a single item. If no successor accepts an item

that it has generated, the message is buffered and will be provided to successors
before a new item is generated.

Syntax

template < typename OutputType > class source node;

Header
#include "tbb/flow graph.h"

Description

This type of node generates messages of type output by invoking the user-provided
body and broadcasts the result to all of its successors.

Output must be copy-constructible and assignable.
A source node is a serial node. Calls to body will never be made concurrently.

A source_node Will continue to invoke body and broadcast messages until the body
returns false or it has no valid successors. A message may be generated and then
rejected by all successors. In that case, the message is buffered and will be the next
message sent once a successor is added to the node or try get is called. Calls to
try get will return a buffer message if available or will invoke body to attempt to
generate a new message. A call to body is made only when the internal buffer is
empty.

Rejection of messages by successors is handled using the protocol in Figure 4.

Reference Manual 167

Table 25: source_node<Output> Body Concept

CAUTION:

168

Pseudo-Signature Semantics
B::B(const B&) Copy constructor.
B::~B() Destructor.
void®' operator=(const B&) Assignment
bool B::operator () (Output &v) Returns true when it has assigned a
new value to v. Returns false when no
new values may be generated.

The body object passed to a source node is copied. Therefore updates to member
variables will not affect the original object used to construct the node.

output must be copy-constructible and assignable.

Members
namespace tbb {
namespace flow {

template < typename Output >
class source node : public graph node, public sender< Output > {
public:

typedef Output output type;

typedef receiver< output type > successor type;

template< typename Body >

source node(graph &g, Body body, bool is active = true);
source node(const source node &src);

~source node () ;

void activate () ;

bool register successor(successor type &r);
bool remove successor (successor type &r);
bool try get(output type &v);

bool try reserve(output type &v);

bool try release();

bool try consume();

21The return type void in the pseudo-signature denotes that operator= is not
required to return a value. The actual operator= can return a value, which will
be ignored.

315415-016US

Flow Graph

CAUTION:

intel)

6.9.1 temglate(typename Body> source_node(graph
&g, Body body, bool is_active=true)
Description

Constructs a source node that will invoke body. By default the node is created in the
active state, that is, it will begin generating messages immediately. If is _active is
false, messages will not be generated until a call to activate is made.

6.9.2 source_node(const source_node &src)

Description

Constructs a source node that has the same initial state that src had when it was
constructed. The source node that is constructed will have a reference to the same
graph object as src, will have a copy of the initial body used by src, and have the
same initial active state as src. The predecessors and successors of src will not be
copied.

The new body object is copy constructed from a copy of the original body provided to
src at its construction. Therefore changes made to member variables in src’s body
after the construction of src will not affect the body of the new source node.

6.9.3 bool register_successor(successor_type &r)
Effect

Adds r to the set of successors.

Returns

true.

Reference Manual 169

170

6.9.4 bool remove_successor(successor_type &r)
Effect

Removes r from the set of successors.

Returns

true.

6.9.5 bool try_get(output_type &v)

Description

Will copy the buffered message into v if available or will invoke body to attempt to
generate a new message that will be copied into v.

Returns

true if @ message is copied to v. false otherwise.

6.9.6 bool try_reserve(output_type &v)

Description

Reserves the source node if possible. If a message can be buffered and the node is
not already reserved, the node is reserved for the caller and the value is copied into v.

Returns

true if the node is reserved for the caller. false otherwise.

6.9.7 bool try_release()

Description

Releases any reservation held on the source node. The message held in the internal
buffer is retained.

Returns

true

315415-016US

intel)

6.9.8 bool try_consume()

Description

Releases any reservation held on the source node and clears the internal buffer.

Returns

True

6.10 multifunction_node Template Class

Summary

A template class that is a receiver<InputType> and has a tuple of sender<T> outputs.
This node may have concurrency limits as set by the user. When the concurrency limit
allows, it executes the user-provided body on incoming messages. The body may

create one or more output messages and broadcast them to successors..

Syntax
template < typename InputType, typename OutputTuple >
class multifunction node;

Header
#include "tbb/flow graph.h"

Description

This type is used for nodes that receive messages at a single input port and may
generate one or more messages that are broadcast to successors.

A multifunction node maintains an internal constant threshold T and an internal
counter C. At construction, C=0 and T is set the value passed in to the constructor.
The behavior of a call to try put is determined by the value of T and C as shown in .

Table 26: Behavior of a call to a multioutput_function_node’s try_put

Value of threshold T Value of counter C bool try_put(input_type v)

T == graph::unlimited NA A task is enqueued that executes
body(v). Returns true.

T != flow::unlimited C<T Increments C. A task is
enqueued that executes body(v)
and then decrements C. Returns
true.

T != flow::unlimited C>=T Returns false.

Reference Manual 171

Amultifunction node has a user-settable concurrency limit. It can have
flow::unlimited concurrency, which allows an unlimited number of copies of the node
to execute concurrently. It can have flow::serial concurrency, which allows only a
single copy of the node to execute concurrently. The user can also provide a value of
type size t to limit concurrency to a value between 1 and unlimited.

The Body concept for multifunction node is shown in .

Table 27: multifunction_node<InputType, OutputTuple> Body Concept

Pseudo-Signature Semantics
B::B(const B&) Copy constructor.
B::~B() Destructor.
void®? operator=(const B&) Assignment
void B::operator () (const Perform operation on v. May call try_put
InputType &v, output ports &p) on zero or more output_ports. May call
try_put on output_ports multiple times..

Example

The example below shows a multifunction_node that separates a stream of integers
into odd and even, placing each in the appropriate output queue.

The Body method will receive as parameters a read-only reference to the input value
and a reference to the tuple of output ports. The Body method may put items to one
or more output ports.

The output ports of the multifunction_node can be connected to other graph nodes
using the make edge method or by using register successor:

#include "tbb/flow graph.h"
using namespace tbb::flow;
typedef multifunction node<int, std::tuple<int,int> > multi node;

struct MultiBody {

172 315415-016US

intel)

void operator () (const int &i, multi node::output ports type
&op) A

if(i % 2) std::get<l>(op).put(i); // put to odd queue

else std::get<0> (op) .put (i); // put to even queue

)i 8

int main () {
graph g;
queue node<int> even queue (g);
queue node<int> odd queue (g);
multi node nodel (g,unlimited,MultiBody())
output port<0>(nodel) .register successor (even queue);
make edge (output port<l>(nodel), odd queue);

for(int 1 = 0; 1 < 1000; ++1i) {
nodel.try put (i);

}

g.wait for all();

Members

namespace tbb {

template< typename InputType, typename OutputTuple,
graph buffer policy=queueing, A>
class multifunction node
public graph node, public receiver<InputType>,
{
public:
typedef (input queue<InputType>) queue type;
template<typename Body>
multifunction node(graph &g, size t concurrency, Body body,
queue type *q = NULL);
multifunction node(const multifunction node &other,
queue type *gq = NULL) ;
~multifunction node () ;

typedef InputType input type;

typedef sender<input type> predecessor type;

bool try put(input type v);

bool register predecessor (predecessor type &p);
bool remove predecessor (predecessor type &p);

typedef (tuple of sender<T...>) output ports type;

Reference Manual 173

174

template<size t N, typename MFN> &output port (MEN &node);

6.10.1 template< typename Body>
multifunction_node(graph &g, size_t
cNol?LctJ)rrency, Body body, queue_type *q =

Description

Constructs a multifunction node that will invoke body. At most concurrency calls to
the body may be made concurrently.

6.10.2 template< typename Body>
multifunction_node(multitunction_node const &
other, queue_type *q = NULL)

Effect

Constructs a copy of a multifunction_node with an optional input queue.

6.10.3 bc;ol register_predecessor(predecessor_type &
p

Effect

Adds p to the set of predecessors.

Returns

true.

6.104 b(;ol remove_predecessor(predecessor_type &
p

Effect

Removes p from the set of predecessors.

315415-016US

Flow Graph

Returns

true.

6.10.5 bool try_put(input_type v)
Effect

If fewer copies of the node exist than the allowed concurrency, a task is spawned to
execute body on the v. The body may put results to one or more successors in the
tuple of output ports.

Returns

true.

6.10.6 (output port &) output_port<N>(node)

Returns

A reference to port N of the multifunction node node.

6.11 overwrite_node Template Class

Summary

A template class that is a graph _node, receiver<Input> and sender<Output>. An
overwrite node is a buffer of a single item that can be over-written. The value held in
the buffer is initially invalid. Gets from the node are non-destructive.

Syntax

template < typename T > class overwrite node;

Header
#include "tbb/flow graph.h"

Description

This type of node buffers a single item of type T. The value is initially invalid. A
try put will set the value of the internal buffer, and broadcast the new value to all

Reference Manual 175

successors. If the internal value is valid, a try get will return true and copy the buffer
value to the output. If the internal value is invalid, try get will return false.

Rejection of messages by successors is handled using the protocol in Figure 4.

T must be copy-constructible and assignable

Members
namespace tbb {
namespace flow {

template< typename T >
class overwrite node
public graph node, public receiver<T>,
public sender<T> ({
public:
overwrite node(graph &g);
overwrite node(const overwrite node &src);
~overwrite node();

// receiver<T>

typedef T input type;

typedef sender<input type> predecessor type;

bool try put(const input type &v);

bool register predecessor (predecessor type &p);
bool remove predecessor (predecessor type &p);

// sender<T>

typedef T output type;

typedef receiver<output type> successor type;
bool register successor(successor type &r);
bool remove successor (successor type &r);
bool try get(output type &v);

bool try reserve(output type &);

bool try release();

bool try consume();

bool is wvalid();
void clear();

176 315415-016US

Flow Graph

®

(intel

6.11.1 overwrite_node(graph &g)
Effect

Constructs an object of type overwrite node with an invalid internal buffer item.

6.11.2 overwrite_node(const overwrite_node &src)
Effect

Constructs an object of type overwrite node that belongs to the graph g with an

invalid internal buffer item. The buffered value and list of successors is NOT copied
from src.

6.11.3 ~overwrite_node()
Effect

Destroys the overwrite node.

6.11.4 bool register_predecessor(predecessor_type &

Description

Never rejects puts and therefore does not need to maintain a list of predecessors.

Returns

false.

6.11.5 bool remove_predecessor(predecessor_type &)
Description
Never rejects puts and therefore does not need to maintain a list of predecessors.

Returns

false.

Reference Manual 177

178

6.11.6 bool try_put(const input_type &v)
Effect

Stores v in the internal single item buffer. Calls try put(v) on all successors.

Returns

true.

6.11.7 bool register_successor(successor_type &r)
Effect

Adds r to the set of successors. If a valid item v is held in the buffer, a task is
enqueued to call r.try put(v).

Returns

true.

6.11.8 bool remove_successor(successor_type &r)
Effect

Removes r from the set of successors.

Returns

true.

6.11.9 bool try_get(output_type &v)

Description

If the internal buffer is valid, assigns the value to v.

Returns

true if v is assigned to. false if v is not assigned to.

315415-016US

Flow Graph

6.11.10 bool try_reserve(output_type &)

Description

Does not support reservations.

Returns

false.

6.11.11 bool try_release()

Description

Does not support reservations.

Returns

false.

6.11.12 bool try_consume()

Description

Does not support reservations.

Returns

false.

6.11.13 bool is_valid()

Returns

Returns true if the buffer holds a valid value, otherwise returns false.

6.11.14 void clear()
Effect

Invalidates the value held in the buffer.

Reference Manual

5
~r
(‘L

179

6.12 write_once_node Template Class

Summary

A template class that is @ graph_node, receiver<Input> and sender<Output>. A
write once node represents a buffer of a single item that cannot be over-written. The
first put to the node sets the value. The value may be cleared explicitly, after which a
new value may be set. Gets from the node are non-destructive.

Rejection of messages by successors is handled using the protocol in Figure 4.

T must be copy-constructible and assignable

Syntax

template < typename T > class write once node;

Header
#include "tbb/flow graph.h"

Members
namespace tbb {
namespace flow {

template< typename T >
class write once node
public graph node, public receiver<T>,
public sender<T> {
public:
write once node (graph &g);
write once node(const write once node é&src);

// receiver<T>

typedef T input type;

typedef sender<input type> predecessor type;

bool try put(const input type &v);

bool register predecessor(predecessor type &p);
bool remove predecessor (predecessor type &p);

// sender<T>

typedef T output type;

typedef receiver<output type> successor type;
bool register successor(successor type &r);
bool remove successor (successor type &r);
bool try get (output type &v);

bool try reserve(output type &);

180 315415-016US

Flow Graph

5
~r
(‘L

bool try release();
bool try consume();

bool is valid();
void clear();

6.12.1 write_once_node(graph &g)
Effect

Constructs an object of type write once node that belongs to the graph g,with an
invalid internal buffer item.

6.12.2 write_once_node(const write_once_node &src

Effect

Constructs an object of type write once node with an invalid internal buffer item. The
buffered value and list of successors is NOT copied from src.

6.12.3 bool register_predecessor(predecessor_type &

Description

Never rejects puts and therefore does not need to maintain a list of predecessors.

Returns

false.

6.124 bool remove_predecessor(predecessor_type &)

Description

Never rejects puts and therefore does not need to maintain a list of predecessors.

Reference Manual 181

Returns

false.

6.12.5 bool try_put(const input_type &v)
Effect

Stores v in the internal single item buffer if it does not already contain a valid value. If
a new value is set, it calls try put(v) on all successors.

Returns

true.

6.12.6 bool register_successor(successor_type &r)
Effect

Adds r to the set of successors. If a valid item v is held in the buffer, a task is
enqueued to call r.try put(v).

Returns

true.

6.12.7 bool remove_successor(successor_type &)
Effect

Removes r from the set of successors.

Returns

true.

6.12.8 bool try_get(output_type &v)

Description

If the internal buffer is valid, assigns the value to v.

182 315415-016US

Flow Graph

5
~r
(‘L

Returns

true if v is assigned to. false if v is not assigned to.

6.129 bool try_reserve(output_type &)
Description
Does not support reservations.

Returns

false.

6.12.10 bool try_release()

Description

Does not support reservations.

Returns

false.

6.12.11 bool try_consume()

Description

Does not support reservations.

Returns

false.

6.12.12 bool is_valid()

Returns

Returns true if the buffer holds a valid value, otherwise returns false.

Reference Manual 183

6.12.13 void clear()
Effect

Invalidates the value held in the buffer.

6.13 broadcast_node Template Class

Summary

A node that broadcasts incoming messages to all of its successors.

Syntax

template < typename T > class broadcast node;

Header
#include "tbb/flow graph.h"

Description

A broadcast_node is a graph _node, receiver<T> and sender<T> that broadcasts
incoming messages of type T to all of its successors. There is no buffering in the
node, so all messages are forwarded immediately to all successors.

Rejection of messages by successors is handled using the protocol in Figure 4.

T must be copy-constructible and assignable

Members
namespace tbb {
namespace flow {

template< typename T >
class broadcast node
public graph node, public receiver<T>, public sender<T> {
public:
broadcast node (graph &g);
broadcast node(const broadcast node &src);

// receiver<T>

typedef T input type;

typedef sender<input type> predecessor type;

bool try put(const input type &v);

bool register predecessor (predecessor type &p);
bool remove predecessor (predecessor type &p);

184 315415-016US

Flow Graph

// sender<T>

typedef T output type;

typedef receiver<output type> successor type;
bool register successor (successor type &r);
bool remove successor (successor type &r);
bool try get(output type &v);

bool try reserve(output type &);

bool try release();

bool try consume();

6.13.1 broadcast_node(graph &g)
Effect

Constructs an object of type broadcast node that belongs to the graph g.

6.13.2 broadcast_node(const broadcast_node &src)

Effect

Constructs an object of type broadtcast node. The list of successors is NOT copied
from src.

6.13.3 bool register_predecessor(predecessor_type

Description

Never rejects puts and therefore does not need to maintain a list of predecessors.

Returns

false.

Reference Manual

&

185

186

6.13.4 bool remove_predecessor(predecessor_type &)

Description

Never rejects puts and therefore does not need to maintain a list of predecessors.

Returns

false.

6.13.5 bool try_put(const input_type &v)
Effect

Broadcasts v to all successors.

Returns

Always returns true, even if it was unable to successfully forward the message to any
of its successors.

6.13.6 bool register_successor(successor_type &r)
Effect

Adds r to the set of successors.

Returns

true.

6.13.7 bool remove_successor(successor_type & r)
Effect

Removes r from the set of successors.

Returns

true.

315415-016US

Flow Graph

6.13.8 bool try_get(output_type &)

Returns

false.

6.13.9 bool try_reserve(output_type &)

Returns

false.

6.13.10 bool try_release()

Returns

false.

6.13.11 bool try_consume()

Returns

false.

6.14 buffer_node Class

Summary

An unbounded buffer of messages of type T. Messages are forwarded in arbitrary
order.

Syntax
template< typename T, typename A=cache aligned allocator<T> >
class buffer node;

Header
#include "tbb/flow graph.h"

Description

A buffer node iS a graph _node, receiver<T> and sender<T> that forwards messages
in arbitrary order to a single successor in its successor set. Successors are tried in the

Reference Manual

187

order that they were registered with the node. If a successor rejects the message, it is
removed from the successor list according to the policy in Figure 4 and the next
successor in the set is tried. This continues until a successor accepts the message, or
all successors have been attempted. Items that are successfully transferred to a
successor are removed from the buffer.

A buffer node is reservable and supports a single reservation at a time. While an
item is reserved, other items may still be forwarded to successors and try get calls
will return other non-reserved items if available. While an item is reserved, try put
will still return true and add items to the buffer.

An allocator of type A is used to allocate internal memory for the buffer node.
T must be copy-constructible and assignable

Rejection of messages by successors is handled using the protocol in Figure 4.

Members
namespace tbb {
namespace flow {

template< typename T, typename A=cache aligned allocator<T> >
class buffer node
public graph node, public receiver<T>, public sender<T> {
public:
buffer node(graph &g);
buffer node(const buffer node &src);

// receiver<T>

typedef T input type;

typedef sender<input type> predecessor type;

bool try put(const input type &v);

bool register predecessor(predecessor type &p);
bool remove predecessor (predecessor type &p);

// sender<T>

typedef T output type;

typedef receiver<output type> successor type;
bool register successor (successor type &r);
bool remove successor (successor type &r);
bool try get(output type &v);

bool try reserve(output type &);

bool try release();

bool try consume();

188 315415-016US

Flow Graph

5
~r
(‘L

6.14.1 buffer_node(graph& g)

Effect

Constructs an empty buffer node that belongs to graph g.

6.14.2 buffer_node(const buffer_node &src)
Effect

Constructs an empty buffer node that belongs to the same graph g as src. The list
of predecessors, the list of successors and the messages in the buffer are NOT copied.

6.14.3 bool register_predecessor(predecessor_type &

Description

Never rejects puts and therefore does not need to maintain a list of predecessors.

Returns

false.

6.144 bool remove_predecessor(predecessor_type &)
Description
Never rejects puts and therefore does not need to maintain a list of predecessors.

Returns

false.

Reference Manual 189

6.14.5 bool try_put(const input_type &v)

Effect

Adds v to the buffer. If v is the only item in the buffer, a task is also enqueued to
forward the item to a successor.

Returns

true.

6.14.6 bool register_successor(successor_type &r)
Effect

Adds r to the set of successors.

Returns

true.

6.14.7 bool remove_successor(successor_type &r)
Effect

Removes r from the set of successors.

Returns

true.

6.14.8 bool try_get(output_type & v)

Returns

Returns true if an item can be removed from the buffer and assigned to v. Returns
false if there is no non-reserved item currently in the buffer.

190 315415-016US

Flow Graph

intel)

6.14.9 bool try_reserve(output_type & v)
Effect

Assigns a newly reserved item to v if there is no reservation currently held and there is
at least one item available in the buffer. If a new reservation is made, the buffer is
marked as reserved.

Returns

Returns true if v has been assigned a newly reserved item. Returns false otherwise.

6.14.10 bool try_release()
Effect

Releases the reservation on the buffer. The item that was returned in the last
successful call to try reserve remains in the buffer.

Returns

Returns true if the buffer is currently reserved and false otherwise.

6.14.11 bool try_consume()
Effect

Releases the reservation on the buffer. The item that was returned in the last
successful call to try reserve is removed from the buffer.

Returns

Returns true if the buffer is currently reserved and false otherwise.

6.15 queue_node Template Class

Summary

An unbounded buffer of messages of type T. Messages are forwarded in first-in first-out
(FIFO) order.

Syntax

template <typename T, typename A=cache aligned allocator<T> >

Reference Manual 191

192

class queue node;

Header
#include "tbb/flow graph.h"

Description

A queue node iS @ graph_node, receiver<T> and sender<T> that forwards messages
in first-in first-out (FIFO) order to a single successor in its successor set. Successors
are tried in the order that they were registered with the node. If a successor rejects
the message, it is removed from the successor list as described by the policy in Figure
4 and the next successor in the set is tried. This continues until a successor accepts
the message, or all successors have been attempted. Items that are successfully
transferred to a successor are removed from the buffer.

A queue node is reservable and supports a single reservation at a time. While the
queue_node is reserved, no other items will be forwarded to successors and all

try get calls will return false. While reserved, try put will still return true and add
items to the queue node.

An allocator of type & is used to allocate internal memory for the queue node.
T must be copy-constructible and assignable.

Rejection of messages by successors is handled using the protocol in Figure 4.

Members
namespace tbb {
namespace flow {

template <typename T, typename A=cache aligned allocator<T> >
class queue node
public buffer node<T,A> ({
public:
queue node (graph &g);
queue node (const queue node &src);

// receiver<T>

typedef T input type;

typedef sender<input type> predecessor type;

bool try put(input type v);

bool register predecessor (predecessor type &p);
bool remove predecessor (predecessor type &p);

// sender<T>
typedef T output type;

315415-016US

Flow Graph

intel)

typedef receiver<output type> successor type;
bool register successor(successor type &r);
bool remove successor (successor type &r);
bool try get(output type &v);

bool try reserve(output type &);

bool try release();

bool try consume();

6.15.1 queue_node(graph& g)
Effect

Constructs an empty queue node that belongs to graph g.

6.15.2 queue_node(const queue_node &src)
Effect

Constructs an empty queue node that belongs to the same graph g as src. The list of
predecessors, the list of successors and the messages in the buffer are NOT copied.

6.15.3 bool register_predecessor(predecessor_type &

Description

Never rejects puts and therefore does not need to maintain a list of predecessors.

Returns

false.

6.15.4 bool remove_predecessor(predecessor_type &)

Description

Never rejects puts and therefore does not need to maintain a list of predecessors.

Reference Manual 193

194

Returns

false.

6.15.5 bool try_put(const input_type &v)
Effect

Adds v to the queue node. If v is the only item in the queue node, a task is enqueued
to forward the item to a successor.

Returns

true.

6.15.6 bool register_successor(successor_type &r)
Effect

Adds r to the set of successors.

Returns

true.

6.15.7 bool remove_successor(successor_type &)
Effect

Removes r from the set of successors.

Returns

true.

6.15.8 bool try_get(output_type & v)

Returns

Returns true if an item can be removed from the front of the queue node and assigned
to v. Returns false if there is no item currently in the queue node or if the node is
reserved.

315415-016US

Flow Graph

intel)

6.15.9 bool try_reserve(output_type & v)
Effect

If the call returns true, the node is reserved and will forward no more messages until
the reservation has been released or consumed.

Returns

Returns true if there is an item in the queue node and the node is not currently
reserved. If an item can be returned, it is assigned to v. Returns false if there is no
item currently in the queue node or if the node is reserved.

6.15.10 bool try_release()
Effect

Release the reservation on the node. The item that was returned in the last successful
call to try reserve remains in the queue node.

Returns

Returns true if the node is currently reserved and false otherwise.

6.15.11 bool try_consume()
Effect

Releases the reservation on the queue node. The item that was returned in the last
successful call to try reserve is popped from the front of the queue.

Returns

Returns true if the queue node is currently reserved and false otherwise.

6.16 priority_queue_node Template Class

Summary

An unbounded buffer of messages of type T. Messages are forwarded in priority order.

Syntax

template< typename T,

Reference Manual 195

196

typename Compare = std::less<T>,
typename A=cache aligned allocator<T> >
class priority queue node;

Header
#include "tbb/flow graph.h"

Description

A priority queue node iS @ graph_node, receiver<T> and sender<T> that forwards
messages in priority order to a single successor in its successor set. Successors are
tried in the order that they were registered with the node. If a successor rejects the
message, it is removed from the successor list as described by the policy in Figure 4
and the next successor in the set is tried. This continues until a successor accepts the
message, or all successors have been attempted. Items that are successfully
transferred to a successor are removed from the buffer.

The next message to be forwarded has the largest priority as determined by Compare.

A priority queue node is reservable and supports a single reservation at a time.
While the priority queue node is reserved, no other items will be forwarded to
successors and all try get calls will return false. While reserved, try put will still
return true and add items to the priority queue node.

An allocator of type A is used to allocate internal memory for the

priority queue node.
T must be copy-constructible and assignable.

Rejection of messages by successors is handled using the protocol in Figure 4.

Members
namespace tbb {
namespace flow {

template< typename T, typename Compare = std::less<T>,
typename A=cache aligned allocator<T>>
class priority queue node : public queue node<T> {
public:
typedef size t size type;
(graph &g);
priority queue node(const priority queue node &src);
e

()7

priority queue node
~priority queue nod
// receiver<T>

typedef T input type;
typedef sender<input type> predecessor type;

315415-016US

Flow Graph

intel)

bool try put(input type v);
bool register predecessor (predecessor type &p);
bool remove predecessor (predecessor type &p);

// sender<T>

typedef T output type;

typedef receiver<output type> successor type;
bool register successor(successor_ type &r);
bool remove successor (successor type &r);
bool try get(output type &v);

bool try reserve(output type &);

bool try release();

bool try consume();

6.16.1 priority_queue_node(graph& q)
Effect

Constructs an empty priority queue node that belongs to graph g.
6.16.2 priority_queue_node(const
priority_queue_node &src)
Effect

Constructs an empty priority queue node that belongs to the same graph g as src.
The list of predecessors, the list of successors and the messages in the buffer are NOT
copied.

6.16.3 bool register_predecessor(predecessor_type &

Description

Never rejects puts and therefore does not need to maintain a list of predecessors.

Returns

false.

Reference Manual 197

198

6.16.4 bool remove_predecessor(predecessor_type &)

Description

Never rejects puts and therefore does not need to maintain a list of predecessors.

Returns

false.

6.16.5 bool try_put(const input_type &v)
Effect

Adds v to the priority queue node. If v's priority is the largest of all of the currently
buffered messages, a task is enqueued to forward the item to a successor.

Returns

true.

6.16.6 bool register_successor(successor_type &r)
Effect

Adds r to the set of successors.

Returns

true.

6.16.7 bool remove_successor(successor_type &r)
Effect

Removes r from the set of successors.

Returns

true.

315415-016US

Flow Graph

intel)

6.16.8 bool try_get(output_type & v)

Returns

Returns true if @ message is available in the node and the node is not currently
reserved. Otherwise returns false. If the node returns true, the message with the
largest priority will have been copied to v.

6.16.9 bool try_reserve(output_type & v)
Effect

If the call returns true, the node is reserved and will forward no more messages until
the reservation has been released or consumed.

Returns

Returns true if @ message is available in the node and the node is not currently
reserved. Otherwise returns false. If the node returns true, the message with the
largest priority will have been copied to v.

6.16.10 bool try_release()
Effect

Release the reservation on the node. The item that was returned in the last successful
call to try reserve remains in the priority gqueue node.

Returns

Returns true if the buffer is currently reserved and false otherwise.

6.16.11 bool try_consume()
Effect

Releases the reservation on the node. The item that was returned in the last
successful call to try reserve is removed from the priority queue node.

Returns

Returns true if the buffer is currently reserved and false otherwise.

Reference Manual 199

Table 28:

6.17 sequencer_node Template Class

Summary

An unbounded buffer of messages of type T. Messages are forwarded in sequence
order.

Syntax
template< typename T, typename A=cache aligned allocator<T> >
class sequencer node;

Header
#include "tbb/flow graph.h"

Description

A sequencer node iS @ graph node, receiver<T> and sender<T> that forwards
messages in sequence order to a single successor in its successor set. Successors are
tried in the order that they were registered with the node. If a successor rejects the
message, it is removed from the successor list as described by the policy in Figure 4
and the next successor in the set is tried. This continues until a successor accepts the
message, or all successors have been attempted. Items that are successfully
transferred to a successor are removed from the buffer.

Each item that passes through a sequencer_node is ordered by its sequencer order
number. These sequence order humbers range from 0 ... N, where N is the largest
integer representable by the size t type. An item’s sequencer order humber is
determined by passing the item to a user-provided function object that models the
Sequencer Concept shown in Table 28.

sequencer_node<T> Sequencer Concept
Pseudo-Signature Semantics
S::S(const S&) Copy constructor.
S::~S() Destructor.
void?® operator=(const S&) Assignment
size t S::operator() (const T &v) Returns the sequence number for the
provided message v.

200

23The return type void in the pseudo-signature denotes that operator= is not
required to return a value. The actual operator= can return a value, which will
be ignored.

315415-016US

Flow Graph

intel)

A sequencer node is reservable and supports a single reservation at a time. While a
sequencer_ node is reserved, no other items will be forwarded to successors and all
try get calls will return false. While reserved, try put will still return true and add
items to the sequencer_node.

An allocator of type A is used to allocate internal memory for the sequencer node.
T must be copy-constructible and assignable.

Rejection of messages by successors is handled using the protocol in Figure 4.

Members
namespace tbb {
namespace flow {

template< typename T, typename A=cache aligned allocator<T> >
class sequencer node
public queue node<T> {
public:
template< typename Sequencer >
sequencer node (graph &g, const Sequencer& s);
sequencer node(const sequencer node &src);

// receiver<T>

typedef T input type;

typedef sender<input type> predecessor type;

bool try put(input type v);

bool register predecessor (predecessor type &p);
bool remove predecessor (predecessor type &p);

// sender<T>

typedef T output type;

typedef receiver<output type> successor type;
bool register successor(successor type &r);
bool remove successor (successor type &r);
bool try get(output type &v);

bool try reserve(output type &);

bool try release();

bool try consume();

Reference Manual 201

CAUTION:

202

6.17.1 template<typename Sequencer>
sequencer_node(graph& g, const Sequencer& s

Effect

Constructs an empty sequencer node that belongs to graph g and uses s to compute
sequence numbers for items.

6.17.2 sequencer_node(const sequencer_node &src)
Effect

Constructs an empty sequencer node that belongs to the same graph g as src and
will use a copy of the Sequencer s used to construct src. The list of predecessors, the
list of successors and the messages in the buffer are NOT copied.

The new Sequencer object is copy constructed from a copy of the original Sequencer
object provided to src at its construction. Therefore changes made to member
variables in src’ s object will not affect the Sequencer of the new sequencer node.

6.17.3 bool register_predecessor(predecessor_type &

Description

Never rejects puts and therefore does not need to maintain a list of predecessors.

Returns

false.

6.17.4 bool remove_predecessor(predecessor_type &)

Description

Never rejects puts and therefore does not need to maintain a list of predecessors.

Returns

false.

315415-016US

Flow Graph I n tel ‘

6.17.5 bool try_put(input_type v)
Effect

Adds v to the sequencer node. If v's sequence number is the next item in the
sequence, a task is enqueued to forward the item to a successor.

Returns

true.

6.17.6 bool register_successor(successor_type &r)
Effect

Adds r to the set of successors.

Returns

true.

6.17.7 bool remove_successor(successor_type &r)
Effect

Removes r from the set of successors.

Returns

true.

6.17.8 bool try_get(output_type & v)

Returns

Returns true if the next item in the sequence is available in the sequencer node. If
so, it is removed from the node and assigned to v. Returns false if the next item in
sequencer order is not available or if the node is reserved.

Reference Manual 203

204

6.17.9 bool try_reserve(output_type & v)
Effect

If the call returns true, the node is reserved and will forward no more messages until
the reservation has been released or consumed.

Returns

Returns true if the next item in sequencer order is available in the sequencer node. If
so, the item is assigned to v, but is not removed from the sequencer node Returns
false if the next item in sequencer order is not available or if the node is reserved.

6.17.10 bool try_release()
Effect

Releases the reservation on the node. The item that was returned in the last
successful call to try reserve remains in the sequencer node.

Returns

Returns true if the buffer is currently reserved and false otherwise.

6.17.11 bool try_consume()
Effect

Releases the reservation on the node. The item that was returned in the last
successful call to try reserve is removed from the sequencer node.

Returns

Returns true if the buffer is currently reserved and false otherwise.

6.18 limiter_node Template Class

Summary

An node that counts and limits the number of messages that pass through it.

Syntax

template < typename T > class limiter node;

315415-016US

®
Flow Graph I n tel
Header
#include "tbb/flow graph.h"
Description
A limiter node iS @ graph node, receiver<T> and sender<T> that broadcasts
messages to all of its successors. It keeps a counter C of the number of broadcasts it
makes and does not accept new messages once its user-specified threshold T is
reached. The internal count of broadcasts C can be decremented through use of its
embedded continue receiver decrement
The behavior of a call to a 1imiter node’s try_put is shown in Table 29.
Table 29: Behavior of a call to a limiter_node’s try_put

Value of counter C bool try_put(input_type v)
C<T C is incremented and v is broadcast to all successors. If no

successor accepts the message, C is decremented. Returns
true if the message was successfully broadcast to at least one
successor and false otherwise.

C==T Returns false.

When try put is called on the member object decrement, the limiter node will try to
get a message from one of its known predecessors and forward that message to all of
its successors. If it cannot obtain a message from a predecessor, it will decrement C.
Rejection of messages by successors and failed gets from predecessors are handled
using the protocol in Figure 4.

T must be copy-constructible and assignable.

Members
namespace tbb {
namespace flow {

template< typename T >
class limiter node : public graph node, public receiver<T>,
public sender<T> ({
public:
limiter node(graph &g, size t threshold,
int number of decrement predecessors = 0);
limiter node(const limiter node &src);

// a continue receiver
implementation-dependent-type decrement;

// receiver<T>
typedef T input type;

Reference Manual 205

typedef sender<input type> predecessor type;

bool try put(const input type &v);

bool register predecessor (predecessor type &p);
bool remove predecessor (predecessor type &p);

// sender<T>

typedef T output type;

typedef receiver<output type> successor type;
bool register successor(successor type &r);
bool remove successor (successor type &r);
bool try get(output type &v);

bool try reserve(output type &);

bool try release();

bool try consume();

6.18.1 limiter_node(graph &g, size_t threshold, int
number_of_decrement_predecessors)

Description

Constructs a 1imiter node that allows up to threshold items to pass through before
rejecting try puts. Optionally a number of decrement predecessors value can be
supplied. This value is passed on to the continue receiver decrement’s constructor.

6.18.2 limiter_node(const limiter_node &src)

Description

Constructs a 1imiter node that has the same initial state that src had at its
construction. The new limiter node will belong to the same graph g as src, have
the same threshold, and have the same initial number of decrement predecessors.
The list of predecessors, the list of successors and the current count of broadcasts, C,
are NOT copied from src.

206 315415-016US

Flow Graph

6.18.3 bc;ol register_predecessor(predecessor_type&
P

Description

Adds a predecessor that can be pulled from once the broadcast count falls below the
threshold.

Effect
Adds p to the set of predecessors.

Returns

true.

6.18.4 bool remove_predecessor(predecessor_type &

r)
Effect
Removes p to the set of predecessors.
Returns

true.

6.18.5 bool try_put(input_type &v)
Effect

If the broadcast count is below the threshold, v is broadcast to all successors. For each
successor s, if s.try put(v) == false && s.register predecessor(*this) ==
true, then s is removed from the set of succesors. Otherwise, s will remain in the set
of successors.

Returns

true if v is broadcast. false if v is not broadcast because the threshold has been
reached.

Reference Manual 207

6.18.6 bool register_successor(successor_type &r)

Effect

Adds r to the set of successors.

Returns

true.

6.18.7 bool remove_successor(successor_type &r)
Effect

Removes r from the set of successors.

Returns

true.

6.18.8 bool try_get(output_type &)

Description

Does not contain buffering and therefore cannot be pulled from.

Returns

false.

6.18.9 bool try_reserve(output_type &)

Description

Does not support reservations.

Returns

false.

208 315415-016US

Flow Graph

6.18.10 Dbool try_release()

Description

Does not support reservations.

Returns

false.

6.18.11 bool try_consume()

Description

Does not support reservations.

Returns

false.

6.19 join_node Template Class

Summary

A node that creates a tuple<TO0,T1,...> from a set of messages received at its input
ports and broadcasts the tuple to all of its successors. The class join node supports
three buffering policies at its input ports: reserving, queueing and tag matching. By
default, join node input ports use the queueing policy.

Syntax

template<typename OutputTuple, graph buffer policy JP=queueing>
class join node;

Header
#include "tbb/flow graph.h"

Description

A join_node is a graph node and a sender< std::tuple< TO, T1l, .. >. It contains a
tuple of input ports, each of which is a receiver<Ti> for each of the T0 .. TN in
OutputTuple. It supports multiple input receivers with distinct types and broadcasts a
tuple of received messages to all of its successors. All input ports of a join node must
use the same buffering policy. The behavior of a join node based on its buffering
policy is shown in Table 30.

Reference Manual 209

Table 30: Behavior of a join_node based on the buffering policy of its input ports.

Buffering Policy Behavior

queueing As each input port is put to, the incoming message is added to
an unbounded first-in first-out queue in the port. When there
is at least one message at each input port, the join node
broadcasts a tuple containing the head of each queue to all
successors. If at least one successor accepts the tuple, the
head of each input port’s queue is removed, otherwise the
messages remain in their respective input port queues.

reserving As each input port is put to, the join node marks that an
input may be available at that port and returns false. When
all ports have been marked as possibly available, the
join node will try to reserve a message at each port from
their known predecessors. If it is unable to reserve a message
at a port, it un-marks that port, and releases all previously
acquired reservations. If it is able to reserve a message at all
ports, it broadcasts a tuple containing these messages to all
successors. If at least one successor accepts the tuple, the
reservations are consumed; otherwise, they are released.

tag_matching As each input port is put to, a user-provided function object is
applied to the message to obtain its tag. The message is then
added to a hash table at the input port, using the tag as the
key. When there is message at each input port for a given
tag, the join node broadcasts a tuple containing the matching
messages to all successors. If at least one successor accepts
the tuple, the messages are removed from each input port’s
hash table; otherwise, the messages remain in their respective
input ports.

If an input’s tag matches one already stored in a join node’s
input port, the try_put() will fail and return false.

Rejection of messages by successors of the join node and failed gets from
predecessors of the input ports are handled using the protocol in Figure 4.

The function template input_port described in 6.21 simplifies the syntax for getting a
reference to a specific input port.

OutputTuple must be a std: :tuple<T0,T1,..> where each element is copy-
constructible and assignable.

Example
#include<cstdio>
#include "tbb/flow graph.h"

using namespace tbb::flow;

int main () {
graph g;

210 315415-016US

Flow Graph

function node<int,int> fl1(g, unlimited,
[1 (const int &i) { return 2*i; });
function node<float, float> f2(g, unlimited,
[] (const float &f) { return £/2; }):

join node< std::tuple<int, float> > j(g);

function node< std::tuple<int, float> >
f3(g, unlimited,
[1(const std::tuple<int,float> &t) {
printf ("Result is %$f\n",
std::get<0>(t) + std::get<l>(t));})-

make edge(fl, input port<0>(j));
make edge(f2, input port<l>(j));
make edge(j, £3);

fl.try put(3);
f2.try put(3);
g.wait for all();
return 0;

}

In the example above, three function node objects are created: £1 multiplies an int
i by 2, £2 divides a float f by 2, and f3 receives a std: :tuple<int, float> t, adds
its elements together and prints the result. The join node j combines the output of
f1 and f2 and forwards the resulting tuple to £3. This example is purely a syntactic

demonstration since there is very little work in the nodes.

Members
namespace tbb {
namespace flow {

enum graph buffer policy {
rejecting, reserving, queueing, tag matching };

template<typename OutputTuple, graph buffer policy JP=queueing>
class join node
public graph node, public sender< OutputTuple > {

public:
typedef OutputTuple output type;
typedef receiver<output type> successor type;
implementation-dependent-tuple input ports type;

Reference Manual

211

212

join node (graph &g);

join node(const join node &src);

input ports type &inputs();

bool register successor (successor_ type &r);
bool remove successor (successor type &r);
bool try get(output type &v);

bool try reserve(output type &);

bool try release();
bool try consume();
}i
//
// Specialization for tag matching
//

template<typename OutputTuple>
class join node<OutputTuple, tag matching>

public graph node, public sender< OutputTuple > {
public:

// Has the same methdods as previous join node,

// but has constructors to specify the tag matching

// function objects

template<typename B0, typename Bl>
join node(graph &g, BO b0, Bl bl);

// Constructors are defined similarly for
// 3 through 10 elements ..

6.19.1 join_node(graph &g)
Effect

Creates a join_ node that will enqueue tasks using the root task in g.

315415-016US

Flow Graph

intel.

6.19.2 template < typename BO, t gpename B1,.
join_node(graph &g, BO b0, B1 b1

Description

A constructor only available in the tag matching specialization of join node.

Effect

Creates a join node that uses the function objects b0, b1, ..., bN to determine that
tags for the input ports 0 through N. It will enqueue tasks using the root task in g.

6.19.3 join_node(const join_node &src)
Effect

Creates a join node that has the same initial state that src had at its construction.
The list of predecessors, messages in the input ports, and successors are NOT copied.

6.19.4 input_ports_type& input_ports()

Returns

A std::tuple of receivers. Each element inherits from tbb: :receiver<T> where T is

the type of message expected at that input. Each tuple element can be used like any
other flow: :receiver<T>. The behavior of the ports based on the selected join node

policy is shown in Table 30.

6.19.5 bool register_successor(successor_type &r)
Effect

Adds r to the set of successors.

Returns

true.

6.19.6 bool remove_successor(successor_type &r)
Effect

Removes r from the set of successors.

Reference Manual 213

214

Returns

true.

6.19.7 bool try_get(output_type &v)

Description

Attempts to generate a tuple based on the buffering policy of the join node.

Returns

If it can successully generate a tuple, it copies it to v and returns true. Otherwise it

returns false.

6.19.8 bool try_reserve(T &)

Description

A join node cannot be reserved.

Returns

false.

6.19.9 bool try_release()

Description

A join node cannot be reserved.

Returns

false.

6.19.10 bool try_consume()

Description

A join node cannot be reserved.

315415-016US

Flow Graph

intel)

Returns

false.

6.19.11 template<size_t N, typename JNT> typename
std:tuple_element<N, typename
Jé\!T;:lnput _ports_type>:type &input_port(JNT
jn

Description

Equivalent to calling std::get<N>(jn.input_ports())

Returns

Returns the N input port for join node jn.

6.20 split_node Template Class

Summary

A template class that is a receiver<InputTuple> and has a tuple of sender<T>
outputs. A split node is @ multifunction node with a body that sends each element
of the incoming tuple to the output port that matches the element’s index in the
incoming tuple. This node has unlimited concurrency.

Syntax
template < typename InputType >
class split node;

Header
#include "tbb/flow graph.h"

Description

This type is used for nodes that receive tuples at a single input port and generate a
message from each element of the tuple, passing each to its corresponding output
port.

A split node has unlimited concurrency, no buffering, and behaves as a
broadcast node with multiple output ports.

Reference Manual 215

216

Example

The example below shows a split node that separates a stream of tuples of
integers, placing each element of the tuple in the appropriate output queue.

The output ports of the split node can be connected to other graph nodes using the
make edge method or by using register successor:

#define TBB_PREVIEW GRAPH NODES 1
#include "tbb/flow graph.h"

using namespace tbb::flow;
typedef split node< std::tuple<int,int> > s node;

int main () {
typedef std::tuple<int,int> int tuple type;
graph g;
queue node<int> first queue(g);
queue node<int> second queue (g);
s _node nodel (g) ;
output port<0>(nodel) .register successor (first queue);
make edge (output port<l>(nodel), second queue);

for(int i = 0; 1 < 1000; ++i) {

nodel.try put (int tuple type(2*i,2*i+l));
}
g.wait for all();

Members

namespace tbb {

template< typename InputType, A >

class split node
public multifunction node<InputType, InputType,rejecting, A>
{

public:

split node(graph &g);

split node(const split node &other);
~split node();

315415-016US

Flow Graph

®

(intel

typedef InputType input type;

typedef sender<input type> predecessor type;

bool try put(input type v);

bool register predecessor (predecessor type &p);
bool remove predecessor (predecessor type &p);

typedef (tuple of sender<T...>) output ports type;

template<size t N, typename MFN> &output port (MEFN &node);

6.20.1 split_node(graph &g)

Description

Constructs a split_node.

6.20.2 split_node(split_node const & other)
Effect

Constructs a copy of a split node.

6.20.3 bc;ol register_predecessor(predecessor_type &
p

Effect

Adds p to the set of predecessors.

Returns

true.

6.20.4 b(;ol remove_predecessor(predecessor_type &
P

Effect

Removes p from the set of predecessors.

Reference Manual 217

Returns

true.

6.20.5 bool try_put(input_type v)
Effect

Forwards each element of the input tuple v to the corresponding output port.
Returns

true.

6.20.6 (output port &) output_port<N>(node)

Returns

A reference to port N of the split node.

6.21 input_port Template Function

Summary

A template function that given a join node or or_node returns a reference to a specific
input port.

Syntax
template<size t N, typename NT>
typename std::tuple element<N,
typename NT::input ports type>::typeé&
input port (NT &n);

Header
#include "tbb/flow graph.h"

218 315415-016US

Flow Graph

intel)

6.22 make_edge Template Function

Summary

A template function that adds an edge between a sender<T> and a receiver<T>.

Syntax
template< typename T >
inline void make edge(sender<T> &p, receiver<T> &s);

Header
#include "tbb/flow graph.h"

6.23 remove_edge Template Function

Summary

A template function that removes an edge between a sender<T> and a receiver<T>.

Syntax
template< typename T >
void remove edge (sender<T> &p, receiver<T> &s);

Header
#include "tbb/flow graph.h"

6.24 copy_body Template Function

Summary

A template function that returns a copy of the body function object from a
continue node Or function node.

Syntax
template< typename Body, typename Node >
Body copy body(Node &n);

Header
#include "tbb/flow graph.h"

Reference Manual 219

/ Thread Local Storage

Intel® Threading Building Blocks (Intel® TBB) provides two template classes for
thread local storage. Both provide a thread-local element per thread. Both lazily create
the elements on demand. They differ in their intended use models:

combinable provides thread-local storage for holding per-thread subcomputations that
will later be reduced to a single result. It is PPL compatible.

enumerable thread specific provides thread-local storage that acts like a STL
container with one element per thread. The container permits iterating over the
elements using the usual STL iteration idioms.

This chapter also describes template class flatten2d, which assists a common idiom
where an enumerable thread specific represents a container partitioner across
threads.

7.1 combinable Template Class

Summary

Template class for holding thread-local values during a parallel computation that will be
merged into to final.

Syntax

template<typename T> class combinable;

Header
#include "tbb/combinable.h"

Description

A combinable<T> provides each thread with its own local instance of type T.

Members
namespace tbb {
template <typename T>
class combinable {
public:
combinable () ;

220 315415-016US

Thread Local Storage i n tel 0]

NOTE:

template <typename FInit>
combinable (FInit finit);}

combinable (const combinable& other);
~combinable () ;

combinable& operator=(const combinable& other);
void clear();

T& local();
T& local (bool & exists);

template<typename FCombine> T combine (FCombine fcombine) ;
template<typename Func> void combine each (Func f);

7.1.1 combinable()

Effects

Constructs combinable such that any thread-local instances of T will be created using
default construction.

7.1.2 temglate(typename FInit> combinable(FInit
finit

Effects

Constructs combinable such that any thread-local element will be created by copying
the result of finit ().

The expression finit() must be safe to evaluate concurrently by multiple threads. It is
evaluated each time a thread-local element is created.

7.1.3 combinable(const combinable& other);
Effects

Construct a copy of other, so that it has copies of each element in other with the
same thread mapping.

Reference Manual 221

7.1.4 ~combinable()
Effects

Destroy all thread-local elements in *this.

7.1.5 combinable& operator=(const combinable&
other)

Effects

Set *this to be a copy of other.

7.1.6 void clear()
Effects

Remove all elements from *this.

7.1.7 T& local()
Effects
If thread-local element does not exist, create it.
Returns

Reference to thread-local element.

7.1.8 T& local(bool& exists)
Effects

Similar to 1ocal (), except that exists is set to true if an element was already present
for the current thread; false otherwise.

Returns

Reference to thread-local element.

222 315415-016US

Thread Local Storage i n tel 0]

7.1.9 template<typename FCombine>T
combine(FCombine fcombine)

Requires

Parameter fcombine should be an associative binary functor with the signature T (T, T)
Oor T (const Té&,const T&).

Effects

Computes reduction over all elements using binary functor fcombine. If there are no
elements, creates the result using the same rules as for creating a thread-local
element.

Returns

Result of the reduction.
7.1.10 template<typename Func> void
combine_each(Func f)
Requires
Parameter £ should be a unary functor with the signature void (T) or void(const Ts).

Effects

Evaluates f(x) for each instance x of T in *this.

7.2 enumerable_thread_specific Template
Class

Summary

Template class for thread local storage.

Syntax

enum ets key usage type {
ets key per instance,
ets no key

}i

template <typename T,

Reference Manual 223

CAUTION:

224

typename Allocator=cache aligned allocator<T>,
ets key usage type ETS key type=ets no key>
class enumerable thread specific;

Header
#include "tbb/enumerable thread specific.h"

Description

An enumerable thread specific provides thread local storage (TLS) for elements of
type 7. An enumerable_thread_specific acts as a container by providing iterators and
ranges across all of the thread-local elements.

The thread-local elements are created lazily. A freshly constructed
enumerable thread specific has no elements. When a thread requests access to a
enumerable thread specific, it creates an element corresponding to that thread.
The number of elements is equal to the number of distinct threads that have accessed
the enumerable thread specific and not the number of threads in use by the
application. Clearing a enumerable thread specific removes all of its elements.

The ETS key usage type parameter can be used to select between an implementation
that consumes no native TLS keys and a specialization that offers higher performance
but consumes 1 native TLS key per enumerable_thread_specific instance. If no

ETS key usage type parameter is provided, ets no_ key is used by default.

The number of native TLS keys is limited and can be fairly small, for example 64 or
128. Therefore it is recommended to restrict the use of the ets _key per instance
specialization to only the most performance critical cases.

Example

The following code shows a simple example usage of enumerable thread specific.
The number of calls to null parallel for body::operator () and total number of
iterations executed are counted by each thread that participates in the parallel for,
and these counts are printed at the end of main.

#include <cstdio>
#include <utility>

#include "tbb/task scheduler init.h"
#include "tbb/enumerable thread specific.h"
#include "tbb/parallel for.h"

#include "tbb/blocked range.h"

using namespace tbb;

typedef enumerable thread specific< std::pair<int,int> >

315415-016US

Thread Local Storage I n tel 0

CounterType;

CounterType MyCounters (std::make pair(0,0));

struct Body ({
void operator () (const tbb::blocked range<int> &r) const {

CounterType: :reference my counter = MyCounters.local();
++my counter.first;
for (int 1 = r.begin(); 1 !'= r.end(); ++1i)

++my counter.second;

}:

int main () {
parallel for(blocked range<int>(0, 100000000), Body()):

for (CounterType::const iterator i = MyCounters.begin();
i != MyCounters.end() ;
++1)

printf ("Thread stats:\n");
printf (" «calls to operator(): %d", i->first);
printf ("™ total # of iterations executed: %d\n\n",

i->second) ;

Example with Lambda Expressions

Class enumerable thread specific has a method combine (£) that does reduction
using binary functor £, which can be written using a lambda expression. For example,
the previous example can be extended to sum the thread-local values by adding the
following lines to the end of function main:

std::pair<int, int> sum =
MyCounters.combine ([] (std: :pair<int, int> x,
std::pair<int, int> y) {
return std::make pair(x.first+y.first,
x.second+ty.second) ;

})s
printf ("Total calls to operator() = %d,
"total iterations = %d\n", sum.first, sum.second);

Members

namespace tbb {
template <typename T,

Reference Manual 225

typename Allocator=cache aligned allocator<T>,
ets key usage type ETS key type=ets no key >
class enumerable thread specific {
public:
// Basic types
typedef Allocator allocator type;
typedef T value type;
typedef T& reference;
typedef const T& const reference;
typedef T* pointer;
typedef implementation-dependent size type;
typedef implementation-dependent difference type;

// Iterator types
typedef implementation-dependent iterator;
typedef implementation-dependent const iterator;

// Parallel range types
typedef implementation-dependent range type;
typedef implementation-dependent const range type;

// Whole container operations
enumerable thread specific();
enumerable thread specific(

const enumerable thread specific &other
)
template<typename U, typename Alloc,

ets key usage type Cachetype>
enumerable thread specific(

const enumerable thread specific<U, Alloc,

Cachetype>& other);
template <typename Finit>
enumerable thread specific(Finit finit);
enumerable thread specific(const T &exemplar);
~enumerable thread specific();
enumerable thread specificé
operator=(const enumerable thread specific& other);
template<typename U, typename Alloc,
ets key usage type Cachetype>

enumerable thread specificé
operator=(

const enumerable thread specific<U, Alloc, Cachetype>&

other

)

void clear();

226 315415-016US

Thread Local Storage i n tel 0]

// Concurrent operations
reference local();

reference local (bool& existis);
size type size() const;

bool empty() const;

// Combining
template<typename FCombine> T combine (FCombine fcombine) ;
template<typename Func> void combine each (Func f);

// Parallel iteration
range type range(size t grainsize=1l);
const range type range(size t grainsize=1l) const;

// Iterators

iterator begin();

iterator end();

const iterator begin() const;
const iterator end() const;

7.2.1 Whole Container Operations

Safety

These operations must not be invoked concurrently on the same instance of
enumerable thread specific.

7.2.1.1 enumerable_thread_specific()
Effects
Constructs an enumerable thread specific where each local copy will be default
constructed.
7212 enumerable_thread_specific(const
enumerable_thread_specific &other)
Effects

Copy construct an enumerable thread specific. The values are copy constructed
from the values in other and have same thread correspondence.

Reference Manual 227

7213 template<typename U, typename Alloc,
ets_key_usage_type Cachetype>
enumerable_thread_specific(const
enumerable_thread_specific<U, Alloc, Cachetype>& other)

Effects

Copy construct an enumerable thread specific. The values are copy constructed
from the values in other and have same thread correspondence.

7214 template< typename Finit>
enumerable_thread_specific(Finit finit)

Effects

Constructs enumerable thread specific such that any thread-local element will be
created by copying the result of finit ().

NOTE: The expression finit() must be safe to evaluate concurrently by multiple threads. It is
evaluated each time a thread-local element is created.

7215 enumerable_thread_specific(const &exemplar)

Effects

Constructs an enumerable thread specific where each local copy will be copy
constructed from exemplar.

7216 ~enumerable_thread_specific()
Effects
Destroys all elements in *this. Destroys any native TLS keys that were created for this
instance.
7.2.1.7 enumerable_thread_specific& operator=(const
enumerable_thread_specific& other);
Effects

Set *this to be a copy of other.

228 315415-016US

Thread Local Storage ‘ i n tel 0]

NOTE:

NOTE:

7.2.18 template< typename U, typename Alloc,
ets_key_usage_type Cachetype>
enumerable_thread_specific& operator=(const
enumerable_thread_specific<U, Alloc, Cachetype>& other);

Effects

Set *this to be a copy of other.

The allocator and key usage specialization is unchanged by this call.

7.2.1.9 void clear()

Effects

Destroys all elements in *this. Destroys and then recreates any native TLS keys used
in the implementation.

In the current implementation, there is no performance advantage of using clear
instead of destroying and reconstructing an enumerable thread specific.

7.2.2 Concurrent Operations

7.2.2.1 reference local()

Returns

A reference to the element of *this that corresponds to the current thread.

Effects
If there is no current element corresponding to the current thread, then constructs a

new element. A new element is copy-constructed if an exemplar was provided to the
constructor for *this, otherwise a new element is default constructed.

7222 reference local(bool& exists)

Effects

Similar to local (), except that exists is set to true if an element was already present
for the current thread; false otherwise.

Returns

Reference to thread-local element.

Reference Manual 229

230

7223 size_type size() const

Returns

The number of elements in *this. The value is equal to the number of distinct threads
that have called local() after *this was constructed or most recently cleared.

7224 bool empty() const

Returns
size ()==0

7.2.3 Combining

The methods in this section iterate across the entire container.

7.2.3.1 template<typename FCombine>T combine(FCombine
fcombine)

Requires

Parameter fcombine should be an associative binary functor with the signature T (T, T)
Oor T (const Té&,const Té&).

Effects

Computes reduction over all elements using binary functor fcombine. If there are no
elements, creates the result using the same rules as for creating a thread-local
element.

Returns

Result of the reduction.
7232 template<typename Func> void combine_each(Func f)

Requires

Parameter f should be a unary functor with the signature void (T) or void (const Ts&).

Effects

Evaluates f(x) for each instance x of T in *this.

315415-016US

Thread Local Storage ‘ i n tel 0]

7.24 Parallel Iteration

Types const_range type and range type model the Container Range concept (5.1).
The types differ only in that the bounds for a const_range type are of type
const_iterator, whereas the bounds for a range type are of type iterator.

7.24.1 const_range_type range(size_t grainsize=1) const

Returns

A const_range_type representing all elements in *this. The parameter grainsize is
in units of elements.

7.24.2 range_type range(size_t grainsize=1)

Returns

A range type representing all elements in *this. The parameter grainsize is in units
of elements.

7.2.5 Iterators

Template class enumerable thread specific supports random access iterators, which
enable iteration over the set of all elements in the container.

7.2.5.1 iterator begin()

Returns

iterator pointing to beginning of the set of elements.

7252 iterator end()

Returns

iterator pointing to end of the set of elements.

7253 const_iterator begin() const

Returns

const_iterator pointing to beginning of the set of elements.

Reference Manual 231

7254 const_iterator end() const

Returns

const_iterator pointing to the end of the set of elements.

7.3 flattened2d Template Class

Summary

Adaptor that provides a flattened view of a container of containers.

Syntax
template<typename Container>
class flattened2;

template <typename Container>
flattened2d<Container> flatten2d(const Container &c);

template <typename Container>
flattened2d<Container> flatten2d/(
const Container &c,
const typename Container::const iterator b,
const typename Container::const iterator e);

Header
#include "tbb/enumerable thread specific.h"

Description

A flattened2d provides a flattened view of a container of containers. Iterating from
begin () to end () visits all of the elements in the inner containers. This can be useful
when traversing a enumerable thread specific whose elements are containers.

The utility function flatten2d creates a flattened2d object from a container.
Example

The following code shows a simple example usage of flatten2d and flattened2d.
Each thread collects the values of i that are evenly divisible by x in a thread-local
vector. In main, the results are printed by using a flattened2d to simplify the
traversal of all of the elements in all of the local vectors.

#include <iostream>

232 315415-016US

Thread Local Storage I n tel 0

#include <utility>
#include <vector>

#include "tbb/task scheduler init.h"
#include "tbb/enumerable thread specific.h"
#include "tbb/parallel for.h"

#include "tbb/blocked range.h"

using namespace tbb;

// A VecType has a separate std::vector<int> per thread
typedef enumerable thread specific< std::vector<int> > VecType;
VecType MyVectors;

int K = 1000000;

struct Func {
void operator () (const blocked range<int>& r) const {
VecType: :reference v = MyVectors.local();
for (int i=r.begin(); i'!'=r.end(); ++1i)
if(i%k==0)
v.push back(i);

}:

int main() {
parallel for (blocked range<int>(0, 100000000),
Func());

flattened2d<VecType> flat view = flatten2d(MyVectors);
for(flattened2d<VecType>::const iterator
i = flat view.begin(); i != flat view.end(); ++1i)
cout << *i << endl;
return 0;

Members
namespace tbb {

template<typename Container>
class flattened2d {

public:
// Basic types

Reference Manual 233

typedef
typedef
typedef
typedef
typedef
typedef
typedef
typedef

typedef
typedef

implementation-dependent
implementation-dependent
implementation-dependent
implementation-dependent
implementation-dependent
implementation-dependent
implementation-dependent
implementation-dependent

implementation-dependent
implementation-dependent

flattened2d(const Container& c

flattened2d(const Containers c,

typename Container:
typename Container:

iterator begin();

iterator end();

const iterator begin() const;

const iterator end() const;

size type size () const;

}:

template <typename Container>
flattened2d<Container> flatten2d(const Container &c);

template <typename Container>
flattened2d<Container> flatten2d/(
const Container &c,

size type;

difference type;

allocator type;
value type;
reference;

const reference;

pointer;
const _pointer;

iterator;
const iterator;

const typename Container::const iterator first,

const typename Container::const iterator last);

7.3.1 Whole Container Operations

Safety

:const_iterator first,
:const_iterator last);

These operations must not be invoked concurrently on the same flattend2d.

234

315415-016US

Thread Local Storage i n tel 0]

7.3.1.1 flattened2d(const Container& c)

Effects

Constructs a flattened2d representing the sequence of elements in the inner
containers contained by outer container c.

73.1.2 flattened2d(const Container& c, typename
Container:const_iterator first, typename
Container:const_iterator last)

Effects

Constructs a flattened2d representing the sequence of elements in the inner containers
in the half-open intervale [first, last) of Container c.

7.3.2 Concurrent Operations

Safety

These operations may be invoked concurrently on the same flattened2d.
7.3.2.1 size_type size() const

Returns

The sum of the sizes of the inner containers that are viewable in the flattened2d.

7.3.3 Iterators

Template class flattened2d supports foward iterators only.

7.3.3.1 iterator begin()

Returns

iterator pointing to beginning of the set of local copies.

7332 iterator end()

Returns

iterator pointing to end of the set of local copies.

Reference Manual 235

236

7333 const_iterator begin() const

Returns

const_iterator pointing to beginning of the set of local copies.

7334 const_iterator end() const

Returns

const_iterator pointing to the end of the set of local copies.

734 Utility Functions

template <typename Container> flattened2d<Container> flatten2d(const Container
&c, const typename Container::const_iterator b, const typename
Container::const_iterator e)

Returns

Constructs and returns a flattened2d that provides iterators that traverse the elements
in the containers within the half-open range [b, e) of Container c.

template <typename Container> flattened2d(const Container &c)

Returns

Constructs and returns a flattened2d that provides iterators that traverse the elements
in all of the containers within Container c.

315415-016US

Memory Allocation I n tel 0

8 Memory Allocation

This section describes classes related to memory allocation.

8.1 Allocator Concept

The allocator concept for allocators in Intel® Threading Building Blocks is similar to the
"Allocator requirements" in Table 32 of the ISO C++ Standard, but with further
guarantees required by the ISO C++ Standard (Section 20.1.5 paragraph 4) for use
with ISO C++ containers. Table 31 summarizes the allocator concept. Here, A and B
represent instances of the allocator class.

Table 31: Allocator Concept

Pseudo-Signature

Semantics

typedef T* A::pointer

Pointer to T.

typedef const T* A::const pointer

Pointer to const T.

typedef T& A::reference

Reference to T.

typedef const T& A::const reference

Reference to const T.

typedef T A::value type

Type of value to be
allocated.

typedef size t A::size type

Type for representing
number of values.

typedef ptrdiff t A::difference type

Type for representing pointer
difference.

template<typename U> struct rebind ({
typedef A<U> A::other;
}i

Rebind to a different type U

A () throw()

Default constructor.

A(const A&) throw()

Copy constructor.

template<typename U> A(const A&)

Rebinding constructor.

~A () throw()

Destructor.

T* A::address(T& x) const

Take address.

const T* A::const address(const T& x)

const

Take const address.

T* A::allocate(size type n, const void*

hint=0)

Allocate space for n values.

void A::deallocate(T* p, size t n)

Deallocate n values.

size type A::max size() const throw()

Maximum plausible

Reference Manual

237

TIP:

238

Pseudo-Signature Semantics
argument to method
allocate.

void A::construct(T* p, const T& value) new (p) T (value)
void A::destroy(T* p) p->T::~T()
bool operator==(const A&, const B&) Return true.
bool operator!=(const A&, const B&) Return false.

Model Types

Template classes tbb_allocactor (8.2), scalable allocator (8.3), and
cached aligned allocator (8.4), and zero allocator (8.5) model the Allocator
concept.

8.2 tbb_allocator Template Class

Summary

Template class for scalable memory allocation if available; possibly non-scalable
otherwise.

Syntax

template<typename T> class tbb allocator

Header
#include "tbb/tbb allocator.h"

Description

A tbb_allocator allocates and frees memory via the Intel® TBB malloc library if it is
available, otherwise it reverts to using malloc and free.

Set the environment variable TBB_VERSION to 1 to find out if the Intel® TBB malloc
library is being used. Details are in Section 3.1.2.

8.3 scalable_allocator Template Class

Summary

Template class for scalable memory allocation.

315415-016US

Memory Allocation I n tel 0

Syntax

template<typename T> class scalable allocator;

Header
#include "tbb/scalable allocator.h"

Description

A scalable allocator allocates and frees memory in a way that scales with the
number of processors. A scalable allocator models the allocator requirements
described in Table 31. Using a scalable allocator in place of std::allocator may
improve program performance. Memory allocated by a scalable allocator should be
freed by a scalable allocator, not by a std::allocator.

CAUTION: The scalable_allocator requires that the tbb malloc library be available. If the library is

missing, calls to the scalable allocator fail. In contrast, tbb_allocator falls back on
malloc and free if the tbbmalloc library is missing.

Members

See Allocator concept (8.1).

Acknowledgement

The scalable memory allocator incorporates McRT technology developed by Intel’s PSL
CTG team.

8.3.1 C Interface to Scalable Allocator

Summary

Low level interface for scalable memory allocation.

Syntax
extern "C" {
// Scalable analogs of C memory allocator
void* scalable malloc(size t size);
void scalable free(void* ptr);
void* scalable calloc(size t nobj, size t size);
void* scalable realloc(void* ptr, size t size);

// Rnalog of msize/malloc size/malloc usable size.
size t scalable msize(void* ptr);

// Scalable analog of posix memalign

Reference Manual 239

int scalable posix memalign(void** memptr,

// Aligned allocation

size t alignment,

void* scalable aligned malloc(size t size,
size t alignment);

void scalable aligned free(void* ptr);

void* scalable aligned realloc(void* ptr,

Header

size t size);

size t size,

size t alignment);

#include "tbb/scalable allocator.h"

Description

These functions provide a C level interface to the scalable allocator. Each routine
scalable_x behaves analogously to library function x. The routines form the two
families shown in Table 32. Storage allocated by a scalable_x function in one family
must be freed or resized by a scalable_x function in the same family, not by a C
standard library function. Likewise storage allocated by a C standard library function
should not be freed or resized by a scalable_x function.

Table 32: C Interface to Scalable Allocator

240

Family Allocation Routine Deallocation Routine Analogous
Library
scalable_malloc
C standard
scalable_calloc -
library
1 scalable_realloc scalable_free
scalable posix memalign POSIX*2*
scalable aligned malloc .
—arigned Microsoft*
2 scalable_aligned_free C run-time
scalable aligned free library

24 See "The Open Group* Base Specifications Issue 6", IEEE* Std 1003.1,
2004 Edition for the definition of posix memalign.

315415-016US

Memory Allocation i n tel 0]

scalable aligned realloc

8.3.1.1 size_t scalable_msize(void* ptr)

Returns

The usable size of the memory block pointed to by ptr if it was allocated by the
scalable allocator. Returns zero if ptr does not point to such a block.

84 cache_aligned_allocator Template
Class

Summary

Template class for allocating memory in way that avoids false sharing.

Syntax

template<typename T> class cache aligned allocator;

Header
#include "tbb/cache aligned allocator.h"

Description

A cache aligned allocator allocates memory on cache line boundaries, in order to
avoid false sharing. False sharing is when logically distinct items occupy the same
cache line, which can hurt performance if multiple threads attempt to access the
different items simultaneously. Even though the items are logically separate, the
processor hardware may have to transfer the cache line between the processors as if
they were sharing a location. The net result can be much more memory traffic than if
the logically distinct items were on different cache lines.

A cache aligned allocator models the allocator requirements described in Table 31.
It can be used to replace a std::allocator. Used judiciously,
cache aligned allocator can improve performance by reducing false sharing.

However, it is sometimes an inappropriate replacement, because the benefit of
allocating on a cache line comes at the price that cache aligned allocator implicitly

adds pad memory. The padding is typically 128 bytes. Hence allocating many small
objects with cache aligned allocator may increase memory usage.

Members
namespace tbb {

Reference Manual 241

template<typename T>

class cache aligned allocator ({

public:
typedef T* pointer;
typedef const T* const pointer;
typedef T& reference;
typedef const T& const reference;
typedef T value type;
typedef size t size type;
typedef ptrdiff t difference type;
template<typename U> struct rebind {

typedef cache aligned allocator<U> other;

bi

#if WING4
char* Charalloc(size type size);
#endif /* WIN64 */

cache aligned allocator () throw();

cache aligned allocator(const cache aligned allocator&)
throw () ;

template<typename U>

cache aligned allocator(const cache aligned allocator<uU>&
) throw() ;

~cache aligned allocator();

pointer address (reference x) const;
const pointer address(const reference x) const;

pointer allocate(size type n, const void* hint=0);
void deallocate(pointer p, size type);
size type max size() const throw();

void construct(pointer p, const T& value);
void destroy(pointer p);

}:

template<>
class cache aligned allocator<void> {
public:
typedef void* pointer;
typedef const void* const pointer;
typedef void value type;
template<typename U> struct rebind {

242 315415-016US

Memory Allocation i n tel 0]

typedef cache aligned allocator<U> other;
bi
bi

template<typename T, typename U>

bool operator==(const cache aligned allocator<T>g,
const cache aligned allocator<uU>é&);

template<typename T, typename U>
bool operator!=(const cache aligned allocator<T>g,
const cache aligned allocator<u>é&);

}

For sake of brevity, the following subsections describe only those methods that differ
significantly from the corresponding methods of std::allocator.

8.4.1 s)ointer allocate(size_type n, const void* hint=0

Effects

Allocates size bytes of memory on a cache-line boundary. The allocation may include
extra hidden padding.

Returns

Pointer to the allocated memory.

8.4.2 void deallocate(pointer p, size_type n)

Requirements

Pointer p must be result of method allocate (n) . The memory must not have been
already deallocated.

Effects

Deallocates memory pointed to by p. The deallocation also deallocates any extra
hidden padding.

Reference Manual 243

8.4.3 char* _Charalloc(size_type size)

NOTE: This method is provided only on 64-bit Windows* OS platforms. It is a non-ISO method
that exists for backwards compatibility with versions of Window's containers that seem
to require it. Please do not use it directly.

8.5 zero_allocator

Summary

Template class for allocator that returns zeroed memory.

Syntax
template <typename T,

template<typename U> class Alloc = tbb allocator>
class zero_allocator: public Alloc<T>;

Header
#include "tbb/tbb allocator.h"

Description

A zero allocator allocates zeroed memory. A zero allocator<T, A> can be
instantiated for any class A that models the Allocator concept. The default for A4 is
tbb allocator. A zero allocator forwards allocation requests to A and zeros the
allocation before returning it.

Members
namespace tbb {

template <typename T, template<typename U> class Alloc =
tbb _allocator>

class zero_allocator : public Alloc<T> {
public:
typedef Alloc<T> base allocator type;
typedef typename base allocator type::value type
value type;
typedef typename base allocator type::pointer pointer;
typedef typename base allocator type::const pointer
const pointer;
typedef typename base allocator type::reference
reference;
typedef typename base allocator type::const reference
const reference;
typedef typename base allocator type::size type

244 315415-016US

Memory Allocation i n tel 0]

size type;
typedef typename base allocator type::difference type
difference type;
template<typename U> struct rebind {
typedef zero allocator<U, Alloc> other;

i

zero_allocator () throw() { }

zero_allocator (const zero allocator &a) throw();
template<typename U>

zero_allocator (const zero allocator<U> &a) throw();

pointer allocate (const size type n, const void* hint=0);

8.6 aligned_space Template Class

Summary

Uninitialized memory space for an array of a given type.

Syntax

template<typename T, size t N> class aligned space;

Header
#include "tbb/aligned space.h"

Description

An aligned space occupies enough memory and is sufficiently aligned to hold an array
TIN]. The client is responsible for initializing or destroying the objects. An

aligned space is typically used as a local variable or field in scenarios where a block
of fixed-length uninitialized memory is needed.

Members
namespace tbb {
template<typename T, size t N>
class aligned space {
public:
aligned space();
~aligned space();
T* begin () ;
T* end();

Reference Manual 245

246

8.6.1 aligned_space()

Effects

None. Does not invoke constructors.

8.6.2 ~aligned_space()

Effects

None. Does not invoke destructors.

8.6.3 T* begin()

Returns

Pointer to beginning of storage.

864 T*end()

Returns
begin () +N

315415-016US

Synchronization

9 Synchronization

The library supports mutual exclusion and atomic operations.

9.1 Mutexes

Mutexes provide MUTual EXclusion of threads from sections of code.

In general, strive for designs that minimize the use of explicit locking, because it can
lead to serial bottlenecks. If explicitly locking is necessary, try to spread it out so that
multiple threads usually do not contend to lock the same mutex.

9.1.1 Mutex Concept

The mutexes and locks here have relatively spartan interfaces that are designed for
high performance. The interfaces enforce the scoped locking pattern, which is widely
used in C++ libraries because:

1. Does not require the programmer to remember to release the lock

2. Releases the lock if an exception is thrown out of the mutual exclusion region
protected by the lock

There are two parts to the pattern: a mutex object, for which construction of a /ock
object acquires a lock on the mutex and destruction of the /ock object releases the
lock. Here’s an example:

{

// Construction of myLock acquires lock on myMutex
M: :scoped lock myLock(myMutex);

actions to be performed while holding the lock
// Destruction of myLock releases lock on myMutex

}

If the actions throw an exception, the lock is automatically released as the block is
exited.

Table 33 shows the requirements for the Mutex concept for a mutex type M

Reference Manual 247

Table 33:

Mutex Concept

Pseudo-Signature

Semantics

M(Q)

Construct unlocked mutex.

~M()

Destroy unlocked mutex.

typename M::scoped lock

Corresponding scoped-lock type.

M: :scoped lock()

Construct lock without acquiring

mutex.

M: :scoped lock (M&)

Construct lock and acquire lock on

mutex.

M: :~scoped lock()

Release lock (if acquired).

M: :scoped lock::acquire (M&)

Acquire lock on mutex.

bool M::scoped lock::try acquire (M&)

Try to acquire lock on mutex. Return
true if lock acquired, false otherwise.

M: :scoped lock::release()

Release lock.

static const bool M::is rw mutex

false otherwise.

True if mutex is reader-writer mutex;

static const bool
M::is recursive mutex

True if mutex is recursive mutex; false

otherwise.

static const bool M::is fair mutex

True if mutex is fair; false otherwise.

Table 34 summarizes the classes that model the Mutex concept.

Table 34: Mutexes that Model the Mutex Concept
Scalable Fair Reentrant Long Size
Wait
mutex 0s 0s No Blocks >3
dependent dependent words
recursive mutex 0s oS Yes Blocks >3
dependent dependent words
spin mutex No No No Yields 1 byte
queuing mutex v v No Yields 1 word
spin rw mutex No No No Yields 1 word
queuing rw mutex v v No Yields 1 word
null mutex - Yes Yes - empty
null rw mutex - Yes Yes - empty
See the Tutorial, Section 6.1.1, for a discussion of the mutex properties and the
rationale for null mutexes.
9.1.1.1 C++ 200x Compatibility
Classes mutex, recursive mutex, spin mutex, and spin rw mutex support the C++
200x interfaces described in Table 35.
248 315415-016US

Synchronization

Table 35: C++ 200x Methods Available for Some Mutexes.

Pseudo-Signature

Semantics

void M::lock ()

Acquire lock.

bool M::try lock()

Try to acquire lock on

mutex. Return true if lock

acquired, false otherwise.

void M::unlock ()

Release lock.

class lock guard<M>

class unique lock<M>

See Section 9.4

Table 36:

Classes mutex and recursive mutex also provide the C++ 200x idiom for accessing
their underlying OS handles, as described in Table 36.

Native handle interface (M is mutex Or recursive mutex).

Pseudo-Signature

Semantics

M::native handle type

Native handle type.

Operating system

Native handle type

Windows* operating
system

LPCRITICAL SECTION

Other operationing
systems

(pthread mutex*)

native handle type
M: :native handle ()

Get underlying native

handle of mutex M.

As an extension to C++ 200x, class spin_rw mutex also has methods read lock()
and try read lock() for corresponding operations that acquire reader locks.

9.1.2

Summary

mutex Class

Class that models Mutex Concept using underlying OS locks.

Syntax

class mutex;

Header

#include "tbb/mutex.h"

Reference Manual

249

250

Description

A mutex models the Mutex Concept (9.1.1). It is a wrapper around OS calls that
provide mutual exclusion. The advantages of using mutex instead of the OS calls are:

e Portable across all operating systems supported by Intel® Threading Building Blocks.

e Releases the lock if an exception is thrown from the protected region of code.

Members

See Mutex Concept (9.1.1).

9.1.3 recursive_mutex Class

Summary

Class that models Mutex Concept using underlying OS locks and permits recursive
acquisition.

Syntax

class recursive mutex;

Header
#include "tbb/recursive mutex.h"

Description

A recursive mutex is similar to a mutex (9.1.2), except that a thread may acquire
multiple locks on it. The thread must release all locks on a recursive mutex before
any other thread can acquire a lock on it.

Members

See Mutex Concept (9.1.1).

9.1.4 spin_mutex Class

Summary

Class that models Mutex Concept using a spin lock.

Syntax

class spin mutex;

315415-016US

Synchronization

intel)

Header
#include "tbb/spin mutex.h"

Description

A spin_mutex models the Mutex Concept (9.1.1). A spin _mutex is not scalable, fair, or
recursive. It is ideal when the lock is lightly contended and is held for only a few
machine instructions. If a thread has to wait to acquire a spin mutex, it busy waits,
which can degrade system performance if the wait is long. However, if the wait is
typically short, a spin mutex significantly improve performance compared to other
mutexes.

Members

See Mutex Concept (9.1.1).

9.1.5 queuing_mutex Class

Summary

Class that models Mutex Concept that is fair and scalable.

Syntax

class queuing mutex;

Header
#include "tbb/queuing mutex.h"

Description

A queuing mutex models the Mutex Concept (9.1.1). A queuing mutex is scalable, in

the sense that if a thread has to wait to acquire the mutex, it spins on its own local
cache line. A queuing mutex is fair. Threads acquire a lock on a mutex in the order
that they request it. A queuing mutex is not recursive.

The current implementation does busy-waiting, so using a queuing mutex may
degrade system performance if the wait is long.

Members

See Mutex Concept (9.1.1).

Reference Manual 251

Table 37:

9.16

ReaderWriterMutex Concept

The ReaderWriterMutex concept extends the Mutex Concept to include the notion of
reader-writer locks. It introduces a boolean parameter write that specifies whether a
writer lock (write =true) or reader lock (write =false) is being requested. Multiple
reader locks can be held simultaneously on a ReaderWriterMutex if it does not have a
writer lock on it. A writer lock on a ReaderWriterMutex excludes all other threads from

holding a lock on the mutex at the same time.

Table 37 shows the requirements for a ReaderWriterMutex rw. They form a superset of

the Mutex Concept (9.1.1).

ReaderWriterMutex Concept

Pseudo-Signature

Semantics

RW ()

Construct unlocked mutex.

~RW ()

Destroy unlocked mutex.

typename RW::scoped lock

Corresponding scoped-lock
type.

RW: : scoped lock()

Construct lock without
acquiring mutex.

RW: :scoped lock (RW&, bool write=true)

Construct lock and acquire
lock on mutex.

RW: :~scoped lock()

Release lock (if acquired).

RW: :scoped lock::acquire (RW&,
bool write=true)

Acquire lock on mutex.

bool RW::scoped lock::try acquire (RWg,
bool write=true)

Try to acquire lock on mutex.
Return true if lock acquired,
false otherwise.

RW: :scoped lock::release()

Release lock.

bool RW::scoped lock::upgrade to writer()

Change reader lock to writer
lock.

bool
RW: :scoped lock::downgrade to reader ()

Change writer lock to reader
lock.

static const bool RW::is rw mutex = true

True.

static const bool RW::is recursive mutex

True if mutex is reader-writer
mutex; false otherwise. For all
current reader-writer
mutexes, false.

static const bool RW::is fair mutex

True if mutex is fair; false
otherwise.

252

The following subsections explain the semantics of the ReaderWriterMutex concept in

detail.

315415-016US

Synchronization

intel)

Model Types

Classes spin_rw mutex (9.1.7) and queuing rw mutex (9.1.8) model the
ReaderWriterMutex concept.

9.1.6.1 ReaderWriterMutex()
Effects
Constructs unlocked ReaderWriterMutex.
9.1.6.2 ~ReaderWriterMutex()

Effects

Destroys unlocked ReaderWriterMutex. The effect of destroying a locked
ReaderWriterMutex is undefined.

9.16.3 ReaderWriterMutex::scoped_lock()
Effects

Constructs a scoped_lock object that does not hold a lock on any mutex.

9.164 ReaderWriterMutex::scoped_lock(ReaderWriterMutex& rw,
bool write =true)

Effects

Constructs a scoped_lock object that acquires a lock on mutex rw. The lock is a writer
lock if write is true; a reader lock otherwise.

9.165 ReaderWriterMutex:~scoped_lock()

Effects

If the object holds a lock on a ReaderWriterMutex, releases the lock.

9.1.6.6 void ReaderWriterMutex: scoped_lock:: acquire(
ReaderWriterMutex& rw, bool write=true)

Effects

Acquires a lock on mutex rw. The lock is a writer lock if write is true; a reader lock
otherwise.

Reference Manual 253

254

9.1.6.7 bool ReaderWriterMutex:: scoped_lock::try_acquire(
ReaderWriterMutex& rw, bool write=true)

Effects

Attempts to acquire a lock on mutex rw. The lock is a writer lock if write is true; a
reader lock otherwise.

Returns

true if the lock is acquired, false otherwise.

9.16.8 void ReaderWriterMutex:: scoped_lock::release()

Effects

Releases lock. The effect is undefined if no lock is held.
9.1.69 bool ReaderWriterMutex:: scoped_lock::.upgrade_to_writer()

Effects

Changes reader lock to a writer lock. The effect is undefined if the object does not
already hold a reader lock.

Returns

false if lock was released in favor of another upgrade request and then reacquired;
true otherwise.

9.16.10 bool ReaderWriterMutex::
scoped_lock::downgrade_to_reader()

Effects

Changes writer lock to a reader lock. The effect is undefined if the object does not
already hold a writer lock.

Returns
false if lock was released and reacquired; true otherwise.

Intel's current implementations for spin rw mutex and queuing rw mutex always
return true. Different implementations might sometimes return false.

315415-016US

Synchronization

intel)

9.1.7 spin_rw_mutex Class

Summary

Class that models ReaderWriterMutex Concept that is unfair and not scalable.

Syntax

class spin rw mutex;

Header
#include "tbb/spin rw mutex.h"

Description

A spin_rw _mutex models the ReaderWriterMutex Concept (9.1.6). A spin rw mutex is
not scalable, fair, or recursive. It is ideal when the lock is lightly contended and is held
for only a few machine instructions. If a thread has to wait to acquire a
spin_rw_mutex, it busy waits, which can degrade system performance if the wait is
long. However, if the wait is typically short, a spin _rw mutex significantly improve
performance compared to other mutexes..

Members

See ReaderWriterMutex concept (9.1.6).

9.1.8 queuing_rw_mutex Class

Summary

Class that models ReaderWriterMutex Concept that is fair and scalable.

Syntax

class queuing rw mutex;

Header

#include "tbb/queuing rw mutex.h"

Description

A queuing rw mutex models the ReaderWriterMutex Concept (9.1.6). A

queuing rw_mutex is scalable, in the sense that if a thread has to wait to acquire the
mutex, it spins on its own local cache line. A queuing rw mutex is fair. Threads acquire
a lock on a queuing rw mutex in the order that they request it. A queuing rw mutex
is not recursive.

Reference Manual 255

256

Members

See ReaderWriterMutex concept (9.1.6).

9.1.9 null_mutex Class

Summary

Class that models Mutex Concept buts does nothing.

Syntax

class null mutex;

Header
#include "tbb/null mutex.h"

Description

A null mutex models the Mutex Concept (9.1.1) syntactically, but does nothing. It is
useful for instantiating a template that expects a Mutex, but no mutual exclusion is
actually needed for that instance.

Members

See Mutex Concept (9.1.1).

9.1.10 null_rw_mutex Class

Summary

Class that models ReaderWriterMutex Concept but does nothing.

Syntax

class null rw mutex;

Header
#include "tbb/null rw mutex.h"

Description

A null rw mutex models the ReaderWriterMutex Concept (9.1.6) syntactically, but
does nothing. It is useful for instantiating a template that expects a
ReaderWriterMutex, but no mutual exclusion is actually needed for that instance..

315415-016US

Synchronization

Table 38:

Members

See ReaderWriterMutex concept (9.1.6).

9.2 atomic Template Class

Summary

Template class for atomic operations.

Syntax

template<typename T> atomic;

Header
#include "tbb/atomic.h"

Description

An atomic<T> supports atomic read, write, fetch-and-add, fetch-and-store, and
compare-and-swap. Type T may be an integral type, enumeration type, or a pointer
type. When T is a pointer type, arithmetic operations are interpreted as pointer
arithmetic. For example, if x has type atomic<float*> and a float occupies four bytes,
then ++x advances x by four bytes. Arithmetic on atomic<T> is not allowed if T is an
enumeration type, void*, or bool.

Some of the methods have template method variants that permit more selective
memory fencing. On IA-32 and Intel® 64 architecture processors, they have the same
effect as the non-templated variants. On IA-64 architecture (Itanium®) processors,
they may improve performance by allowing the memory subsystem more latitude on
the orders of reads and write. Using them may improve performance. Table 38 shows
the fencing for the non-template form.

Operation Order Implied by Non-Template Methods
Kind Description Default For
acquire Operations after the atomic operation never read

move over it.

release Operations before the atomic operation write
never move over it.

sequentially Operations on either side never move over it fetch and store,
consistent and furthermore, the sequentially consistent fetch and add,

atomic operations have a global order.
compare and swap

Reference Manual 257

CAUTION:

258

The copy constructor for class atomic<T> is not atomic. To atomically copy an
atomic<T>, default-construct the copy first and assign to it. Below is an example that

shows the difference.

atomic<T> y(x); // Not atomic
atomic<T> z;

Z=X; // Atomic assignment

The copy constructor is not atomic because it is compiler generated. Introducing any
non-trivial constructors might remove an important property of atomic<T>:
namespace scope instances are zero-initialized before namespace scope dynamic
initializers run. This property can be essential for code executing early during program

startup.

To create an atomic<T> with a specific value, default-construct it first, and afterwards

assign a value to it.

Members
namespace tbb {
enum memory semantics {
acquire,
release

}:

struct atomic<T> {
typedef T value type;

template<memory semantics M>
value type compare and swap (

value type compare and swap (

template<memory semantics M>

value type
value type

value type
value type

new value,

comparand) ;

new value,

comparand) ;

value type fetch and store(value type new value);

value type fetch and store(value type new value);

operator value type () const;

value type operator=(value type new value);

atomic<T>& operator=(const atomic<T>& value);

// The following members exist only if T is an integral

// or pointer type.

315415-016US

Synchronization

template<memory semantics
value type fetch and add(

value type fetch and add(

template<memory semantics

ntel.

M>
value type addend);

value type addend);

M>

value type fetch and increment () ;
value type fetch and increment () ;

template<memory semantics M>
value type fetch and decrement () ;

value type fetch and decrement () ;

value type operator+=(value type);
value type operator-=(value type);
value type operator++();

value type operator++ (int);

value type operator--();

value type operator--(int);

}:
}

So that an atomic<T*> can be used like a pointer to T, the specialization atomic<T*>
also defines:

T* operator->() const;

9.2.1

Description

memory_semantics Enum

Defines values used to select the template variants that permit more selective control
over visibility of operations (see Table 38).

9.2.2 value_type fetch_and_add(value_type addend

Effects

Let x be the value of *this. Atomically updates x = x + addend.

Reference Manual 259

Returns

Original value of x.

9.2.3 value_type fetch_and_increment()

Effects

Let x be the value of *this. Atomically updates x = x + 1.

Returns

Original value of x.

9.24 value_type fetch_and_decrement()

Effects

Let x be the value of *this. Atomically updates x = x - 1.

Returns

Original value of x.

9.2.5 value_type compare_and_swap

value type compare and swap(value type new value, value type
comparand)

Effects

Let x be the value of *this. Atomically compares x with comparand, and if they are
equal, sets x=new_value.

Returns

Original value of x.

9.2.6 value_t¥pe fetch_and_store(value_type
new_value)

Effects

Let x be the value of *this. Atomically exchanges old value of x with new_value.

260 315415-016US

Synchronization

Returns

Original value of x.

9.3 PPL Compatibility

Classes critical section and reader writer lock exist for compatibility with the
Microsoft Parallel Patterns Library (PPL). They do not follow all of the conventions of
other mutexes in Intel® Threading Building Blocks.

9.3.1 critical_section

Summary

A PPL-compatible mutex.

Syntax

class critical section;

Header
#include "tbb/critical section.h"

Description

A critical_section implements a PPL critical section. Its functionality is a subset of
the functionality of a tbb: :mutex.

Members
namespace tbb {
class critical section ({
public:
critical section();
~critical section();
void lock () ;
bool try lock();
void unlock () ;

class scoped lock {

public:
scoped lock(critical section& mutex);
~scoped lock();

}i

Reference Manual 261

262

9.3.2 reader_writer_lock Class

Summary

A PPL-compatible reader-writer mutex that is scalable and gives preference to writers.

Syntax

class reader writer lock;

Header
#include "tbb/reader writer lock.h"

Description

A reader writer lock implements a PPL-compatible reader-writer mutex. A

reader writer lock is scalable and nonrecursive. The implementation handles lock
requests on a first-come first-serve basis except that writers have preference over
readers. Waiting threads busy wait, which can degrade system performance if the wait
is long. However, if the wait is typically short, a reader writer lock can provide
performance competitive with other mutexes.

A reader writer lock models part of the ReaderWriterMutex Concept (9.1.6) and
part of the C++ 200x compatibility interface (9.1.1.1). The major differences are:

e The scoped interfaces support only strictly scoped locks. For example, the method
scoped lock::release () is not supported.

e Reader locking has a separate interface. For example, there is separate scoped
interface scoped_lock_read for reader locking, instead of a flag to distinguish the
reader cases as in the ReaderWriterMutex Concept.

Members
namespace tbb {
class reader writer lock {
public:
reader writer lock();
~reader writer lock();
void lock();
void lock read();
bool try lock();
bool try lock read();
void unlock();

class scoped lock {
public:

315415-016US

Synchronization

Table 39:

scoped lock(reader writer lock& mutex);

~scoped_lock();
i

class scoped lock read {

public:

scoped lock read(reader writer locké& mutex);

~scoped lock read();

i

Table 39 summarizes the semantics.

reader writer_ lock Members Summary

Member

Semantics

reader writer lock()

Construct unlocked mutex.

~reader writer lock()

Destroy unlocked mutex.

void reader writer lock::lock()

Acquire write lock on mutex.

void reader writer lock::lock read()

Acquire read lock on mutex.

bool reader writer lock::try lock()

Try to acquire write lock on
mutex. Returns true if lock
acquired, false otherwise.

bool reader writer lock::try lock read()

Try to acquire read lock on mutex.
Returns true if lock acquired, false
otherwise.

reader writer lock::unlock ()

Release lock.

reader writer lock::scoped lock

(reader writer locké& m)

Acquire write lock on mutex m.

reader writer lock::~scoped lock()

Release write lock (if acquired).

reader writer lock::scoped lock read

(reader writer locké& m)

Acquire read lock on mutex m.

reader writer lock::~scoped lock read()

Release read lock (if acquired).

94 (C++ 200x Synchronization

Intel® TBB approximates a portion of C++ 200x interfaces for condition variables and
scoped locking. The approximation is based on the C++0x working draft N3000. The

major differences are:

e The implementation uses the tbb::tick count interface instead of the C++ 200x

<chrono> interface.

Reference Manual

263

e The implementation throws std: :runtime_error instead of a C++ 200x
std::system error.

e The implementation omits or approximates features requiring C++ 200x language
support such as constexpr Or explicit operators

e The implementation works in conjunction with tbb: :mutex wherever the C++ 200x
specification calls for a std: :mutex. See 9.1.1.1 for more about C++ 200x mutex
support in Intel® TBB.

See the working draft N3000 for a detailed descriptions of the members.
CAUTION: Implementations may change if the C++ 200x specification changes.

CAUTION: When support for std::system error becomes available, implementations may throw

std::system error instead of std: :runtime error.

The library defines the C++ 200x interfaces in hamespace std, not namespace tbb, as
explained in Section 2.4.7.

Header
#include “tbb/compat/condition variable”

Members

namespace std {
struct defer lock t { };
struct try to lock t { };
struct adopt lock t { };
const defer lock t defer lock = {};
const try to lock t try to lock = {};
const adopt lock t adopt lock = {};

template<typename M>
class lock guard {
public:
typedef M mutex type;
explicit lock guard(mutex type& m);
lock guard(mutex type& m, adopt lock t);
~lock guard();
}i

template<typename M>
class unique lock: no_copy {
public:

typedef M mutex type;

unique_ lock();
explicit unique lock (mutex type& m);

264 315415-016US

Synchronization i n tel 0

unique lock (mutex type& m, defer lock t);
unique lock (mutex type& m, try to lock t));

unique lock

(
(
(mutex type& m, adopt lock t);
(

unique lock (mutex type& m, const tick count::interval t
&i);
~unique_ lock();

void lock() ;

bool try lock();
bool try lock for(const tick count::interval t &i);

void unlock () ;

void swap (unique locké& u);
mutex type* release();
bool owns lock () const;
operator bool () const;
mutex type* mutex () const;

}:

template<typename M>
void swap (unique lock<M>& x, unique lock<M>& vy);

enum cv_status {no timeout, timeout};
class condition variable : no_copy {
public:

condition variable();

~condition variable();

void notify one();
void notify all();

void wait (unique lock<mutex>& lock);

template <class Predicate>
void wait (unique lock<mutex>& lock, Predicate pred);

cv_status wait for (unique lock<mutex>& lock,
const tick count::interval t& 1i);

template<typename Predicate>

Reference Manual 265

bool wait for (unique lock<mutex>& lock,
const tick count::interval t &i,
Predicate pred);

typedef implementation-defined native handle type;
native handle type native handle();
bi
} // namespace std

266 315415-016US

Timing

intel)

10 Timing

Parallel programming is about speeding up wall clock time, which is the real time that it
takes a program to run. Unfortunately, some of the obvious wall clock timing routines
provided by operating systems do not always work reliably across threads, because the
hardware thread clocks are not synchronized. The library provides support for timing
across threads. The routines are wrappers around operating services that we have
verified as safe to use across threads.

10.1 tick_count Class

Summary

Class for computing wall-clock times.

Syntax

class tick count;

Header
#include "tbb/tick count.h"

Description

A tick count is an absolute timestamp. Two tick count objects may be subtracted to
compute a relative time tick_count::interval_t, which can be converted to seconds.

Example
using namespace tbb;

void Foo () {
tick count t0 = tick count::now();
...action being timed...

tick count tl = tick count::now();

printf ("time for action = %g seconds\n", (tl-t0).seconds());
}
Members

namespace tbb {

class tick count ({

Reference Manual 267

CAUTION:

268

public:
class interval t;
static tick count now();

i

tick count::interval t operator-(const tick counté& tl,

const tick counté& t0);

} // tbb

10.1.1 static tick_count tick_count:now()

Returns

Current wall clock timestamp.

On Microsoft Windows* operating systems, the current implementation uses the
function QueryPerformanceCounter. Some systems may have bugs in their basic

input/output system (BIOS) or hardware abstraction layer (HAL) that cause different

processors to return different results.

10.1.2 tick_count:interval_t operator—(const
tick_count& t1, const tick_count& t0)

Returns

Relative time that t1 occurred after t0.

10.1.3 tick_count:interval_t Class

Summary

Class for relative wall-clock time.

Syntax

class tick count::interval t;

Header
#include "tbb/tick count.h"

Description

A tick count::interval t represents relative wall clock duration.

315415-016US

Timing

Members
namespace tbb {

class tick count::interval t {
public:
interval t();
explicit interval t(double sec);

double seconds () const;
interval t operator+=(const interval t& i);
interval t operator-=(const interval t& i);

}i

tick count::interval t operator+(
const tick count::interval t& i,
const tick count::interval t& j);

tick count::interval t operator-(
const tick count::interval t& i,

const tick count::interval t& j);

} // namespace tbb

10.1.3.1 interval_t()
Effects

Constructs interval t representing zero time duration.

10.1.3.2 interval_t(double sec)

Effects

Constructs interval_t representing specified number of seconds.
10.1.3.3 double seconds() const

Returns

Time interval measured in seconds.
10.1.34 interval_t operator+=(const interval_t&i)

Effects

*this = *this + 1

Reference Manual

ntel)

269

Returns
Reference to *this.
10.1.3.5 interval_t operator—=(const interval_t& i)

Effects

*this = *this — i
Returns

Reference to *this.

10.1.3.6 interval_t operator+ (const interval_t& i, const interval_t&
i)
Returns

Interval_t representing sum of intervals / and j.

10.1.3.7 interval_t operator- (const interval_t& i, const interval_t& j

)
Returns

Interval t representing difference of intervals i and j.

270 315415-016US

Task Groups I n tel ‘

11 Task Groups

This chapter covers the high-level interface to the task scheduler. Chapter 12 covers
the low-level interface. The high-level interface lets you easily create groups of
potentially parallel tasks from functors or lambda expressions. The low-level interface
permits more detailed control, such as control over exception propogation and affinity.

Summary

High-level interface for running functions in parallel.

Syntax

template<typename Func> task handle;

template<typename Func> task handle<Func> make task(const Funcé& £
) ;

enum task group status;

class task group;

class structured task group;

bool is current task group canceling();

Header
#include "tbb/task group.h"

Requirements

Functor arguments for various methods in this chapter should meet the requirements
in Table 40.

Table 40: Requirements on functor arguments

Pseudo-Signature Semantics
Func::Func (const Funcg) Copy constructor.
Func::~Func () Destructor.
void Func::operator () () const; Evaluate functor.

Reference Manual 271

11.1 task_group Class

Description

A task _group represents concurrent execution of a group of tasks. Tasks may be
dynamically added to the group as it is executing.

Example with Lambda Expressions
#include "tbb/task group.h"

using namespace tbb;

int Fib (int n) {

1if(n<2) {
return n;

} else {
int x, y;
task group g;
g.run([&] {x=Fib(n-1);}); //spawn atask
g.run([&] {y=Fib(n-2);}); //spawn another task
g.wait(); /I wait for both tasks to complete

return x+y;

}

CAUTION: Creating a large number of tasks for a single task_group is not scalable, because task
creation becomes a serial bottleneck. If creating more than a small number of
concurrent tasks, consider using parallel for (4.4) or parallel invoke (4.12)
instead, or structure the spawning as a recursive tree.

Members
namespace tbb {
class task group {
public:
task group () ;
~task group () ;

template<typename Func>
void run(const Func& f);

template<typename Func>
void run(task handle<Func>é& handle);

template<typename Func>

272 315415-016US

Task Groups

®

(intel

void run and wait(const Funcé& f);

template<typename Func>
void run and wait(task handle<Func>& handle);

task group status wait();

bool is canceling();
void cancel () ;

11.1.1 task_group()

Constructs an empty task group.

11.1.2 ~task_group()

Requires

Method wait must be called before destroying a task group, otherwise the destructor
throws an exception.

11.1.3 template<typename Func> void run(const
Func& f)

Effects

Spawn a task that computes £ () and return immediately.

11.1.4 template<typename Func> void run (
task_handle<Func>& handle);

Effects

Spawn a task that computes handle () and return immediately.

11.1.5 template(tgpename Func> void run_and_wait(
const Func&: f)

Effects

Equivalent to {run (f); wait();}, but guarantees that £ runs on the current thread.

Reference Manual 273

NOTE:

NOTE:

274

Template method run_and wait is intended to be more efficient than separate calls to

run and wait.

11.1.6 template<typename Func> void run _and_wait(
task_handle<Func>& handle);

Effects

Equivalent to {run (handle); wait ();}, but guarantees that handie() runs on the
current thread.

Template method run_and wait is intended to be more efficient than separate calls to

run and wait.

11.1.7 task_group_status wait()

Effects

Wait for all tasks in the group to complete or be cancelled.

11.1.8 bool is_canceling()

Returns

True if this task group is cancelling its tasks.

11.1.9 void cancel()

Effects

Cancel all tasks in this task_group.

11.2 task_group_status Enum

A task _group_status represents the status of a task group.

Members
namespace tbb {
enum task group status {

not complete, // Not cancelled and not all tasks in group
have completed.

315415-016US

Task Groups

intel)

complete, // Not cancelled and all tasks in group have
completed
canceled // Task group received cancellation request

)i 8

11.3 task_handle Template Class

Summary

Template class used to wrap a function object in conjunction with class
structured task group.

Description

Class task_handle is used primarily in conjunction with class structured task_group.
For sake of uniformity, class task _group also accepts task_handle arguments.

Members

template<typename Func>

class task _handle {

public:
task handle(const Funcé& f);
void operator () () const;

}:

114 make_task Template Function

Summary

Template function for creating a task _handle from a function or functor.

Syntax
template<typename Func>
task handle<Func> make task(const Funcé& f);

Returns

task handle<Func> (f)

Reference Manual 275

11.5 structured_task_group Class

Description

A structured task group is like a task_group, but has only a subset of the
functionality. It may permit performance optimizations in the future. The restrictions

are:

o Methods run and run_and wait take only task handle arguments, not general
functors.

o Methods run and run_and wait do not copy their task _handle arguments. The
caller must not destroy those arguments until after wait or run_and wait
returns.

o Methods run, run_and wait, cancel, and wait should be called only by the
thread that created the structured task group.

o Method wait (or run_and wait) should be called only once on a given instance
of structured task_group.

Example
The function fork join below evaluates £1 () and £2 (), in parallel if resources permit.

#include "tbb/task group.h"
using namespace tbb;

template<typename Funcl, typename Func2>
void fork join(const Funclé& fl, const Func2& £2) {
structured task group group;

task handle<Funcl> hl (fl);
group.run (hl) ; // spawn a task

task handle<Func2> h2(f2);
group.run (h2) ; // spawn another task

group.wait () ; // wait for both tasks to complete
// now safe to destroy hl and h2

Members

namespace tbb {
class structured task group {
public:

276 315415-016US

Task Groups i n tel °>

structured task group();
~structured task group () ;

template<typename Func>
void run(task handle<Func>& handle);

template<typename Func>
void run and wait(task handle<Func>& handle);

task group status wait();

bool is canceling();
void cancel () ;

11.6 is_current_task_group_canceling
Function

Returns

True if innermost task group executing on this thread is cancelling its tasks.

Reference Manual 277

12 Task Scheduler

Intel Threading Building Blocks (Intel® TBB) provides a task scheduler, which is the
engine that drives the algorithm templates (Section 4) and task groups (Section 11).
You may also call it directly. Using tasks is often simpler and more efficient than using
threads, because the task scheduler takes care of a lot of details.

The tasks are quanta of computation. The scheduler maps these onto physical threads.
The mapping is non-preemptive. Each thread has a method execute (). Once a thread
starts running execute (), the task is bound to that thread until execute () returns.
During that time, the thread services other tasks only when it waits on its predecessor
tasks, at which time it may run the predecessor tasks, or if there are no pending
predecessor tasks, the thread may service tasks created by other threads.

The task scheduler is intended for parallelizing computationally intensive work. Because
task objects are not scheduled preemptively, they should generally avoid making calls
that might block for long periods, because meanwhile that thread is precluded from
servicing other tasks.

CAUTION: There is no guarantee that potentially parallel tasks actually execute in parallel,
because the scheduler adjusts actual parallelism to fit available worker threads. For
example, given a single worker thread, the scheduler creates no actual parallelism. For
example, it is generally unsafe to use tasks in a producer consumer relationship,
because there is no guarantee that the consumer runs at all while the producer is
running.

Potential parallelism is typically generated by a split/join pattern. Two basic patterns of
split/join are supported. The most efficient is continuation-passing form, in which the
programmer constructs an explicit “continuation” task. The parent task creates child
tasks and specifies a continuation task to be executed when the children complete. The
continuation inherits the parent’s ancestor. The parent task then exits; it does not
block on its children. The children subsequently run, and after they (or their
continuations) finish, the continuation task starts running. Figure 7 shows the steps.
The running tasks at each step are shaded.

A
]

continuation

parent continuation
: Y
v :l/,\

child child

+ A
[
1

278 315415-016US

Figure 7: Continuation-passing Style

Explicit continuation passing is efficient, because it decouples the thread’s stack from
the tasks. However, it is more difficult to program. A second pattern is "blocking style",
which uses implicit continuations. It is sometimes less efficient in performance, but
more convenient to program. In this pattern, the parent task blocks until its children
complete, as shown in Figure 8.

A A A A
] [1]

> —> | I
) 4 \4

[child] [child] [child} [child]

Figure 8: Blocking Style

The convenience comes with a price. Because the parent blocks, its thread’s stack
cannot be popped yet. The thread must be careful about what work it takes on,
because continually stealing and blocking could cause the stack to grow without bound.
To solve this problem, the scheduler constrains a blocked thread such that it never
executes a task that is less deep than its deepest blocked task. This constraint may
impact performance because it limits available parallelism, and tends to cause threads
to select smaller (deeper) subtrees than they would otherwise choose.

12.1 Scheduling Algorithm

The scheduler employs a technique known as work stealing. Each thread keeps a
"ready pool" of tasks that are ready to run. The ready pool is structured as a deque
(double-ended queue) of task objects that were spawned. Additionally, there is a

shared queue of task objects that were enqueued. The distinction between spawning a
task and enqueuing a task affects when the scheduler runs the task.

After completing a task t, a thread chooses its next task according to the first
applicable rule below:

The task returned by t.execute()

The successor of t if t was its last completed predecessor.

A task popped from the end of the thread’s own deque.

A task with affinity for the thread.

A task popped from approximately the beginning of the shared queue.

o AN

A task popped from the beginning of another randomly chosen thread’s deque.

Reference Manual 279

280

When a thread spawns a task, it pushes it onto the end of its own deque. Hence rule
(3) above gets the task most recently spawned by the thread, whereas rule (6) gets
the least recently spawned task of another thread.

When a thread enqueues a task, it pushes it onto the end of the shared queue. Hence
rule (5) gets one of the less recently enqueued tasks, and has no preference for tasks
that are enqueued. This is in contrast to spawned tasks, where by rule (3) a thread
prefers its own most recently spawned task.

Note the “approximately” in rule (5). For scalability reasons, the shared queue does
not guarantee precise first-in first-out behavior. If strict first-in first-out behavior is
desired, put the real work in a separate queue, and create tasks that pull work from
that queue. The chapter “"Non-Preemptive Priorities” in the Intel® TBB Design Patterns
manual explains the technique.

It is important to understand the implications of spawning versus enqueuing for nested
parallelism.

e Spawned tasks emphasize locality. Enqueued tasks emphasize fairness.

e For nested parallelism, spawned tasks tend towards depth-first execution, whereas
enqueued tasks cause breadth-first execution. Because the space demands of
breadth-first execution can be exponentially higher than depth-first execution,
enqueued tasks should be used with care.

e A spawned task might never be executed until a thread explicitly waits on the task to
complete. An enqueued tasks will eventually run if all previously enqueued tasks
complete. In the case where there would ordinarily be no other worker thread to
execute an enqueued task, the scheduler creates an extra worker.

In general, used spawned tasks unless there is a clear reason to use an enqueued task.
Spawned tasks yield the best balance between locality of reference, space efficiency,
and parallelism. The algorithm for spawned tasks is similar to the work-stealing
algorithm used by Cilk (Blumofe 1995). The notion of work-stealing dates back to the
1980s (Burton 1981). The thread affinity support is more recent (Acar 2000).

12.2 task_scheduler_init Class

Summary

Class that explicity represents thread's interest in task scheduling services.

Syntax

class task scheduler init;

Header
#include "tbb/task scheduler init.h"

315415-016US

Task Scheduler

TIP:

intel)

Description

Using task_scheduler init is optional in Intel® TBB 2.2. By default, Intel® TBB 2.2
automatically creates a task scheduler the first time that a thread uses task scheduling
services and destroys it when the last such thread exits.

An instance of task scheduler init can be used to control the following aspects of
the task scheduler:

¢ When the task scheduler is constructed and destroyed.
e The number of threads used by the task scheduler.

e The stack size for worker threads.

To override the automatic defaults for task scheduling, a task _scheduler init must
become active before the first use of task scheduling services.

A task scheduler init is either "active" or "inactive".

The default constructor for a task_scheduler init activates it, and the destructor
deactivates it. To defer activation, pass the value task scheduler init::deferred to
the constructor. Such a task_scheduler init may be activated later by calling
method initialize. Destruction of an active task scheduler init implicitly
deactivates it. To deactivate it earlier, call method terminate.

An optional parameter to the constructor and method initialize allow you to specify
the number of threads to be used for task execution. This parameter is useful for
scaling studies during development, but should not be set for production use.

The reason for not specifying the number of threads in production code is that in a
large software project, there is no way for various components to know how many
threads would be optimal for other threads. Hardware threads are a shared global
resource. It is best to leave the decision of how many threads to use to the task
scheduler.

To minimize time overhead, it is best to rely upon automatic creation of the task
scheduler, or create a single task scheduler init object whose activation spans all
uses of the library's task scheduler. A task scheduler init is not assignable or copy-
constructible.

Example

// Sketch of one way to do a scaling study
#include <iostream>

#include "tbb/task scheduler init.h"

int main() {

Reference Manual 281

int n = task scheduler init::default num threads();
for(int p=1l; p<=n; ++p) {
// Construct task scheduler with p threads
task scheduler init init(p);
tick count t0 = tick count::now();
execute parallel algorithm using task or
template algorithm here...

tick count tl = tick count::now();
double t = (tl1l-t0) .seconds ()
cout << "time = " << t << " with " << p << "threads\n";

// Implicitly destroy task scheduler.
}

return 0;

Members
namespace tbb {
typedef unsigned-integral-type stack size type;

class task scheduler init ({
public:
static const int automatic = implementation-defined;
static const int deferred = implementation-defined;
task scheduler init(int max threads=automatic,
stack size type thread stack size=0

~task scheduler init();
void initialize(int max threads=automatic);
void terminate();
static int default num threads();
bool is active () const;
}i
} // namespace tbb

12.2.1 task_scheduler_init(int
max_threads=automatic, stack_size_type
thread_stack_size=0)

Requirements

The value max_threads shall be one of the values in Table 41.

282 315415-016US

Task Scheduler

NOTE:

NOTE:

Table 41:

intel)

Effects

If max_threads==task scheduler init::deferred, nothing happens, and the
task_scheduler init remains inactive. Otherwise, the task scheduler init is
activated as follows. If the thread has no other active task scheduler init objects,
the thread allocates internal thread-specific resources required for scheduling task
objects. If there were no threads with active task scheduler init objects yet, then
internal worker threads are created as described in Table 41. These workers sleep until
needed by the task scheduler. Each worker created by the scheduler has an implicit
active task scheduler init object.

As of TBB 3.0, it is meaningful for the parameter max_threads to differ for different
calling threads. For example, if thread A specifies max threads=3 and thread B
specifies max_threads=7, then A is limited to having 2 workers, but B can have up to 6
workers. Since workers may be shared between A and B, the total number of worker
threads created by the scheduler could be 6.

Some implementations create more workers than necessary. However, the excess
workers remain asleep unless needed.

The optional parameter thread stack_size specifies the stack size of each worker

thread. A value of 0 specifies use of a default stack size. The first active
task_scheduler init establishes the stack size for all worker threads.

Values for max_threads

max_threads Semantics

task_scheduler init::automatic Let library determine max_threads based
on hardware configuration.

task scheduler init::deferred Defer activation actions.

positive integer Request that up to max threads-1 worker
threads work on behalf of the calling
thread at any one time.

12.2.2 ~task_scheduler_init()

Effects

If the task scheduler init is inactive, nothing happens. Otherwise, the
task_scheduler init is deactivated as follows. If the thread has no other active
task_scheduler init objects, the thread deallocates internal thread-specific
resources required for scheduling task objects. If no existing thread has any active
task _scheduler init objects, then the internal worker threads are terminated.

Reference Manual 283

284

12.2.3 void initialize(int max_threads=automatic)

Requirements
The task scheduler init shall be inactive.
Effects

Similar to constructor (12.2.1).

12.24 void terminate()

Requirements

The task_scheduler init shall be active.

Effects

Deactivates the task scheduler init without destroying it. The description of the
destructor (12.2.2) specifies what deactivation entails.

12.2.5 int default_num_threads()

Returns

One more than the number of worker threads that task scheduler init creates by
default.

12.2.6 bool is_active() const

Returns

True if *this is active as described in Section 12.2; false otherwise.

12.2.7 Mixing with OpenMP

Mixing OpenMP with Intel® Threading Building Blocks is supported. Performance may
be less than a pure OpenMP or pure Intel® Threading Building Blocks solution if the
two forms of parallelism are nested.

An OpenMP parallel region that plans to use the task scheduler should create a
task_scheduler init inside the parallel region, because the parallel region may
create new threads unknown to Intel® Threading Building Blocks. Each of these new

315415-016US

Task Scheduler i n tel 0]

OpenMP threads, like native threads, must create a task scheduler init object
before using Intel® Threading Building Blocks algorithms. The following example
demonstrates how to do this.

void OpenMP Calls TBB(int n) {
#pragma omp parallel
{

task scheduler init init;
#pragma omp for

for(int i=0; i<n; ++1i) {

...can use class task or
Intel® Threading Building Blocks algorithms here

12.3 task Class

Summary

Base class for tasks.

Syntax

class task;

Header
#include "tbb/task.h"

Description

Class task is the base class for tasks. You are expected to derive classes from task,
and at least override the virtual method task* task::execute().

Each instance of task has associated attributes, that while not directly visible, must be
understood to fully grasp how task objects are used. The attributes are described in
Table 42.%

5 The depth attribute in Intel® TBB 2.1 no longer exists (A.6).

Reference Manual 285

Table 42: Task Attributes?®

Attribute

Description

successor

Either null, or a pointer to another task whose refcount field will
be decremented after the present task completes. Typically, the
successor is the task that allocated the present task, or a task
allocated as the continuation of that task.

Methods of class task call the successor “parent” and its
preceding task the “child”, because this was a common use
case. But the library has evolved such that a child-parent
relationship is no longer required between the predecessor and
successor.

refcount

The number of Tasks that have this as their parent. Increments
and decrement of refcount are always atomic.

TIP: Always allocate memory for task objects using special overloaded new operators
(12.3.2) provided by the library, otherwise the results are undefined. Destruction of a
task is normally implicit. The copy constructor and assignment operators for task are
not accessible. This prevents accidental copying of a task, which would be ill-defined
and corrupt internal data structures.

Notation

Some member descriptions illustrate effects by diagrams such as Figure 9.

this

this result

successor null successor

:> 0

Figure 9: Example Effect Diagram

Conventions in these diagrams are as follows:

e The big arrow denotes the transition from the old state to the new state.

e Each task's state

is shown as a box divided into parent and refcount sub-boxes.

¢ Gray denotes state that is ignored. Sometimes ignored state is left blank.

e Black denotes state that is read.

e Blue denotes state that is written.

26 The ownership attribute and restrictions in Intel® TBB 2.1 no longer exist.

286

315415-016US

Task Scheduler i n tel 0]

Members

In the description below, types proxyl...proxy5 are internal types. Methods returning
such types should only be used in conjunction with the special overloaded new
operators, as described in Section (12.3.2).

namespace tbb {
class task {

protected:
task () ;
public:
virtual ~task() {}
virtual task* execute() = 0;

// Allocation

static proxyl allocate root();

static proxyZ2 allocate root (task group contexté&),
proxy3 allocate continuation();

proxy4 allocate child();

static proxy5 allocate additional child of (taské&);

// Explicit destruction
static void destroy(taské& victim);

// Recycling

void recycle as continuation();

void recycle as safe continuation();

void recycle as child of(task& new parent);

// Synchronization

void set ref count(int count);

void increment ref count();

int decrement ref count();

void wait for all();
(task& t);

static void spawn(task listé& list);

static void spawn

void spawn _and wait for all(task& t);

void spawn_and wait for all(task listé& list);
static void spawn root and wait(taské& root);
static void spawn root and wait (task listé& root);
static void enqueue(taské&);

// Task context

Reference Manual 287

static taské& self();

task* parent () const;

void set parent (task *p);

bool is stolen task() const;

task group context* group();

void change group(task group context& ctx);

// Cancellation
bool cancel group execution();
bool is cancelled() const;

// Affinity

typedef implementation-defined-unsigned-type affinity id;
virtual void note affinity(affinity id id);

void set affinity(affinity id id);

affinity id affinity() const;

// Debugging

enum state type {
executing,
reexecute,
ready,
allocated,
freed

bi

int ref count() const;

state type state() const;

bi
} // namespace tbb

~.

void *operator new(size t bytes, const proxylé&
void operator delete(void* task, const proxylé&

~e

void *operator new(size t bytes, const proxy2é&
void operator delete(void* task, const proxy2sé&
void *operator new(size t bytes, const proxy3é&

'O 'Cs 'O 'O 'O 'O

void operator delete(void* task, const proxy3&

~e

void *operator new(size t bytes, proxy4& p);

r

void operator delete(void* task, proxy4& p)
void *operator new(size t bytes, proxyb5& p);
p)

’

void operator delete(void* task, proxyb5&

NOTE: Prior to Intel® TBB 3.0, methods allocate additional child of, destroy, and
spawn were non-static. Evolution of the library made the this argument superfluous
for these calls. The change preserves source compatibility except in cases where the
address of the method was taken. Executables compiled with the older headers that

288 315415-016US

Task Scheduler

had the non-static form will continue to work when linked against the current Intel®
TBB 3.0 run-time libraries.

12.3.1 task Derivation

Class task is an abstract base class. You must override method task: :execute.
Method execute should perform the necessary actions for running the task, and then
return the next task to execute, or NULL if the scheduler should choose the next task
to execute. Typically, if non-NULL, the returned task is one of the predecessor tasks of
this. Unless one of the recycle/reschedule methods described in Section (12.3.4) is
called while method execute () is running, the this object will be implicitly destroyed
after method execute returns.

Override the virtual destructor if necessary to release resources allocated by the
constructor.

Override note _affinity to improve cache reuse across tasks, as described in Section

12.3.8.

12.3.1.1 Processing of execute()

When the scheduler decides that a thread should begin executing a task, it performs
the following steps:

1. Invokes execute () and waits for it to return.
2. If the task has not been marked by a method recycle *:

a. Calls the task's destructor.

b. If the task's parent is not null, then atomically decrements successor-
>refcount, and if becomes zero, puts the successor into the ready pool.

c. Frees the memory of the task for reuse.
3. If the task has been marked for recycling:

a. If marked by recycle to reexecute (deprecated), puts the task back into the
ready pool.

b. Otherwise it was marked by recycle as child or recycle as_continuation.

12.3.2 task Allocation

Always allocate memory for task objects using one of the special overloaded new
operators. The allocation methods do not construct the task. Instead, they return a
proxy object that can be used as an argument to an overloaded version of operator
new provided by the library.

Reference Manual 289

In general, the allocation methods must be called before any of the tasks allocated are
spawned. The exception to this rule is allocate additional child of (t), which can
be called even if task tis already running. The proxy types are defined by the

implementation. The only guarantee is that the phrase “new (proxy) T(...) "allocates

and constructs a task of type T. Because these methods are used idiomatically, the
headings in the subsection show the idiom, not the declaration. The argument this is

typically implicit, but shown explicitly in the headings to distinguish instance methods
from static methods.

TIP: Allocating tasks larger than 216 bytes might be significantly slower than allocating
smaller tasks. In general, task objects should be small lightweight entities.

12.3.2.1 new(task:allocate_root(task_group_context& group)) T

Allocate a task of type T with the specified cancellation group. Figure 10 summarizes
the state transition.

result
—> ol
0

Figure 10: Effect of task::allocate_root()

Use method spawn root and wait (12.3.5.9) to execute the task.

123.2.2 new(task:allocate_root()) T

Like new (task::allocate root(task group contexts)) except that cancellation
group is the current innermost cancellation group.

12.3.2.3 new(x.allocate_continuation()) T

Allocates and constructs a task of type T, and transfers the successor from x to the
new task. No reference counts change. Figure 11 summarizes the state transition.

X X result

successor :> | null successor

0

Figure 11: Effect of allocate_continuation()
12324 new(x.allocate_child()) T

Effects

Allocates a task with this as its successor. Figure 12 summarizes the state transition.

290 315415-016US

Task Scheduler i n tel 0]

result

:

0

Figure 12: Effect of allocate_child()

If using explicit continuation passing, then the continuation, not the successor, should
call the allocation method, so that successor is set correctly.

If the number of tasks is not a small fixed humber, consider building a task_list
(12.5) of the predecessors first, and spawning them with a single call to task: :spawn
(12.3.5.5). If a task must spawn some predecessors before all are constructed, it
should use task::allocate additional child of (*this) instead, because that

method atomically increments refcount, so that the additional predecessor is properly
accounted. However, if doing so, the task must protect against premature zeroing of

refcount by using a blocking-style task pattern.
123.2.5 new(task:allocate_additional_child_of(y)) T

Effects

Allocates a task as a predecessor of another task y. Task y may be already running or
have other predecessors running. Figure 13 summarizes the state transition.

y y

refcount |::> refcount+1

A

result

Figure 13: Effect of allocate_additional_child_of(successor)

Because y may already have running predecessors, the increment of y.refcount is
atomic (unlike the other allocation methods, where the increment is not atomic). When
adding a predecessor to a task with other predecessors running, it is up to the

Reference Manual 291

programmer to ensure that the successor’s refcount does not prematurely reach 0 and

trigger execution of the successor before the new predecessor is added.

12.3.3 Explicit task Destruction

Usually, a task is automatically destroyed by the scheduler after its method execute
returns. But sometimes task objects are used idiomatically (such as for reference
counting) without ever running execute. Such tasks should be disposed with method

destroy.

12.3.3.1 static void destroy (task& victim)

Requirements

The refcount of victim must be zero. This requirement is checked in the debug version

of the library.

Effects

Calls destructor and deallocates memory for victim. If victim.parent is not null,
atomically decrements victim.parent->refcount. The parent is not put into the ready
pool if its refcount becomes zero. Figure 14 summarizes the state transition.

refcount
A
/
/
, (can be null) |::>
. . / /
victim ,
Vi
/
[J

Figure 14: Effect of destroy(victim).

292

12.34 Recycling Tasks

refcount-1

It is often more efficient to recycle a task object rather than reallocate one from
scratch. Often the parent can become the continuation, or one of the predecessors.

315415-016US

Task Scheduler

CAUTION:

CAUTION:

Overlap rule: A recycled task t must not be put in jeopardy of having t.execute ()
rerun while the previous invocation of t.execute () is still running. The debug version
of the library detects some violations of this rule.

For example, t.execute() should never spawn t directly after recycling it. Instead,
t.execute() should return a pointer to t, so that t is spawned after t.execute()
completes.

12.34.1 void recycle_as_continuation()

Requirements
Must be called while method execute () is running.

The refcount for the recycled task should be set to n, where n is the humber of
predecessors of the continuation task.

The caller must guarantee that the task’s refcount does not become zero until after
method execute () returns, otherwise the overlap rule is broken. If the guarantee is
not possible, use method recycle as safe continuation() instead, and set the
refcount to n+1.

The race can occur for a task t when:
t.execute () recycles t as a continuation.
The continuation has predecessors that all complete before t.execute () returns.

Hence the recycled t will be implicitly respawned with the original t.execute () still
running, which breaks the overlap rule.

Patterns that use recycle as continuation () typically avoid the race by making
t.execute () return a pointer to one of the predecessors instead of explicitly spawning
that predecessor. The scheduler implicitly spawns that predecessor after t.execute ()
returns, thus guaranteeing that the recycled t does not rerun prematurely.

Effects

Causes this to not be destroyed when method execute () returns.

12.34.2 void recycle_as_safe_continuation()

Requirements

Must be called while method execute () is running.

Reference Manual 293

The refcount for the recycled task should be set to n+1, where n is the number of
predecessors of the continuation task. The additional +1 represents the task to be
recycled.

Effects
Causes this to not be destroyed when method execute () returns.

This method avoids the race discussed for recycle as continuation because the

additional +1 in the refcount prevents the continuation from executing until the original
invocation of execute () completes.

12343 void recycle_as_child_of(task& new_successor)

Requirements

Must be called while method execute () is running.

Effects

Causes this to become a predecessor of new_successor, and not be destroyed when
method execute () returns.

12.3.5 Synchronization

Spawning a task t either causes the calling thread to invoke t.execute (), or causes t to

be put into the ready pool. Any thread participating in task scheduling may then
acquire the task and invoke t.execute (). Section 12.1 describes the structure of the

ready pool.

The calls that spawn come in two forms:

e Spawn a single task.

e Spawn multiple task objects specified by a task list and clear task_list.

Some calls distinguish between spawning root tasks and non-root tasks. A root task is
one that was created using method allocate root.

Important

A task should not spawn any predecessor task until it has called method
set_ref count to indicate both the humber of predecessors and whether it intends to
use one of the “wait_for_all” methods.

294 315415-016US

Task Scheduler

NOTE:

intel)

12.3.5.1 void set_ref_count(int count)

Requirements

count>0.%” If the intent is to subsequently spawn n predecessors and wait, then count
should be n+1. Otherwise count should be n.

Effects

Sets the refcount attribute to count.

12.3.5.2 void increment_ref_count();

Effects

Atomically increments refcount attribute.
12.3.5.3 int decrement_ref_count();

Effects

Atomically decrements refcount attribute.

Returns

New value of refcount attribute.

Explicit use of increment ref count and decrement ref count is typically necessary
only when a task has more than one immediate successor task. Section 11.6 of the
Tutorial ("General Acyclic Graphs of Tasks") explains more.

12354 void wait_for_all()

Requirements

refcount=n+1, where n is the number of predecessors that are still running.

Effects

Executes tasks in ready pool until refcount is 1. Afterwards, leaves refcount=1 if the
task’s task group context specifies concurrent wait, otherwise sets refcount to

0.2® Figure 15 summarizes the state transitions.

27 Intel® TBB 2.1 had the stronger requirement count>0.

Reference Manual 295

TIP:

Also, wait for all ()automatically resets the cancellation state of the
task _group context implicitly associated with the task (12.6), when all of the
following conditions hold:

e The task was allocated without specifying a context.
e The calling thread is a user-created thread, not an Intel® TBB worker thread.

o Itis the outermost call to wait for all() by the thread.

Under such conditions there is no way to know afterwards if the task_group context
was cancelled. Use an explicit task group context if you need to know.

this this

— E— -

J b
./
n previously spawned k=0 by default
predecessors that are still running k=1 if corresponding task group_ context
specifies concurrent wait.
Figure 15: Effect of wait_for_all
12.3.5.5 static void spawn(task& t)

296

Effects

Puts task t into the ready pool and immediately returns.

If the successor of t is not null, then set _ref count must be called on that successor
before spawning any child tasks, because once the child tasks commence, their
completion will cause successor.refcount to be decremented asynchronously. The
debug version of the library often detects when a required call to set ref count is not
made, or is made too late.

%8 For sake of backwards compatibility, the default for task group context is
not concurrent _wait, and hence to set refcount=0.

315415-016US

Task Scheduler

NOTE:

Figure 16

Reference Manual

intel)

12.3.5.6 static void spawn (task_list& list)

Effects

Equivalent to executing spawn on each task in 1ist and clearing 1ist, but may be
more efficient. If 1ist is empty, there is no effect.

Spawning a long linear list of tasks can introduce a bottleneck, because tasks are
stolen individually. Instead, consider using a recursive pattern or a parallel loop
template to create many pieces of independent work.

12.3.5.7 void spawn_and_wait_for_all(task& t)

Requirements

Any other predecessors of this must already be spawned. The task t must have a
non-null attribute successor. There must be a chain of successor links from t to the
calling task. Typically, this chain contains a single link. That is, t is typically an
immediate predecessor of this.

Effects

Similar to {spawn (t); wait for all();}, but often more efficient. Furthermore, it
guarantees that task is executed by the current thread. This constraint can sometimes
simplify synchronization. Figure 16 illustrates the state transitions. It is similar to
Figure 15, with task t being the nth task.

this this
— > p
’ A
L e
L 4
R t k=0 by default
P k=1 if corresponding task group context

n-1 previously spawned specifies concurrent wait.
predecessors that are still 0

running

: Effect of spawn_and_wait_for_all
12358 void spawn_and_wait_for_all(task_list& list)
Effects

Similar to {spawn (list); wait for all();}, but often more efficient.

297

CAUTION:

CAUTION:

298

12359 static void spawn_root_and_wait(task& root)

Requirements

The memory for task root was allocated by task::allocate root ().

Effects

Sets parent attribute of root to an undefined value and execute root as described in
Section 12.3.1.1. Destroys root afterwards unless root was recycled.

12.3.5.10 static void spawn_root_and_wait(task_list& root_list)

Requirements

Each task object t in root_list must meet the requirements in Section 12.3.5.9.

Effects

For each task object t in root_list, performs spawn_root and wait(t), possibly in
parallel. Section 12.3.5.9 describes the actions of spawn root and wait(f).

12.3.5.11 static void enqueue (task&)

Effects

The task is scheduled for eventual execution by a worker thread even if no thread ever
explicitly waits for the task to complete. If the total number of worker threads is zero,
a special additional worker thread is created to execute enqueued tasks.

Enqueued tasks are processed in roughly, but not precisely, first-come first-serve
order.

Using enqueued tasks for recursive parallelism can cause high memory usage, because
the recursion will expand in a breadth-first manner. Use ordinary spawning for
recursive parallelism.

Explicitly waiting on an enqueued task should be avoided, because other enqueued
tasks from unrelated parts of the program might have to be processed first. The
recommended pattern for using an enqueued task is to have it asynchronously signal
its completion, for example, by posting a message back to the thread that enqueued it.
See the Intel® Threading Building Blocks Design Patterns manual for such an example.

12.3.6 task Context

These methods expose relationships between task objects, and between task objects
and the underlying physical threads.

315415-016US

Task Scheduler i n tel 0]

12.3.6.1 static task& self()
Returns

Reference to innermost task that the calling thread is running. A task is considered
“running” if its methods execute (), note affinity (), or destructor are running. If
the calling thread is a user-created thread that is not running any task, self () returns
a reference to an implicit dummy task associated with the thread.

12.3.6.2 task* parent() const
Returns
Value of the attribute successor. The result is an undefined value if the task was

allocated by allocate root and is currently running under control of

spawn_root and wait.

12.3.6.3 void set_parent(task* p)

Requirements

Both tasks must be in the same task group. For example, for task t, t.group() ==
p->group() .

Effects

Sets parent task pointer to specified value p.

12364 bool is_stolen_task() const

Returns

true if task is running on a thread different than the thread that spawned it.

NOTE: Tasks enqueued with task: :enqueue () are never reported as stolen.
12.3.6.5 task_group_context* group()
Returns

Descriptor of the task group, which this task belongs to.

12.3.6.6 void change_group(task_group_context& ctx)
Effects

Moves the task from its current task group int the one specified by the ctx argument.

Reference Manual 299

300

12.3.7 Cancellation

A task is a quantum of work that is cancelled or executes to completion. A cancelled
task skips its method execute () if that method has not yet started. Otherwise
cancellation has no direct effect on the task. A task can poll task::is cancelled() to
see if cancellation was requested after it started running.

Tasks are cancelled in groups as explained in Section 12.6.
12.3.7.1 bool cancel_group_execution()

Effects

Requests cancellation of all tasks in its group and its subordinate groups.

Returns

False if the task’s group already received a cancellation request; true otherwise.
123.7.2 bool is_cancelled() const

Returns

True if task’s group has received a cancellation request; false otherwise.

12.3.8 Priorities

Priority levels can be assigned to individual tasks or task groups. The library supports
three levels {low, normal, high} and two kinds of priority:

- Static priority for enqueued tasks.

- Dynamic priority for task groups.

The former is specified by an optional argument of the task: :enqueue () method,
affects a specific task only, and cannot be changed afterwards. Tasks with higher
priority are dequeued before tasks with lower priorities.

The latter affects all the tasks in a group and can be changed at any time either via the
associated task group context object or via any task belonging to the group. The
priority-related methods in task_group_context are described in Section 12.6.

The task scheduler tracks the highest priority of ready tasks (both enqueued and
spawned), and postpones execution of tasks with lower priority until all higher priority
task are executed. By default all tasks and task groups are created with normal
priority.

315415-016US

Task Scheduler

NOTE:

NOTE:

NOTE:

Priority changes may not come into effect immediately in all threads. So it is possible
that lower priority tasks are still being executed for some time even in the presence of
higher priority ones.

When several user threads (masters) concurrently execute parallel algorithms, the pool
of worker threads is partitioned between them proportionally to the requested
concurrency levels. In the presence of tasks with different priorities, the pool of worker
threads is proportionally divided among the masters with the highest priority first.

Only after fully satisfying the requests of these higher priority masters, will the
remaining threads be provided to the other masters.

Though masters with lower priority tasks may be left without workers, the master
threads are never stalled themselves. Task priorities also do not affect and are not
affected by OS thread priority settings.

Worker thread migration from one master thread to another may not happen
immediately.

Related constants and methods
namespace tbb {
enum priority t ({

priority normal = implementation-defined,
priority low = implementation-defined,
priority high = implementation-defined

b8

class task {
//
static void enqueue(taské&, priority t);
void set group priority (priority t);
priority t group priority () const;

//

12.3.8.1 void enqueue (task& t, priority_t p) const

Effects

Enqueues task t at the priority level p.

Priority of an enqueued task does not affect priority of the task group, from the scope
of which task: :enqueue () is invoked (i.e. the group, which the task returned by
task::self () method belongs to).

Reference Manual 301

302

12.3.8.2 void set_group_priority (priority_t)

Effects
Changes priority of the task group, which this task belongs to.

12.3.8.3 priority_t group_priority () const

Returns
Priority of the task group, which this task belongs to.

1239 Affinity

These methods enable optimizing for cache affinity. They enable you to hint that a later
task should run on the same thread as another task that was executed earlier. To do
this:

1. In the earlier task, override note affinity(id) with a definition that records id.

2. Before spawning the later task, run set_affinity (id) using the id recorded in
step 1,

The idis a hint and may be ignored by the scheduler.

12.3.9.1 affinity_id

The type task::affinity id is an implementation-defined unsigned integral type. A

value of 0 indicates no affinity. Other values represent affinity to a particular thread.
Do not assume anything about non-zero values. The mapping of non-zero values to

threads is internal to the Intel® TBB implementation.

12.3.9.2 virtual void note_affinity (affinity_id id)

The task scheduler invokes note affinity before invoking execute () when:

e The task has no affinity, but will execute on a thread different than the one that
spawned it.

e The task has affinity, but will execute on a thread different than the one specified by
the affinity.

You can override this method to record the id, so that it can be used as the argument
to set_affinity(id) for a later task.

Effects

The default definition has no effect.

315415-016US

Task Scheduler

CAUTION:

Table 43:

intel)

12.39.3 void set_affinity(affinity_id id)

Effects

Sets affinity of this task to id. The id should be either 0 or obtained from

note affinity.

12394 affinity_id affinity() const

Returns

Affinity of this task as set by set affinity.

12.3.10 task Debugging

Methods in this subsection are useful for debugging. They may change in future
implementations.

12.3.10.1 state_type state() const

This method is intended for debugging only. Its behavior or performance may change
in future implementations. The definition of task: :state type may change in future

implementations. This information is being provided because it can be useful for
diagnosing problems during debugging.

Returns

Current state of the task. Table 43 describes valid states. Any other value is the result
of memory corruption, such as using a task whose memory has been deallocated.

Values Returned by task::state()

Value Description

allocated Task is freshly allocated or recycled.

ready Task is in ready pool, or is in process of being transferred to/from
there.

executing Task is running, and will be destroyed after method execute() returns.

freed Task is on internal free list, or is in process of being transferred
to/from there.

reexecute Task is running, and will be respawned after method execute()
returns.

Figure 17 summarizes possible state transitions for a task.

Reference Manual 303

destroy (t)

storage from heap

allocate ... (t)

allocated

return from
t.execute ()

reexecute

t.recycle to reexecute

spawn and wait for all (t)

t.recycle as...

return from f.execute ()

allocate ...

storage returned to heap

Figure 17: Typical task::state() Transitions

CAUTION:

304

123.10.2

int ref_count() const

This method is intended for debugging only. Its behavior or performance may change
in future implementations.

Returns

The value of the attribute refcount.

315415-016US

Task Scheduler

124 empty_task Class

Summary

Subclass of task that represents doing nothing.

Syntax

class empty task;

Header
#include "tbb/task.h"

Description

An empty task is a task that does nothing. It is useful as a continuation of a parent
task when the continuation should do nothing except wait for its predecessors to
complete.

Members
namespace tbb {
class empty task: public task {
/*override*/ task* execute() {return NULL;}

}:

12.5 task_list Class

Summary

List of task objects.

Syntax

class task list;

Header
#include "tbb/task.h"

Description

A task list is a list of references to task objects. The purpose of task list isto
allow a task to create a list of tasks and spawn them all at once via the method
task::spawn (task lists), as described in 12.3.5.6.

Reference Manual 305

306

A task can belong to at most one task list at a time, and on that task_1ist at most
once. A task that has been spawned, but not started running, must not belong to a

task list. A task list cannot be copy-constructed or assigned.

Members
namespace tbb {
class task list {
public:
task list();
~task list();
bool empty() const;
void push back(task& task);
task& pop front();
void clear();

12.5.1 task_list()

Effects

Constructs an empty list.

1252 ~task_list()

Effects

Destroys the list. Does not destroy the task objects.

12.5.3 bool empty() const

Returns

True if list is empty; false otherwise.

12.54 push_back(task& task)

Effects

Inserts a reference to task at back of the list.

315415-016US

Task Scheduler

12.5.5 task& task pop_front()

Effects

Removes a task reference from front of list.

Returns

The reference that was removed.

12.5.6 void clear()

Effects

Removes all task references from the list. Does not destroy the task objects.

126 task_group_context

Summary

A cancellable group of tasks.

Syntax

class task group context;

Header
#include “tbb/task.h”

Description

A task group_ context represents a group of tasks that can be cancelled or have their
priority level set together. All tasks belong to some group. A task can be a member of
only one group at any moment.

A root task is associated with a group by passing task_group_context object into
task::allocate_root() call. A child task automatically joins its parent task’s group. A
task can be moved into other group using task: :change group () method.

The task_group context objects form a forest of trees. Each tree’s root is a
task_group_ context constructed as isolated.

A task_group context is cancelled explicitly by request, or implicitly when an
exception is thrown out of a task. Canceling a task _group context causes the entire
subtree rooted at it to be cancelled.

Reference Manual 307

308

The priorities for all the tasks in a group can be changed at any time either via the
associated task group context object, or via any task belonging to the group.
Priority changes propagate into the child task groups similarly to cancelation. The
effect of priorities on task execution is described in Section 12.3.8.

Each user thread that creates a task scheduler init (12.2) implicitly has an
isolated task group_ context that acts as the root of its initial tree. This context is
associated with the dummy task returned by task::self () when the user thread is
not running any task (12.3.6.1).

Members
namespace tbb {
class task group context {
public:
enum kind t {
isolated = implementation-defined,
bound = implementation-defined

I &

enum traits type {
exact exception = implementation-defined,
concurrent wait = implementation-defined,
#1f TBB USE CAPTURED EXCEPTION
default traits = 0
#else
default traits = exact exception
fendif /* !TBB_USE_CAPTURED_EXCEPTION %/
}i
task group context(kind t relation with parent = bound,
uintptr t traits = default traits);
~task group context();
void reset();
bool cancel group execution();
bool is group execution cancelled() const;
void set priority (priority t);
priority t priority () const;

315415-016US

Task Scheduler

intel)

12.6.1 task_group_context(kind_t
relation_to_parent=bound, uintptr_t
traits=default_traits)

Effects

Constructs an empty task group context. If relation to parent is bound, the

task _group_ context will become a child of the innermost running task’s group when it
is first passed into the call to task::allocate root (task group contexts). If this
call is made directly from the user thread, the effect will be as if relation to parent
were isolated. If relation to parent is isolated, it has no parent

task group context.

The traits argument should be the bitwise OR of traits_type values. The flag
exact exception controls how precisely exceptions are transferred between threads.
See Section 13 for details. The flag concurrent wait controls the reference-counting
behavior of methods task::wait for all and task::spawn and wait for all.

12.6.2 ~task_group_context()

Effects

Destroys an empty task_group_context. It is a programmer error if there are still
extant tasks in the group.

12.6.3 bool cancel_group_execution()

Effects

Requests that tasks in group be cancelled.

Returns

False if group is already cancelled; true otherwise. If concurrently called by multiple
threads, exactly one call returns true and the rest return false.

12.6.4 bool is_group_execution_cancelled() const

Returns

True if group has received cancellation.

Reference Manual 309

CAUTION:

310

12.6.5 void reset()

Effects

Reinitializes this to uncancelled state.

This method is only safe to call once all tasks associated with the group's subordinate
groups have completed. This method must not be invoked concurrently by multiple
threads.

12.6.6 void set_priority (priority_t)

Effects
Changes priority of the task group.

12.6.7 priority_t priority () const

Returns
Priority of the task group.

12.7 task_scheduler_observer

Summary

Class that represents thread's interest in task scheduling services.

Syntax

class task scheduler observer;

Header
#include "tbb/task scheduler observer.h"

Description

A task_scheduler observer permits clients to observe when a thread starts or stops
participating in task scheduling. You typically derive your own observer class from
task_scheduler_observer, and override virtual methods on_scheduler entry or
on_scheduler exit. An instance has a state observing or not observing. Remember to
call observe () to enable observation.

315415-016US

Task Scheduler

Members
namespace tbb {
class task scheduler observer {
public:
task scheduler observer();
virtual ~task scheduler observer();
void observe (bool state=true);
bool is observing() const;
virtual void on_ scheduler entry(bool is worker) {}
virtual void on_ scheduler exit(bool is worker } {}

12.7.1 task_scheduler_observer()
Effects

Constructs instance with observing disabled.

12.7.2 ~task_scheduler_observer()
Effects

Disables observing. Waits for extant invocations of on_scheduler entry or
on_scheduler exit to complete.

12.7.3 void observe(bool state=true)
Effects

Enables observing if state is true; disables observing if state is false.

12.7.4 Dbool is_observing() const

Returns

True if observing is enabled; false otherwise.

12.7.5 virtual void on_scheduler_entry(bool
is_worker)

Description

Reference Manual

311

NOTE:

CAUTION:

CAUTION:

312

The task scheduler invokes this method on each thread that starts participating in task
scheduling, if observing is enabled. If observing is enabled after threads started
participating, then this method is invoked once for each such thread, before it executes
the first task it steals afterwards.

The flag is_worker is true if the thread was created by the task scheduler; false
otherwise.

If a thread enables observing before spawning a task, it is guaranteed that the thread
that executes the task will have invoked on_scheduler entry before executing the
task.

Effects

The default behavior does nothing.

12.7.6 virtual void on_scheduler_exit(bool is_worker)

Description

The task scheduler invokes this method when a thread stops participating in task
scheduling, if observing is enabled.

Sometimes on_scheduler exit is invoked for a thread but not on_scheduler entry.
This situation can arise if a thread never steals a task.

A process does not wait for Intel® TBB worker threads to clean up. Thus a process can
terminate before on_scheduler exit is invoked.

Effects

The default behavior does nothing.

128 (atalog of Recommended task
Patterns

This section catalogues recommended task patterns. In each pattern, class T is
assumed to derive from class task. Subtasks are labeled t,, t,, ... t.. The subscripts
indicate the order in which the subtasks execute if no parallelism is available. If
parallelism is available, the subtask execution order is non-deterministic, except that t;
is guaranteed to be executed by the spawning thread.

Recursive task patterns are recommended for efficient scalable parallelism, because
they allow the task scheduler to unfold potential parallelism to match available

315415-016US

Task Scheduler

intel)

parallelism. A recursive task pattern begins by creating a root task t, and running it as
follows.

T& to = *new(allocate root()) T(...);
task::spawn root and wait (*ty);

The root task’s method execute () recursively creates more tasks as described in
subsequent subsections.

12.8.1 Blocking Style With k Children

The following shows the recommended style for a recursive task of type T where each
level spawns k children.

task* T::execute() {
if (not recursing any further) {
} else {
set ref count (k+1);
task& ty = *new(allocate child()) T(...); spawn (ty) ;
task& ty.;= *new(allocate child()) T(...); spawn(tyq);
task& t; = *new(allocate child()) T(...);

spawn_and wait for all(t,);

}
return NULL;

}

Child construction and spawning may be reordered if convenient, as long as a task is
constructed before it is spawned.

The key points of the pattern are:

e The call to set_ref count uses k+1 as its argument. The extra 1 is critical.
e Each task is allocated by allocate child.

e The call spawn_and wait for all combines spawning and waiting. A more uniform
but slightly less efficient alternative is to spawn all tasks with spawn and wait by
calling wait for all.

12.8.2 Continuation-Passing Style With k Children

There are two recommended styles. They differ in whether it is more convenient to
recycle the parent as the continuation or as a child. The decision should be based upon
whether the continuation or child acts more like the parent.

Optionally, as shown in the following examples, the code can return a pointer to one of
the children instead of spawning it. Doing so causes the child to execute immediately

Reference Manual 313

after the parent returns. This option often improves efficiency because it skips pointless
overhead of putting the task into the task pool and taking it back out.

12.8.2.1 Recycling Parent as Continuation

This style is useful when the continuation needs to inherit much of the state of the
parent and the child does not need the state. The continuation must have the same
type as the parent.

task* T::execute () {
if(not recursing any further) {

return NULL;
} else {
set ref count (k);
recycle as continuation();
task& ty = *new(allocate child()) T(...); spawn(ty);
task& ty, = *new(allocate child()) T(...); spawn(ty,);

// Return pointer to first child instead of spawning it,
// to remove unnecessary overhead.

task& t; = *new(allocate child()) T(...);

return &tq;

}

The key points of the pattern are:

e The call to set_ref count uses k as its argument. There is no extra +1 as there is in
blocking style discussed in Section 12.8.1.
e Each child task is allocated by allocate child.

e The continuation is recycled from the parent, and hence gets the parent's state
without doing copy operations.

12.8.2.2 Recycling Parent as a Child

This style is useful when the child inherits much of its state from a parent and the
continuation does not need the state of the parent. The child must have the same type
as the parent. In the example, C is the type of the continuation, and must derive from
class task. If C does nothing except wait for all children to complete, then C can be the
class empty task (12.4).

task* T::execute () {
if(not recursing any further) {

return NULL;

314 315415-016US

Task Scheduler I n tel 0

} else {
// Construct continuation
C& c = allocate continuation();
c.set ref count(k);
// Recycle self as first child

task& ty = *new(c.allocate child()) T(...); spawn(ty);
taské& ty, = *new(c.allocate child()) T(...); spawn(tyq);
task& t, = *new(c.allocate child()) T(...); spawn (ty) ;

// task t; is our recycled self.
recycle as child of (c);

update fields of *this to subproblem to be solved by t;
return this;

}

The key points of the pattern are:

e The call to set_ref count uses k as its argument. There is no extra 1 as there is in
blocking style discussed in Section 12.8.1.

« Each child task except for t; is allocated by c.allocate child. It is critical to use
c.allocate child, and not (*this).allocate child; otherwise the task graph will
be wrong.

e Task t;is recycled from the parent, and hence gets the parent's state without
performing copy operations. Do not forget to update the state to represent a child
subproblem; otherwise infinite recursion will occur.

12.8.3 Letting Main Thread Work While Child Tasks Run

Sometimes it is desirable to have the main thread continue execution while child tasks
are running. The following pattern does this by using a dummy empty task (12.4).

task* dummy = new(task::allocate root()) empty task;
dummy->set ref count (k+1);

task& ty = *new(dummy->allocate child()) T; dummy->spawn (ty);
task& ty;= *new(dummy->allocate child()) T; dummy->spawn (ty_i);
task& t; = *new(dummy->allocate child()) T; dummy->spawn (t;);

...do any other work...
dummy->wait for all();
dummy->destroy (*dummy) ;

The key points of the pattern are:

e The dummy task is a placeholder and never runs.
e The call to set ref count uses k+1 as its argument.

e The dummy task must be explicitly destroyed.

Reference Manual 315

316 315415-016US

Exceptions i n tel ¢ ’

13 Exceptions

Intel® Threading Building Blocks (Intel® TBB) propagates exceptions along logical
paths in a tree of tasks. Because these paths cross between thread stacks, support for
moving an exception between stacks is necessary.

When an exception is thrown out of a task, it is caught inside the Intel® TBB run-time
and handled as follows:

1. 1If the cancellation group for the task has already been cancelled, the exception is
ignored.

2. Otherwise the exception or an approximation of it is captured.

3. The captured exception is rethrown from the root of the cancellation group after all
tasks in the group have completed or have been successfully cancelled.

The exact exception is captured when both of the following conditions are true:

e The task’s task group context was created in a translation unit compiled with
TBB USE CAPTURED EXCEPTION=0.

e The Intel® TBB library was built with a compiler that supports the
std: :exception ptr feature of C++ 200x.

Otherwise an appoximation of the original exception x is captured as follows:
1. If xis a tbb_exception, it is captured by x.move ().

2. If xis a std::exception, it is captured as a
tbb::captured exception (typeid(x) .name (),x.what()).

3. Otherwise x is captured as a tbb: :captured exception with implementation-
specified value for name () and what ().

13.1 tbb_exception

Summary

Exception that can be moved to another thread.

Syntax

class tbb exception;

Reference Manual 317

Header
#include "tbb/tbb exception.h"

Description

In a parallel environment, exceptions sometimes have to be propagated across
threads. Class tbb_exception subclasses std::exception to add support for such

propagation.

Members
namespace tbb {
class tbb exception: public std::exception {

virtual tbb exception* move() = 0;
virtual void destroy() throw() = 0;
virtual void throw self() = 0;

virtual const char* name () throw() = 0;
virtual const char* what() throw() = 0;

}:
}
Derived classes should define the abstract virtual methods as follows:

e move () should create a pointer to a copy of the exception that can outlive the
original. It may move the contents of the original.

e destroy () should destroy a copy created by move ().
e throw self () should throw *this.
e name () typically returns the RTTI name of the originally intercepted exception.

e what () returns a null-terminated string describing the exception.

13.2 captured_exception

Summary

Class used by Intel® TBB to capture an approximation of an exception.

Syntax

class captured exception;

Header
#include "tbb/tbb exception.h"

318 315415-016US

Exceptions (i@

Description

When a task throws an exception, sometimes Intel® TBB converts the exception to a
captured_exception before propagating it. The conditions for conversion are
described in Section 13.

Members
namespace tbb {
class captured exception: public tbb exception {
captured exception(const captured exception& src);
captured exception(const char* name, const char* info);
~captured exception () throw();
captured exceptioné& operator=(const captured exceptioné&);
captured exception* move () throw();
void destroy() throw();
void throw self();
const char* name () const throw();
const char* what () const throw();
i
}

Only the additions that captured exception makes to tbb_exception are described
here. Section 13.1 describes the rest of the interface.

13.2.1 captured_exception(const char* name, const
char* info)

Effects

Constructs a captured_exception with the specified name and info.

13.3 movable_exception<ExceptionData>

Summary

Subclass of tbb_exception interface that supports propagating copy-constructible
data.

Syntax

template<typename ExceptionData> class movable exception;

Header
#include "tbb/tbb exception.h"

Reference Manual 319

Description

This template provides a convenient way to implement a subclass of tbb exception
that propagates arbitrary copy-constructible data.

Members
namespace tbb {
template<typename ExceptionData>
class movable exception: public tbb exception {
public:
movable exception(const ExceptionDataé& src);
movable exception(const movable exceptioné& src)throw();
~movable exception() throw();
movable exception& operator=(const movable exceptioné& src

ExceptionData& data () throw();
const ExceptionData& data () const throw();
movable exception* move () throw();
void destroy () throw();
void throw self();
const char* name () const throw();
const char* what () const throw();
i
}

Only the additions that movable exception makes to tbb exception are described
here. Section 13.1 describes the rest of the interface.

13.3.1 movable_exception(const ExceptionData& src)

Effects

Construct movable exception containing copy of src.

13.3.2 ExceptionData& data() throw()

Returns

Reference to contained data.

320 315415-016US

Exceptions

intel)

13.3.3 const ExceptionData& data() const throw()

Returns

Const reference to contained data.

134 Specific Exceptions

Summary

Exceptions thrown by other library components.

Syntax
class bad last alloc;
class improper lock;

class invalid multiple scheduling;

class missing wait;
class user abort;

Header

#include "tbb/tbb exception.h"

Description

Table 44 describes when the exceptions are thrown.

Table 44: Classes for Specific Exceptions.

Exception

Thrown when...

bad_last_alloc

e A pop operation on a concurrent queue Or
concurrent bounded queue corrersponds to a push
that threw an exception.

¢ An operation on a concurrent_vector cannot be
performed because a prior operation threw an
exception.

improper_lock

A thread attempts to lock a critical section or
reader writer lock that it it has already locked.

invalid_multiple_scheduling

A task_group Or structured task group attempts
to run a task_handle twice.

Reference Manual

321

missing_wait A task_group Or structured task group is
destroyed before method wait () is invoked.

user_abort A push or pop operation on a
concurrent bounded queue Was aborted by the
user.

Members
namespace tbb {

class bad last alloc: public std::bad alloc {
public:

const char* what () const throw();
i
class improper lock: public std::exception {
public:

const char* what () const throw();
i
class invalid multiple scheduler: public std::exception ({

const char* what () const throw();
i
class missing wait: public std::exception ({
public:

const char* what () const throw();
i
class user abort : public std::exception {
public:

const char* what () const throw();

}i

322 315415-016US

intel)

Threads

Intel® Threading Building Blocks (Intel® TBB) provides a wrapper around the

platform’s native threads, based upon the N3000 working draft for C++ 200x. Using

this wrapper has two benefits:

e It makes threaded code portable across platforms.

e It eases later migration to ISO C++ 200x threads.

The library defines the wrapper in namespace std, not namespace tbb, as explained in

Section 2.4.7.%°

The significant departures from N3000 are shown in Table 45.

Table 45: Differences Between N3000 and Intel® TBB Thread Class
N3000 Intel® TBB

template<class Rep, class Period> std::this thread::sleep for (

std::this thread::sleep for(tick count::interval t)

const chrono::duration<Rep,

Period>& rel time)

rvalue reference parameters Parameter changed to plain value, or
function removed, as appropriate.

constructor for std: :thread takes constructor for std: :thread takes 0-3

arbitrary number of arguments. arguments.

The other changes are for compatibility with the current C++ standard or Intel® TBB.

For example, constructors that have an arbitrary number of arguments require the

variadic template features of C++ 200x.

CAUTION: Threads are heavy weight entities on most systems, and running too many threads on

a system can seriously degrade performance. Consider using a task based solution
instead if practical.

9 In Intel® TBB 2.2, the class was tbb: :tbb thread. Appendix A.7 explains
the changes.

Reference Manual 323

14.1 thread Class

Summary

Represents a thread of execution.

Syntax

class thread;

Header
#include "tbb/compat/thread"

Description

Class thread provides a platform independent interface to native threads. An instance

represents a thread. A platform-specific thread handle can be obtained via method
native handle ().

Members
namespace std {
class thread {
public:
#if WIN32|| WIN64
typedef HANDLE native handle type;
#else
typedef pthread t native handle type;
#endif // WIN32|| WIN64

class id;

thread() ;

template <typename F> explicit thread(F f);

template <typename F, typename X> thread(F f, X x);

template <typename F, typename X, typename Y>
thread (F £, X x, Y vy);

threadé& operator=(threadé& x);

~thread () ;

bool joinable () const;

void join () ;

void detach();

id get id() const;

native handle type native handle () ;

324 315415-016US

Threads

CAUTION:

®

(intel

static unsigned hardware concurrency();

141.1 thread()

Effects

Constructs a thread that does not represent a thread of execution, with
get id()==id().

141.2 template<typename F> thread(F f)

Effects

Construct a thread that evaluates f()

14.1.3 ;c(em)plate(typename F, typename X> thread(F f,
X

Effects

Constructs a thread that evaluates f(x).

1414 template<typename F, typename X, typename
Y> thread(Ff, XX, Y V)

Effects

Constructs thread that evaluates f(x,y).

141.5 thread& operator=(thread& Xx)

Effects

If joinable (), calls detach (). Then assigns the state of x to *this and sets x to
default constructed state.

Assignment moves the state instead of copying it.

Reference Manual 325

141.6 ~thread

Effects

if(joinable()) detach().

14.1.7 bool joinable() const

Returns
get_id() !=1id()

14.1.8 void join()

Requirements

joinable () ==true
Effects
Wait for thread to complete. Afterwards, joinable () ==false.

14.1.9 void detach()

Requirements

joinable () ==true

Effects

Sets *this to default constructed state and returns without blocking. The thread
represented by *this continues execution.

14.1.10 id get_id() const

Returns

id of the thread, or a default-constructed id if *this does not represent a thread.

326 315415-016US

Threads

intel)

14.1.11 native_handle_type native_handie()

Returns

Native thread handle. The handle is a HANDLE on Windows* operating systems and a
pthread t on Linux* and Mac OS* X operating systems. For these systems,
native handle () returns O if joinable () ==false.

14.1.12 static unsigned hardware_concurrency()

Returns

The number of hardware threads. For example, 4 on a system with a single Intel®
Core™2 Quad processor.

14.2 thread:id

Summary

Unique identifier for a thread.

Syntax

class thread::id;

Header
#include "tbb/compat/thread"

Description

A thread::id is an identifier value for a thread that remains unique over the thread’s
lifetime. A special value thread::id () represents no thread of execution. The
instances are totally ordered.

Members

namespace tbb {
class thread::id {
public:
id();
i
template<typename charT, typename traits>
std::basic ostream<charT, traits>&
operator<< (std::basic ostream<charT, traits> é&out,
thread::id id)

Reference Manual 327

328

bool operator==(thread::id x, thread::id vy);

bool operator!=(thread::id x, thread::id vy):

bool operator<(thread::id x, thread::id vy);

bool operator<=(thread::id x, thread::id vy):;

bool operator>(thread::id x, thread::id vy);

bool operator>=(thread::id x, thread::id vy);
} // namespace tbb

14.3 this_thread Namespace

Description

Namespace this_thread contains global functions related to threading.

Members
namepace tbb {
namespace this thread ({
thread::id get id();
void yield();
void sleep(const tick count::interval t);

143.1 thread:id get_id()

Returns

Id of the current thread.

14.3.2 void yield()

Effects

Offers to suspend current thread so that another thread may run.

14.3.3 void sleep_for(const tick_count:interval_t & i)

Effects

Current thread blocks for at least time interval i.

315415-016US

Threads I n tel :

Example
using namespace tbb;
void Foo () {

// Sleep 30 seconds
this thread::sleep for(tick count::interval t(30));

Reference Manual 329

330

15 References

Umut A. Acar, Guy E. Blelloch, Robert D. Blumofe, The Data Locality of Work Stealing.
ACM Symposium on Parallel Algorithms and Architectures (2000):1-12.

Robert D.Blumofe, Christopher F. Joerg, Bradley C. Kuszmaul, Charles E. Leiserson,
Keith H. Randall, and Yuli Zhou. Cilk: An Efficient Multithreaded Runtime System.
Proceedings of the 5th ACM SIGPLAN Symposium on Principles and Practice of Parallel
Programming (July 1995):207-216.

Working Draft, Standard for Programming Language C++. WG21 document N3000.
<http://www.open-std.org/jtcl/sc22/wg21/docs/papers/2009/n3000.pdf>

Steve MacDonald, Duane Szafron, and Jonathan Schaeffer. Rethinking the Pipeline as
Object-Oriented States with Transformations. 9th International Workshop on High-
Level Parallel Programming Models and Supportive Environments (April 2004):12-21.

W.F. Burton and R.M. Sleep. Executing functional programs on a virtual tree of
processors. Proceedings of the 1981 Conference on Functional Programming Languages
and Computer Architecture (October 1981):187-194.

ISO/IEC 14882, Programming Languages — C++

Ping An, Alin Jula, Silvius Rus, Steven Saunders, Tim Smith, Gabriel Tanase, Nathan
Thomas, Nancy Amato, Lawrence Rauchwerger. STAPL: An Adaptive, Generic Parallel
C++ Library. Workshop on Language and Compilers for Parallel Computing (LCPC
2001), Cumberland Falls, Kentucky Aug 2001. Lecture Notes in Computer Science 2624
(2003): 193-208.

S. G. Akl and N. Santoro, Optimal Parallel Merging and Sorting Without Memory
Conflicts, IEEE Transactions on Computers, Vol. C-36 No. 11, Nov. 1987.

315415-016US

References i n tel ’)

Appendix A Compatibility Features

This appendix describes features of Intel Threading Building Blocks (Intel® TBB) that
remain for compatibility with previous versions. These features are deprecated and
may disappear in future versions of Intel® TBB. Some of these features are available
only if the preprocessor symbol TBB_DEPRECATED is non-zero.

A.1l parallel_while Template Class

Summary
Template class that processes work items.

TIP: This class is deprecated. Use parallel_do (4.7) instead.

Syntax
template<typename Body>
class parallel while;

Header
#include "tbb/parallel while.h"

Description

A parallel while<Body> performs parallel iteration over items. The processing to be
performed on each item is defined by a function object of type Body. The items are
specified in two ways:

e A stream of items.

e Additional items that are added while the stream is being processed.
Table 46 shows the requirements on the stream and body.

Table 46: parallel_while Requirements for Stream S and Body B

Pseudo-Signature Semantics

bool S::pop if present(B::argument types& Get next stream item.

item) parallel while does not
concurrently invoke the method
on the same this.

B::operator () (B::argument typeé& item) Process item. parallel while

Reference Manual 331

TIP:

332

Pseudo-Signature Semantics

const may concurrently invoke the
operator for the same this but
different item.

B::argument type () Default constructor.

B::argument type(const B::argument type& Copy constructor.
)

~B::argument type () Destructor.

For example, a unary function object, as defined in Section 20.3 of the C++ standard,
models the requirements for B. A concurrent queue (5.5) models the requirements

for S.

To achieve speedup, the grainsize of B: :operator () needs to be on the order of at
least ~10,000 instructions. Otherwise, the internal overheads of parallel while
swamp the useful work. The parallelism in parallel while is not scalable if all the
items come from the input stream. To achieve scaling, design your algorithm such that
method add often adds more than one piece of work.

Members
namespace tbb {
template<typename Body>
class parallel while ({
public:
parallel while();
~parallel while();

typedef typename Body::argument type value type;

template<typename Stream>
void run(Stream& stream, const Bodyé& body):;

void add(const value type& item);

A.1.1 parallel_while<Body>()

Effects

Constructs a parallel while that is not yet running.

315415-016US

References

A1.2 ~parallel_while<Body>()

Effects

Destroys a parallel while.

A1.3 Template <typename Stream> void run(
Stream& stream, const Body& body)

Effects

Applies body to each item in stream and any other items that are added by method
add. Terminates when both of the following conditions become true:

e stream.pop if present returned false.

e body(x) returned for all items x generated from the stream or method add.

A.1.4 void add(const value_type& item)

Requirements

Must be called from a call to body .operator () created by parallel while. Otherwise,
the termination semantics of method run are undefined.

Effects

Adds item to collection of items to be processed.

A.2 Interface for constructing a pipeline
filter

The interface for constructing a filter evolved over several releases of Intel® TBB. The
two following subsections describe obsolete aspects of the interface.

A.2.1 filter:filter(bool is_serial)

Effects

Constructs a serial in order filter if is_serial is true, or a parallel filter if is serial is
false. This deprecated constructor is superseded by the constructor filter (
filter::mode) described in Section 4.9.6.1.

Reference Manual 333

TIP:

Table 47:

A.2.2 filter::serial

The filter mode value filter::serial is now named filter::serial in order. The
new name distinguishes it more clearly from the mode
filter::serial out of order.

A.3 Debugging Macros

The names of the debugging macros have changed as shown in Table 47. If you define
the old macros, Intel® TBB sets each undefined new macro in a way that duplicates
the behavior the old macro settings.

The old TBB_DO_ASSERT enabled assertions, full support for Intel® Threading Tools,
and performance warnings. These three distinct capabilities are now controlled by three
separate macros as described in Section 3.2.

To enable all three capabilities with a single macro, define TBB_USE_DEBUG to be 1. If
you had code under “#if TBB DO ASSERT” that should be conditionally included only
when assertions are enabled, use “#if TBB USE ASSERT” instead.

Deprecated Macros

Deprecated Macro New Macro

TBB_USE_DEBUG OF TBB_USE_ASSERT,

TBB_DO_ASSERT depending on context.

TBB_DO_THREADING_TOOLS | TBB_USE_THREADING_TOOLS

334

A4 tbb:deprecated:concurrent_queue<T,
Alloc> Template Class

Summary

Template class for queue with concurrent operations. This is the concurrent queue

supported in Intel® TBB 2.1 and prior. New code should use the Intel® TBB 2.2
unbounded concurrent gqueue Or concurrent bounded gqueue.

Syntax

template<typename T, typename Alloc=cache aligned allocator<T> >
class concurrent queue;

315415-016US

References

NOTE:

Table 48:

Header
#include "tbb/concurrent queue.h"

Description

A tbb: :deprecated: :concurrent queue is a bounded first-in first-out data structure
that permits multiple threads to concurrently push and pop items. The default bounds
are large enough to make the queue practically unbounded, subject to memory
limitations on the target machine.

Compile with TBB_ DEPRECATED=1 to inject tbb: :deprecated: :concurrent gqueue into
namespace tbb. Consider eventually migrating to the new queue classes.

e Use the new tbb: :concurrent gqueue if you need only the non-blocking operations
(push and try pop) for modifying the queue.

e Otherwise use the new tbb: :concurrent bounded queue. It supports both blocking
operations (push and try pop) and non-blocking operations.

In both cases, use the new method names in Table 48.

Method Name Changes for Concurrent Queues

Method in Equivalent method in
tbb::deprecated::concurrent_queue tbb::concurrent_queue or
tbb::concurrent_bounded_queue

pop if present try pop

push if not full try push
(not available in tbb: : concurrent queue)

begin unsafe begin
end unsafe end
Members

namespace tbb {
namespace deprecated {
template<typename T,
typename Alloc=cache aligned allocator<T> >

class concurrent queue {

public:
// types
typedef T value type;
typedef T& reference;
typedef const T& const reference;
typedef std::ptrdiff t size type;
typedef std::ptrdiff t difference type;

concurrent queue (const Alloc& a = Alloc());
concurrent queue (const concurrent queue& src,

Reference Manual 335

const Alloc& a = Alloc()):;
template<typename Inputlterator>
concurrent queue (Inputlterator first, Inputlterator last,
const Alloc& a = Alloc());

~concurrent queue () ;

void push (const T& source);

bool push if not full (const Té& source);
void pop (T& destination);

bool pop if present (T& destination);
void clear() ;

size type size () const;

bool empty () const;

size t capacity() const;

void set capacity(size type capacity);
Alloc get allocator() const;

typedef implementation-defined iterator;
typedef implementation-defined const iterator;

// iterators (these are slow and intended only for
debugging)
iterator begin();
iterator end();
const iterator begin() const;
const iterator end() const;
}i
}
#if TBB DEPRECATED
using deprecated::concurrent queue;
#else
using strict ppl::concurrent queue;
#endif
}

A.5 Interface for concurrent_vector

The return type of methods grow by and grow _to_at least changed in Intel® TBB
2.2. Compile with the preprocessor symbol TBBE_DEPRECATED set to nonzero to get the

old methods.

336 315415-016US

References

Table 49: Change in Return Types

A.6.1

Method Deprecated New

Return Type Return Type
grow by (5.8.3.1) size type iterator
grow_to at least (5.8.3.2) void iterator
push back (5.8.3.3) size_type iterator

A.5.1 void compacty()

Effects

Same as shrink to fit() (5.8.2.2).

A.6 Interface for class task

Some methods of class task are deprecated because they have obsolete or redundant
functionality.

Deprecated Members of class task
namespace tbb {

class task {

public:

void recycle to reexecute();

// task depth

typedef implementation-defined-signed-integral-type
depth type;

depth type depth() const {return 0;}

void set depth(depth type new depth) ({}

void add to depth(int delta) {}

void recycle _to_reexecute()

Intel® TBB 3.0 deprecated method recycle to reexecute because it is redundant.
Replace a call t->recycle to_ reexecute () with the following sequence:

t->set refcount (1) ;

Reference Manual 337

t->recycle as safe continuation();

A.6.2 Depth interface for class task

Intel® TBB 2.2 eliminated the notion of task depth that was present in prior versions of
Intel® TBB. The members of class task that related to depth have been retained under
TBB_DEPRECATED, but do nothing.

A.7 tbb_thread Class

Intel® TBB 3.0 introduces a header tbb/compat/thread that defines class
std::thread. Prior versions had a header tbb/tbb_thread.h that defined class
tbb_thread. The old header and names are still available, but deprecated in favor of
the replacements shown inTable 50.

Table 50: Replacements for Deprecated Names

Entity Deprecated Replacement
Header tbb/tbb thread.h tbb/compat/thread
tbb::tbb thread std::thread
Identifiers tbb::this tbb thread std::this thread
tbb::this tbb thread::sleep std::this tbb thread::sleep for

Most of the changes reflect a change in the way that the library implements C++ 200x
features (2.4.7). The change from sleep to sleep for reflects a change in the C++
200x working draft.

338 315415-016US

References

Appendix B PPL Compatibility

ntel)

Intel Threading Building Blocks (Intel® TBB) 2.2 introduces features based on joint
discussions between the Microsoft Corporation and Intel Corporation. The features

establish some degree of compatibility between Intel® TBB and Microsoft Parallel
Patterns Library (PPL) development software.

Table 51 lists the features. Each feature appears in namespace tbb. Each feature can
be injected into namespace Concurrency by including the file "tbb/compat/ppl.h"

Table 51: PPL Compatibility Features

CAUTION:

Section Feature
4.4 parallel_for(first,last, f)
4.4 parallel_for(first,last,step,f)
4.8 parallel_for_each
4,12 parallel_invoke
9.3.1 critical_section
9.3.2 reader_writer lock
11.3 task_handle
11.2 task_group_status
11.1.1 task_group
11.4 make_task
11.5 structured_task_group
11.6 is_current_task_group_cancelling
13.4 improper_lock
13.4 invalid_multiple_scheduling
13.4 missing_wait

For parallel for, only the variants listed in the table are injected into namespace

Concurrency.

Because of different environments and evolving specifications, the behavior of the

features can differ between the Intel® TBB and PPL implementations.

Reference Manual

339

Appendix C Known Issues

This section explains known issues with using Intel® Threading Building Blocks (Intel®
TBB).

C.1 Windows* 0OS

Some Intel® TBB header files necessarily include the header file <windows.h>, which
by default defines the macros min and max, and consequently breaks the ISO C++

header files <1imits> and <algorithm>. Defining the preprocessor symbol NOMINMAX
causes <windows.h> to not define the offending macros. Thus programs using Intel®

TBB and either of the aforementioned ISO C++ headers should be compiled with
/DNOMINMAX as a compiler argument.

340 315415-016US

References

Appendix D Community Preview Features

CAUTION:

NOTE:

This section provides documentation for Community Preview (CP) features.

What is a Community Preview Feature?

A Community Preview feature is a component of Intel® Threading Building Blocks
(Intel® TBB) that is being introduced to gain early feedback from developers.
Comments, questions and suggestions related to Community Preview features are
encouraged and should be submitted to the forums at
www.threadingbuildingblocks.org.

The key properties of a CP feature are:
e It must be explicitly enabled. It is off by default.
e Itisintended to have a high quality implementation.
e There is no guarantee of future existence or compatibility.

e It may have limited or no support in tools such as correctness analyzers,
profilers and debuggers.

A CP feature is subject to change in the future. It may be removed or radically altered
in future releases of the library. Changes to a CP feature do NOT require the usual
deprecation and deletion process. Using a CP feature in a production code base is
therefore strongly discouraged.

Enabling a Community Preview Feature

A Community Preview feature may be defined completely in header files or it may
require some additional support defined in a library.

For a CP feature that is contained completely in header files, a feature-specific macro
must be defined before inclusion of the header files.

Example
#define TBB_PREVIEW FOO 1
#include “tbb/foo.h”

If a CP feature requires support from a library, then an additional library must be
linked with the application.

The use of separate headers, feature-specific macros and separate libraries mitigates
the impact of Community Preview features on other product features.

Unless a CP feature is explicitly enabled using the above mechanisms, it will have no
impact on the application.

Reference Manual 341

http://www.threadingbuildingblocks.org/

342

D.1 Flow Graph

This section describes Flow Graph nodes that are available as Community Preview
features.

D.1.1 or_node Template Class

Summary

A node that broadcasts messages received at its input ports to all of its successors.
Each input port p; is @ receiver<T;>. The messages are broadcast individually as they
are received at each port. The output message types is a struct that contains an index
number that identifies the port on which the message arrived and a tuple of the input
types where the value is stored.

Syntax
template<typename InputTuple>
class or node;

Header
#define TBB_PREVIEW GRAPH NODES 1
#include "tbb/flow graph.h"

Description

An or_node is a graph _node and sender< or node<InputTyple>::output type >. It
contains a tuple of input ports, each of which is a receiver<Ti> for each of the T0 .. TN
in ITnputTuple. It supports multiple input receivers with distinct types and broadcasts
each received message to all of its successors. Unlike a join node, each message is
broadcast individually to all successors of the or node as it arrives at an input port.
The incoming messages are wrapped in a struct that contains the index of the port
number on which the message arrived and a tuple of the input types where the
received value is stored.

The function template input_port described in 6.21 simplifies the syntax for getting a
reference to a specific input port.

Rejection of messages by successors of the or node is handled using the protocol in
Figure 4. The input ports never reject incoming messages.

InputTuple must be a std::tuple<T0,T1,..> where each element is copy-
constructible and assignable.

Example

#include<cstdio>
#define TBB PREVIEW GRAPH NODES 1

315415-016US

References I n tel ¢

#include "tbb/flow graph.h"
using namespace tbb::flow;

int main () {
graph g;
function node<int,int> fl1(g, unlimited,
[] (const int &i) { return 2*i; });
function node<float, float> f2(g, unlimited,
[] (const float &f) { return £/2; });

typedef or node< std::tuple<int, float> > my or type;
my or type o(g);

function node< my or type::output type >
f3(g, unlimited,
[1(const my or type::output type &v) {
if (v.indx == 0) {
printf ("Received an int %d\n",
std::get<0>(v.result));
} else {

printf ("Received a float %f\n",
std::get<1l>(v.result));

}

)

make edge(fl, input port<0>(o));
make edge(f2, input port<l> (o));
make edge(o, £f3);

fl.try put(3);

f2.try put(3)

g.wait for all();

return 0;

}

In the example above, three function node objects are created: £1 multiplies an int
i by 2, £2 divides a float f by 2, and f3 prints the values from f1 and £2 as they
arrive. The or node 3j wraps the output of £1 and £2 and forwards each result to £3.

This example is purely a syntactic demonstration since there is very little work in the
nodes.

Members
namespace tbb {
namespace flow {

Reference Manual 343

344

template<typename InputTuple>
class or node : public graph node,
public sender< impl-dependent-output-type > {

public:

typedef struct { size t indx;

InputTuple result;
} output type; typedef receiver<output type>

successor_type;

implementation-dependent-tuple input ports type;

or node (graph &g);

or node (const or node é&src);

input ports type &input ports();

bool register successor (successor type &r);
bool remove successor(successor type &r);
bool try get(output type &v);

bool try reserve(output type &);

bool try release();
bool try consume();
}i
}
}
D.1.1.1 or_node(graph &q)
Effect

Constructs an or node that belongs to the graph g.
D.1.1.2 or_node(const or_node &src)

Effect

Constructs an or _node. The list of predecessors, messages in the input ports, and
successors are NOT copied.

D.1.1.3 input_ports_type& input_ports()

Returns

A std::tuple of receivers. Each element inherits from tbb: :receiver<T> where T is
the type of message expected at that input. Each tuple element can be used like any
other flow::receiver<T>.

315415-016US

References

D114 bool register_successor(successor_type & r)

Effect

Adds r to the set of successors.

Returns

true.
D.1.1.5 bool remove_successor(successor_type &r)

Effect

Removes r from the set of successors.

Returns

true.
D.1.16 bool try_get(output_type &v)

Description

An or node contains no buffering and therefore does not support gets.

Returns
false.
D.1.1.7 bool try_reserve(T &)

Description

An or node contains no buffering and therefore cannot be reserved.

Returns

false.
D.1.1.8 bool try_release()

Description

An or node contains no buffering and therefore cannot be reserved.

Reference Manual

ntel)

345

346

Returns

false.
D.1.1.9 bool try_consume()

Description
An or_node contains no buffering and therefore cannot be reserved.
Returns

false.

D.2 Run-time loader

Summary

The run-time loader is a mechanism that provides additional run-time control over the
version of the Intel ® Threading Buidling Blocks (Intel® TBB) dynamic library used by
an application, plug-in, or another library.

Header
#define TBB_PREVIEW RUNTIME LOADER 1
#include “tbb/runtime loader.h”

Library

oS Release build Debug build
Windows tbbproxy.lib tbbproxy_debug.lib
Description

The run-time loader consists of a class and a static library that can be linked with an
application, library, or plug-in to provide better run-time control over the version of
Intel® TBB used. The class allows loading a desired version of the dynamic library at
run time with explicit list of directories for library search. The static library provides
stubs for functions and methods to resolve link-time dependencies, which are then
dynamically substituted with the proper functions and methods from a loaded Intel®
TBB library.

315415-016US

References

NOTE:

intel)

All instances of class runtime loader in the same module (i.e. exe or dll) share
certain global state. The most noticeable piece of this state is the loaded Intel® TBB
library. The implications of that are:

Only one Intel® TBB library per module can be loaded.

If one runtime loader instance has already loaded a library, another one created by
the same module will not load another one. If the loaded library is suitable for the
second instance, both will use it cooperatively, otherwise an error will be reported
(details below).

If different versions of the library are requested by different modules, those can be
loaded, but may result in processor oversubscription.

runtime loader objects are not thread-safe and may work incorrectly if used
concurrently.

If an application or a library uses runtime_loader, it should be linked with one of the
above specified libraries instead of a normal Intel® TBB library.

Example

#define TBB_PREVIEW RUNTIME LOADER 1
#include "tbb/runtime loader.h"
#include "tbb/parallel for.h”
#include <iostream>

char const * path[] = { "c:\\myapp\\1lib\\ia32", NULL };

int main () {
tbb::runtime loader loader(path);
if(loader.status () !=tbb::runtime loader::ec ok)
return -1;

// The loader does not impact how TBB is used
tbb::parallel for (0, 10, ParallelForBody()):;

return 0;

}

In this example, the Intel® Threading Building Blocks (Intel®) library will be loaded
from the c:\myapp\lib\ia32 directory. No explicit requirements for a version are
specified, so the minimal suitable version is the version used to compile the example,
and any higher version is suitable as well. If the library is successfully loaded, it can be
used in the normal way.

Reference Manual 347

348

D.2.1 runtime_loader Class

Summary

Class for run time control over the loading of an Intel® Threading Building Blocks

dynamic library.

Syntax

class runtime loader;

Members
namespace tbb {

class runtime loader {

// Error codes.

enum error code
ec_ ok,
ec _bad call,
ec _bad arg,
ec_bad 1lib,
ec _bad ver,
ec_no_lib

}i

{
//
//
//
//
//
//

No errors.

Invalid function call.

Invalid argument passed.

Invalid library found.

The library found is not suitable.
No library found.

// Error mode constants.

enum error mode

{

em status, // Save status of operation and continue.

em throw, // Throw an exception of error code type.
em abort // Print message to stderr, and abort ().

i

runtime loader(error mode mode = em abort);

runtime loader (

char const *pathl[],

//
int min ver
//
int max ver

//

List

of directories to search in.

= TBB INTERFACE VERSION,
Minimal suitable version
= INT MAX,

Maximal suitable version

error mode mode

em_abort

// Error mode for this instance.

) ;

~runtime loader () ;

error code load(

char const * pathl[],
= TBB INTERFACE VERSION,
= INT MAX

int min ver

int max ver

315415-016US

References

TIP:

intel)

) 5
error code status();
)i 8

D.2.1.1 runtime_loader(error_mode mode = em_abort)

Effects

Initialize runtime loader but do not load a library.

D.2.1.2 runtime_loader(char const * path[], int min_ver =
TBB_INTERFACE_VERSION, int max_ver = INT_MAX, error_mode
mode = em_abort)

Requirements

The last element of path[] must be NULL.

Effects

Initialize runtime loader and load Intel® TBB (see load () for details). If error mode
equals to em_status, the method status () can be used to check whether the library
was loaded or not. If error mode equals to em throw, in case of a failure an exception
of type error code will be thrown. If error mode equals to em_abort, in case of a
failure a message will be printed to stderr, and execution aborted.

D.2.1.3 error_code load(char const * path[],int min_ver =
TBB_INTERFACE_VERSION, int max_ver = INT_MAX)

Requirements

The last element of path[] must be NULL.

Effects

Load a suitable version of an Intel® TBB dynamic library from one of the specified
directories.

The method searches for a library in directories specified in the path[] array. When a
library is found, it is loaded and its interface version (as returned by

TBB runtime interface version()) is checked. If the version does not meet the
requirements specified by min_ver and max_ver, the library is unloaded. The search
continues in the next specified path, until a suitable version of the Intel® TBB library is
found or the array of paths ends with NULL. It is recommended to use default values

for min ver and max_ver.

Reference Manual 349

CAUTION:

350

For security reasons, avoid using relative directory names such as current ("."), parent
("..") or any other relative directory (like "lib") when searching for a library. Use only
absolute directory names (as shown in the example above); if necessary, construct
absolute names at run time. Neglecting these rules may cause your program to
execute 3-rd party malicious code. (See
http://www.microsoft.com/technet/security/advisory/2269637.mspx for details.)

Returns

ec_ok - a suitable version was successfully loaded.

ec_bad call - this runtime loader instance has already been used to load a library.
ec_bad lib - A library was found but it appears invalid.

ec_bad_arg - min_ver and/or max_ver is negative or zero, or min_ver > max_ver.
ec_bad_ver - unsuitable version has already been loaded by another instance.

ec_no_lib - No suitable version was found.
D214 error_code status()

Returns

If error mode is em_status, the function returns status of the last operation.

D.3 parallel_ deterministic _reduce
Template Function

Summary

Computes reduction over a range, with deterministic split/join behavior.

Syntax
template<typename Range, typename Value,
typename Func, typename Reduction>
Value parallel deterministic reduce(const Rangeé& range,
const Value& identity, const Funcé& func,
const Reductioné& reduction,

[, task group contexts& group]);

template<typename Range, typename Body>
void parallel deterministic reduce(const Range& range,

315415-016US

http://www.microsoft.com/technet/security/advisory/2269637.mspx

References

intel)

const Bodyé& body
[, task group contexts& group]);

Header
#define TBB PREVIEW DETERMINISTIC REDUCE 1
#include "tbb/parallel reduce.h"

Description

The parallel deterministic reduce template is very similar to the
parallel reduce template. It also has the functional and imperative forms and has
similar requirements for Func and Reduction (Table 12) and Body (Table 13).

Unlike parallel reduce, parallel deterministic_ reduce has deterministic
behavior with regard to splits of both Body and Range and joins of the bodies. For the
functional form, it means Func is applied to a deterministic set of Ranges, and
Reduction merges partial results in a deterministic order. To achieve that,

parallel deterministic reduce always uses simple partitioner because other
partitioners may react on random work stealing behaviour (see 4.3.1). So the template
declaration does not have a partitioner argument.

parallel deterministic reduce always invokes Body splitting constructor for each
range splitting.

by [0,20)
by [0,10) b, [10,20)
bo [0,5) b, [5,10) b, [10,15) b3 [15,20)

Figure 18: Execution of parallel_deterministic_reduce over blocked_range<int>(0,20,5)

As a result, parallel deterministic_reduce recursively splits a range until it is no
longer divisible, and creates a new body (by calling Body splitting constructor) for each
new subrange. Likewise parallel reduce, for each body split the method join is
invoked in order to merge the results from the bodies. Figure 18 shows the execution
of parallel deterministic reduce over a sample range, with the slash marks (/)
denoting where new instances of the body were created.

Therefore for given arguments parallel deterministic reduce executes the same
set of split and join operations no matter how many threads participate in execution
and how tasks are mapped to the threads. If the user-provided functions are also
deterministic (i.e. different runs with the same input result in the same output), then
multiple calls to parallel deterministic reduce Will produce the same result. Note

Reference Manual 351

CAUTION:

352

however that the result might differ from that obtained with an equivalent sequential
(linear) algorithm.

Since simple partitioner is always used, be careful to specify an appropriate
grainsize (see simple partitioner class).

Complexity

If the range and body take O(1) space, and the range splits into nearly equal pieces,
then the space complexity is O(P log(N)), where N is the size of the range and P is the
number of threads.

Example

The example from parallel reduce section can be easily modified to use

parallel deterministic reduce. It is sufficient to define
TBB_PREVIEW_DETERMINISTIC_REDUCE macro and rename parallel reduce to
parallel deterministic_ reduce; a partitioner, if any, should be removed to prevent
compilation error. A grain size may need to be specified for blocked_range if
performance suffered.

#define TBB_PREVIEW DETERMINISTIC_REDUCE 1
#include <numeric>

#include <functional>

#include "tbb/parallel reduce.h"

#include "tbb/blocked range.h"

using namespace tbb;

float ParallelSum(float array[], size t n) {

size_t grain_size = 1000;

return parallel deterministic_reduce (
blocked range<float*>(array, array+n, grain size),
0.f,
[1 (const blocked range<float*>& r, float value)->float ({

return std::accumulate(r.begin(),r.end(),value);

by
std::plus<float>()

) ;

315415-016US

] ®
References (I n tel)
D.4 Scalable Memory Pools
Memory pools allocate and free memory from a specified region or underlying allocator
providing thread-safe, scalable operations. Table 52 summarizes the memory pool
concept. Here, P represents an instance of the memory pool class.
Table 52: Memory Pool Concept
Pseudo-Signature Semantics
~P() throw(); Destructor. Frees all the memory of
allocated objects.
void P::recycle(); Frees all the memory of allocated
objects.
void* P::malloc(size t n); Returns pointer to n bytes allocated
from memory pool.
void P::free(void* ptr); Frees memory object specified via
ptr pointer.
void* P::realloc(void* ptr, size t n); Reallocates memory object pointed
by ptr to n bytes.
Model Types
Template class memory pool (D.4.1) and class fixed pool (D.4.2) model the Memory
Pool concept.
D.4.1 memory_pool Template Class
Summary
Template class for scalable memory allocation from memory blocks provided by an
underlying allocator.
CAUTION: If the underlying allocator refers to another scalable memory pool, the inner pool (or

pools) must be destroyed before the outer pool is destroyed or recycled.

Syntax

template <typename Alloc> class memory pool;

Header
#define TBB PREVIEW MEMORY POOL 1
#include “tbb/memory pool.h”

Reference Manual 353

354

Description

A memory pool allocates and frees memory in a way that scales with the number of
processors. The memory is obtained as big chunks from an underlying allocator
specified by the template argument. The latter must satisfy the subset of requirements
described in Table 31 with allocate, deallocate, and value type valid for
sizeof (value type)>0. A memory pool models the Memory Pool concept described in
Table 52.

Example
#define TBB PREVIEW MEMORY POOL 1
#include "tbb/memory pool.h"

tbb::memory pool<std::allocator<char> > my pool;
void* my ptr = my pool.malloc(10);
my pool.free(my ptr);

The code above provides a simple example of allocation from an extensible memory
pool.

Members
namespace tbb {
template <typename Alloc>

class memory pool : no copy {
public:
memory pool (const Alloc &src = Alloc()) throw(std::bad alloc);

~memory pool () ;

void recycle();

void *malloc(size t size);

void free(void* ptr);

void *realloc(void* ptr, size t size);

D411 memory_pool(const Alloc &src = Alloc())

Effects

Constructs memory pool with an instance of underlying memory allocator of type Alloc
copied from src. Throws bad_alloc exception if runtime fails to construct an instance
of the class.

315415-016US

References i n tel : ’

D4.2 fixed_pool Class

Summary

Template class for scalable memory allocation from a buffer of fixed size.

Syntax

class fixed pool;

Header
#define TBB PREVIEW MEMORY POOL 1
#include “tbb/memory pool.h”

Description

A fixed pool allocates and frees memory in a way that scales with the number of
processors. All the memory available for the allocation is initially passed through
arguments of the constructor. A fixed pool models the Memory Pool concept
described in Table 52.

Example
#define TBB PREVIEW MEMORY POOL 1
#include "tbb/memory pool.h"

char buf[1024*1024];

tbb::fixed pool my pool (buf, 1024*1024);
void* my ptr = my pool.malloc (10);

my pool.free(my ptr);}

The code above provides a simple example of allocation from a fixed pool.

Members
namespace tbb {
class fixed pool : no_copy {
public:
fixed pool (void *buffer, size t size) throw(std::bad alloc);
~fixed pool();
void recycle();
void *malloc(size t size);
void free(void* ptr);
void *realloc(void* ptr, size t size);

Reference Manual 355

DA4.2.1 fixed_pool(void *buffer, size_t size)

Effects

Constructs memory pool to manage the memory pointed by buffer and of size.
Throws bad_alloc exception if runtime fails to construct an instance of the class.

D4.3 memory_pool_allocator Template Class

Summary

Template class that provides the C++ allocator interface for memory pools.

Syntax

template<typename T> class memory pool allocator;

Header
#define TBB PREVIEW MEMORY POOL 1
#include “tbb/memory pool.h”

Description

A memory pool allocator models the allocator requirements described in Table 31

except for default constructor which is excluded from the class. Instead, it provides a
constructor, which links with an instance of memory pool or fixed pool classes, that

actually allocates and deallocates memory. The class is mainly intended to enable
memory pools within STL containers.

Example
#define TBB_PREVIEW MEMORY POOL 1
#include "tbb/memory pool.h"

typedef tbb::memory pool allocator<int>
pool allocator t;

std::1list<int, pool allocator t>
my list(pool allocator t(my pool));

The code above provides a simple example of cnostruction of a container that uses a
memory pool.

Members

namespace tbb {
template<typename T>

class memory pool allocator ({

356 315415-016US

References

public:

typedef T value type;

typedef value type* pointer;

typedef const value type* const pointer;

typedef value type& reference;

typedef const value type& const reference;

typedef size t size type;

typedef ptrdiff t difference type;

template<typename U> struct rebind {
typedef memory pool allocator<U> other;

bi

memory pool allocator (memory pool &pool) throw();
memory pool allocator (fixed pool &pool) throw();
memory pool allocator (const memory pool allocatoré& src)

throw () ;

template<typename U>
memory pool allocator (const memory pool allocator<U,P>& src)

throw () ;

}:

pointer address (reference x) const;
const pointer address(const reference x) const;

pointer allocate(size type n, const void* hint=0);
void deallocate(pointer p, size type);
size type max size() const throw();

void construct(pointer p, const T& value);
void destroy(pointer p);

template<>
class memory pool allocator<void> {

public:

typedef void* pointer;

typedef const void* const pointer;

typedef void value type;

template<typename U> struct rebind {
typedef memory pool allocator<U> other;

i

memory pool allocator (memory pool &pool) throw();
memory pool allocator (fixed pool &pool) throw();
memory pool allocator (const memory pool allocatoré& src)

throw () ;

Reference Manual

template<typename U>

357

memory pool allocator (const memory pool allocator<U>& src)
throw () ;

}i
template<typename T, typename U>

inline bool operator==(const memory pool allocator<T>& a,
const memory pool allocator<U>& b);

template<typename T, typename U>

inline bool operator!=(const memory pool allocator<T>& a,
const memory pool allocator<U>& b);

}
D431 memory_pool_allocator(memory_pool &pool)

Effects

Constructs memory pool allocator serviced by memory pool instance pool.

D432 memory_pool_allocator(fixed_pool &pool)

Effects

Constructs memory pool allocator serviced by fixed pool instance pool.

D.5 Serial subset

Summary

A subset of the parallel algorithms is provided for modeling serial execution. Currently
only a serial version of tbb: :parallel for () is available.

D.5.1 tbb::serial::;parallel_for()

Header
#define TBB PREVIEW SERTAL SUBSET 1
#include “tbb/ parallel for.h”

Motivation
Sometimes it is useful, for example while debugging, to execute certain

parallel for () invocations serially while having other invocations of
parallel for ()executed in parallel.

358 315415-016US

References

intel)

Description

The tbb::serial::parallel for function implements the tbb::parallel for API
using a serial implementation underneath. Users who want sequential execution of a
certain parallel for () invocation will need to define the
TBB_PREVIEW_SERIAL_SUBSET macro before parallel for.h and prefix the selected
parallel for () with tbb::serial::. Internally, the serial implementation uses the
same principle of recursive decomposition, but instead of spawning tasks, it does
recursion “for real”, i.e. the body function calls itself twice with two halves of its
original range.

Example

#define TBB PREVIEW SERIAL SUBSET 1
#include <tbb/parallel for.h>
#include <tbb/blocked range.h>

Foo ()
{

//

tbb::serial::parallel for(...) 8
tbb::parallel for (...) 8

//

D.6 concurrent_|lru_cache Template Class

Summary

Template class for Least Recently Used cache with concurrent operations.

Syntax

template <typename key type, typename value type, typename
value functor type = value type (*) (key type) >
class concurrent lru cache;

Header
#define TBB PREVIEW CONCURRENT LRU CACHE 1
#include “tbb/concurrent lru cache.h”

Description

A concurrent lru cache container maps keys to values with the ability to limit the
number of stored unused objects. There is at most one element in the container for
each key.

The container permits multiple threads to concurrently retrieve items from it.

Reference Manual 359

The container tracks the lifetime of retrieved items by returning a proxy object instead
of a real value.

The container stores all the items that are currently in use and a limited number of
unused items. Extra items are removed in a least recently used manner.

When no item is found for a key, the container calls the user provided function object
to get a needed value and inserts it. The functor object must be thread safe.

Members
namespace tbb {
template <typename key type,
typename value type,
typename value functor type = value type (*) (key type)

class concurrent lru cache({
private:
class handle object;

public:
typedef handle object handle;

public:

concurrent lru cache(value functor type f, std::size t
number of lru history items);

handle object operator () (key type k);

private:
struct handle move t;
class handle object ({
public:
handle object (handle move t m);
operator handle move t();
value type& value();
~handle object();
friend handle move t move (handle object& h);
private:
void operator=(handle objecté&);
handle object (handle object &);
bi

—
~.

—

360 315415-016US

References

D.6.1 concurrent_Iru_cache(value_function_type f,
std::size_t number_of_lru_history_items);

Effects

Constructs an empty cache with a number of lru history items maximum number
of stored unused objects, and £ function object returning new values.

D.6.2 handle_object operator[](key_type k)

Effects

Search the container for a pair with given key. If the pair is not found, the user
provided function object is called to get the value and insert it into the container.

Returns

handle_object pointing to the matching value.

D.6.3 ~ concurrent_lru_cache ()

Effects

Destroys all items in the container, and the container itself, so that it can no longer be
used.

D.6.4 handle_object class

Summary

Class that provides read and write access to value in a concurrent lru cache.

Syntax
template <typename key type,
typename value type,
typename value functor type = value type (*) (key type)

class concurrent lru cache::handle object {

Header

#include “tbb/concurrent lru cache.h”

Reference Manual 361

362

Description

A handle object is a (smart handle) proxy object returned by the cache container
allowing getting reference to the value.

Live object of this type prevents the container from erasing values while they are being
used.

The handle object does not have copy semantics; instead it only allows transfer of

ownership i.e. it semantics is similar to one of std::auto_ptr or move semantics from
C++0x.

Members and free standing functions
namespace tbb {
template <typename key type,
typename value type,
typename value functor type = value type (*) (key type)

class concurrent lru cache::handle object {
public:
handle object (handle move t m);
operator handle move t();
value type& value();
~handle object();
private:
void operator=(handle objecté&);
handle object (handle object &);
}i
}i

handle move t move (handle objecté& h);

}

D.6.4.1 handle_object(handle_move_t m)

Effects

Constructs an handle object object from a pointer or from another handle object
(through implicit conversion to handle move t object).

Since handle_object objects owns a reference to a value object of LRU cache, when a

new handle object is constructed from another handle object, the former owner
releases the reference ownership (i.e. no longer refers to any value) .

315415-016US

References

intel)

D.64.2 operator handle_move_t()

Description

This method should not be called directly, instead use free standing move function.

Effects

Transfer reference ownership from handle object objects to temporary
handle move t object.

Returns

handle move t object pointing to the same value object of LRU cache

D643 value_type& value()

Effects
Return a reference to value object of LRU cache container.
Returns

Reference to value type object inside the LRU cache container.

D644 ~handle_object()

Effects

Release a reference to value object of LRU cache container. It it was the last reference
to the value object the container is allowed to evict the value.

D.6.5 handle_move_t class

This is an instrumental class to allow certain conversions that allow ownership transfer
between instances of handle object objects. As well it allows handle object objects
to be passed to and returned from functions. The class has no members other than
holding a reference to value object in LRU cache container and a pointer to the
container itself.

Reference Manual 363

	Legal Information
	Optimization Notice
	1 Overview
	2 General Conventions
	2.1 Notation
	2.2 Terminology
	2.2.1 Concept
	2.2.2 Model
	2.2.3 CopyConstructible

	2.3 Identifiers
	2.3.1 Case
	2.3.2 Reserved Identifier Prefixes

	2.4 Namespaces
	2.4.1 tbb Namespace
	2.4.2 tb::flow Namespace
	2.4.3 tbb::interfacex Namespace
	2.4.4 tbb::internal Namespace
	2.4.5 tbb::deprecated Namespace
	2.4.6 tbb::strict_ppl Namespace
	2.4.7 std Namespace

	2.5 Thread Safety

	3 Environment
	3.1 Version Information
	3.1.1 Version Macros
	3.1.2 TBB_VERSION Environment Variable
	3.1.3 TBB_runtime_interface_version Function

	3.2 Enabling Debugging Features
	3.2.1 TBB_USE_ASSERT Macro
	3.2.2 TBB_USE_THREADING_TOOLS Macro
	3.2.3 TBB_USE_PERFORMANCE_WARNINGS Macro

	3.3 Feature macros
	3.3.1 TBB_DEPRECATED macro
	3.3.2 TBB_USE_EXCEPTIONS macro
	3.3.3 TBB_USE_CAPTURED_EXCEPTION macro

	4 Algorithms
	4.1 Splittable Concept
	4.1.1 split Class

	4.2 Range Concept
	4.2.1 blocked_range<Value> Template Class
	4.2.1.1 size_type
	4.2.1.2 blocked_range(Value begin, Value end, size_t grainsize=1)
	4.2.1.3 blocked_range(blocked_range& range, split)
	4.2.1.4 size_type size() const
	4.2.1.5 bool empty() const
	4.2.1.6 size_type grainsize() const
	4.2.1.7 bool is_divisible() const
	4.2.1.8 const_iterator begin() const
	4.2.1.9 const_iterator end() const

	4.2.2 blocked_range2d Template Class
	4.2.2.1 row_range_type
	4.2.2.2 col_range_type
	4.2.2.3 blocked_range2d<RowValue,ColValue>(RowValue row_begin, RowValue row_end, typename row_range_type::size_type row_grainsize, ColValue col_begin, ColValue col_end, typename col_range_type::size_type col_grainsize)
	4.2.2.4 blocked_range2d<RowValue,ColValue>(RowValue row_begin, RowValue row_end, ColValue col_begin, ColValue col_end)
	4.2.2.5 blocked_range2d<RowValue,ColValue> (blocked_range2d& range, split)
	4.2.2.6 bool empty() const
	4.2.2.7 bool is_divisible() const
	4.2.2.8 const row_range_type& rows() const
	4.2.2.9 const col_range_type& cols() const

	4.2.3 blocked_range3d Template Class

	4.3 Partitioners
	4.3.1 auto_partitioner Class
	4.3.1.1 auto_partitioner()
	4.3.1.2 ~auto_partitioner()

	4.3.2 affinity_partitioner
	4.3.2.1 affinity_partitioner()
	4.3.2.2 ~affinity_partitioner()

	4.3.3 simple_partitioner Class
	4.3.3.1 simple_partitioner()
	4.3.3.2 ~simple_partitioner()

	4.4 parallel_for Template Function
	4.5 parallel_reduce Template Function
	4.6 parallel_scan Template Function
	4.6.1 pre_scan_tag and final_scan_tag Classes
	4.6.1.1 bool is_final_scan()

	4.7 parallel_do Template Function
	4.7.1 parallel_do_feeder<Item> class
	4.7.1.1 void add(const Item& item)

	4.8 parallel_for_each Template Function
	4.9 pipeline Class
	4.9.1 pipeline()
	4.9.2 ~pipeline()
	4.9.3 void add_filter(filter& f)
	4.9.4 void run(size_t max_number_of_live_tokens[, task_group_context& group])
	4.9.5 void clear()
	4.9.6 filter Class
	4.9.6.1 filter(mode filter_mode)
	4.9.6.2 ~filter()
	4.9.6.3 bool is_serial() const
	4.9.6.4 bool is_ordered() const
	4.9.6.5 virtual void* operator()(void * item)
	4.9.6.6 virtual void finalize(void * item)

	4.9.7 thread_bound_filter Class
	4.9.7.1 thread_bound_filter(mode filter_mode)
	4.9.7.2 result_type try_process_item()
	4.9.7.3 result_type process_item()

	4.10 parallel_pipeline Function
	4.10.1 filter_t Template Class
	4.10.1.1 filter _t()
	4.10.1.2 filter_t(const filter_t<T,U>& rhs)
	4.10.1.3 template<typename Func> filter_t(filter::mode mode, const Func& f)
	4.10.1.4 void operator=(const filter_t<T,U>& rhs)
	4.10.1.5 ~filter_t()
	4.10.1.6 void clear()
	4.10.1.7 template<typename T, typename U, typename Func> filter_t<T,U> make_filter(filter::mode mode, const Func& f)
	4.10.1.8 template<typename T, typename V, typename U> filter_t<T,U> operator& (const filter_t<T,V>& left, const filter_t<V,U>& right)

	4.10.2 flow_control Class

	4.11 parallel_sort Template Function
	4.12 parallel_invoke Template Function

	5 Containers
	5.1 Container Range Concept
	5.2 concurrent_unordered_map Template Class
	5.2.1 Construct, Destroy, Copy
	5.2.1.1 explicit concurrent_unordered_map (size_type n = implementation-defined, const hasher& hf = hasher(),const key_equal& eql = key_equal(), const allocator_type& a = allocator_type())
	5.2.1.2 template <typename InputIterator> concurrent_unordered_map (InputIterator first, InputIterator last, size_type n = implementation-defined, const hasher& hf = hasher(), const key_equal& eql = key_equal(), const allocator_type& a = allocator_typ...
	5.2.1.3 concurrent_unordered_map(const unordered_map& m)
	5.2.1.4 concurrent_unordered_map(const Alloc& a)
	5.2.1.5 concurrent_unordered_map(const unordered_map&, const Alloc& a)
	5.2.1.6 ~concurrent_unordered_map()
	5.2.1.7 concurrent_ unordered_map& operator=(const concurrent_unordered_map& m);
	5.2.1.8 allocator_type get_allocator() const;

	5.2.2 Size and capacity
	5.2.2.1 bool empty() const
	5.2.2.2 size_type size() const
	5.2.2.3 size_type max_size() const

	5.2.3 Iterators
	5.2.3.1 iterator begin()
	5.2.3.2 const_iterator begin() const
	5.2.3.3 iterator end()
	5.2.3.4 const_iterator end() const
	5.2.3.5 const_iterator cbegin() const
	5.2.3.6 const_iterator cend() const

	5.2.4 Modifiers
	5.2.4.1 std::pair<iterator, bool> insert(const value_type& x)
	5.2.4.2 iterator insert(const_iterator hint, const value_type& x)
	5.2.4.3 template<class InputIterator> void insert(InputIterator first, InputIterator last)
	5.2.4.4 iterator unsafe_erase(const_iterator position)
	5.2.4.5 size_type unsafe_erase(const key_type& k)
	5.2.4.6 iterator unsafe_erase(const_iterator first, const_iterator last)
	5.2.4.7 void clear()
	5.2.4.8 void swap(concurrent_unordered_map& m)

	5.2.5 Observers
	5.2.5.1 hasher hash_function() const
	5.2.5.2 key_equal key_eq() const

	5.2.6 Lookup
	5.2.6.1 iterator find(const key_type& k)
	5.2.6.2 const_iterator find(const key_type& k) const
	5.2.6.3 size_type count(const key_type& k) const
	5.2.6.4 std::pair<iterator, iterator> equal_range(const key_type& k)
	5.2.6.5 std::pair<const_iterator, const_iterator> equal_range(const key_type& k) const
	5.2.6.6 mapped_type& operator[](const key_type& k)
	5.2.6.7 mapped_type& at(const key_type& k)
	5.2.6.8 const mapped_type& at(const key_type& k) const

	5.2.7 Parallel Iteration
	5.2.7.1 const_range_type range() const
	5.2.7.2 range_type range()

	5.2.8 Bucket Interface
	5.2.8.1 size_type unsafe_bucket_count() const
	5.2.8.2 size_type unsafe_max_bucket_count() const
	5.2.8.3 size_type unsafe_bucket_size(size_type n)
	5.2.8.4 size_type unsafe_bucket(const key_type& k) const
	5.2.8.5 local_iterator unsafe_begin(size_type n)
	5.2.8.6 const_local_iterator unsafe_begin(size_type n) const
	5.2.8.7 local_iterator unsafe_end(size_type n)
	5.2.8.8 const_local_iterator unsafe_end(size_type n) const
	5.2.8.9 const_local_iterator unsafe_cbegin(size_type n) const
	5.2.8.10 const_local_iterator unsafe_cend(size_type n) const

	5.2.9 Hash policy
	5.2.9.1 float load_factor() const
	5.2.9.2 float max_load_factor() const
	5.2.9.3 void max_load_factor(float z)
	5.2.9.4 void rehash(size_type n)

	5.3 concurrent_unordered_set Template Class
	5.3.1 Construct, Destroy, Copy
	5.3.1.1 explicit concurrent_unordered_set (size_type n = implementation-defined, const hasher& hf = hasher(),const key_equal& eql = key_equal(), const allocator_type& a = allocator_type())
	5.3.1.2 template <typename InputIterator> concurrent_unordered_set (InputIterator first, InputIterator last, size_type n = implementation-defined, const hasher& hf = hasher(), const key_equal& eql = key_equal(), const allocator_type& a = allocator_typ...
	5.3.1.3 concurrent_unordered_set(const unordered_set& m)
	5.3.1.4 concurrent_unordered_set(const Alloc& a)
	5.3.1.5 concurrent_unordered_set(const unordered_set&, const Alloc& a)
	5.3.1.6 ~concurrent_unordered_set()
	5.3.1.7 concurrent_ unordered_set& operator=(const concurrent_unordered_set& m);
	5.3.1.8 allocator_type get_allocator() const;

	5.3.2 Size and capacity
	5.3.2.1 bool empty() const
	5.3.2.2 size_type size() const
	5.3.2.3 size_type max_size() const

	5.3.3 Iterators
	5.3.3.1 iterator begin()
	5.3.3.2 const_iterator begin() const
	5.3.3.3 iterator end()
	5.3.3.4 const_iterator end() const
	5.3.3.5 const_iterator cbegin() const
	5.3.3.6 const_iterator cend() const

	5.3.4 Modifiers
	5.3.4.1 std::pair<iterator, bool> insert(const value_type& x)
	5.3.4.2 iterator insert(const_iterator hint, const value_type& x)
	5.3.4.3 template<class InputIterator> void insert(InputIterator first, InputIterator last)
	5.3.4.4 iterator unsafe_erase(const_iterator position)
	5.3.4.5 size_type unsafe_erase(const key_type& k)
	5.3.4.6 iterator unsafe_erase(const_iterator first, const_iterator last)
	5.3.4.7 void clear()
	5.3.4.8 void swap(concurrent_unordered_set& m)

	5.3.5 Observers
	5.3.5.1 hasher hash_function() const
	5.3.5.2 key_equal key_eq() const

	5.3.6 Lookup
	5.3.6.1 iterator find(const key_type& k)
	5.3.6.2 const_iterator find(const key_type& k) const
	5.3.6.3 size_type count(const key_type& k) const
	5.3.6.4 std::pair<iterator, iterator> equal_range(const key_type& k)
	5.3.6.5 std::pair<const_iterator, const_iterator> equal_range(const key_type& k) const

	5.3.7 Parallel Iteration
	5.3.7.1 const_range_type range() const
	5.3.7.2 range_type range()

	5.3.8 Bucket Interface
	5.3.8.1 size_type unsafe_bucket_count() const
	5.3.8.2 size_type unsafe_max_bucket_count() const
	5.3.8.3 size_type unsafe_bucket_size(size_type n)
	5.3.8.4 size_type unsafe_bucket(const key_type& k) const
	5.3.8.5 local_iterator unsafe_begin(size_type n)
	5.3.8.6 const_local_iterator unsafe_begin(size_type n) const
	5.3.8.7 local_iterator unsafe_end(size_type n)
	5.3.8.8 const_local_iterator unsafe_end(size_type n) const
	5.3.8.9 const_local_iterator unsafe_cbegin(size_type n) const
	5.3.8.10 const_local_iterator unsafe_cend(size_type n) const

	5.3.9 Hash policy
	5.3.9.1 float load_factor() const
	5.3.9.2 float max_load_factor() const
	5.3.9.3 void max_load_factor(float z)
	5.3.9.4 void rehash(size_type n)

	5.4 concurrent_hash_map Template Class
	5.4.1 Whole Table Operations
	5.4.1.1 concurrent_hash_map(const allocator_type& a = allocator_type())
	5.4.1.2 concurrent_hash_map(size_type n, const allocator_type& a = allocator_type())
	5.4.1.3 concurrent_hash_map(const concurrent_hash_map& table, const allocator_type& a = allocator_type())
	5.4.1.4 template<typename InputIterator> concurrent_hash_map(InputIterator first, InputIterator last, const allocator_type& a = allocator_type())
	5.4.1.5 ~concurrent_hash_map()
	5.4.1.6 concurrent_hash_map& operator= (concurrent_hash_map& source)
	5.4.1.7 void swap(concurrent_hash_map& table)
	5.4.1.8 void rehash(size_type n=0)
	5.4.1.9 void clear()
	5.4.1.10 allocator_type get_allocator() const

	5.4.2 Concurrent Access
	5.4.2.1 const_accessor
	5.4.2.1.1 bool empty() const
	5.4.2.1.2 void release()
	5.4.2.1.3 const value_type& operator*() const
	5.4.2.1.4 const value_type* operator->() const
	5.4.2.1.5 const_accessor()
	5.4.2.1.6 ~const_accessor

	5.4.2.2 accessor
	5.4.2.2.1 value_type& operator*() const
	5.4.2.2.2 value_type* operator->() const

	5.4.3 Concurrent Operations
	5.4.3.1 size_type count(const Key& key) const
	5.4.3.2 bool find(const_accessor& result, const Key& key) const
	5.4.3.3 bool find(accessor& result, const Key& key)
	5.4.3.4 bool insert(const_accessor& result, const Key& key)
	5.4.3.5 bool insert(accessor& result, const Key& key)
	5.4.3.6 bool insert(const_accessor& result, const value_type& value)
	5.4.3.7 bool insert(accessor& result, const value_type& value)
	5.4.3.8 bool insert(const value_type& value)
	5.4.3.9 template<typename InputIterator> void insert(InputIterator first, InputIterator last)
	5.4.3.10 bool erase(const Key& key)
	5.4.3.11 bool erase(const_accessor& item_accessor)
	5.4.3.12 bool erase(accessor& item_accessor)

	5.4.4 Parallel Iteration
	5.4.4.1 const_range_type range(size_t grainsize=1) const
	5.4.4.2 range_type range(size_t grainsize=1)

	5.4.5 Capacity
	5.4.5.1 size_type size() const
	5.4.5.2 bool empty() const
	5.4.5.3 size_type max_size() const
	5.4.5.4 size_type bucket_count() const

	5.4.6 Iterators
	5.4.6.1 iterator begin()
	5.4.6.2 iterator end()
	5.4.6.3 const_iterator begin() const
	5.4.6.4 const_iterator end() const
	5.4.6.5 std::pair<iterator, iterator> equal_range(const Key& key);
	5.4.6.6 std::pair<const_iterator, const_iterator> equal_range(const Key& key) const;

	5.4.7 Global Functions
	5.4.7.1 template<typename Key, typename T, typename HashCompare, typename A1, typename A2> bool operator==(const concurrent_hash_map<Key,T,HashCompare,A1>& a, const concurrent_hash_map<Key,T,HashCompare,A2>& b);
	5.4.7.2 template<typename Key, typename T, typename HashCompare, typename A1, typename A2> bool operator!=(const concurrent_hash_map<Key,T,HashCompare,A1> &a, const concurrent_hash_map<Key,T,HashCompare,A2> &b);
	5.4.7.3 template<typename Key, typename T, typename HashCompare, typename A> void swap(concurrent_hash_map<Key, T, HashCompare, A> &a, concurrent_hash_map<Key, T, HashCompare, A> &b)

	5.4.8 tbb_hash_compare Class

	5.5 concurrent_queue Template Class
	5.5.1 concurrent_queue(const Alloc& a = Alloc ())
	5.5.2 concurrent_queue(const concurrent_queue& src, const Alloc& a = Alloc())
	5.5.3 template<typename InputIterator> concurrent_queue(InputIterator first, InputIterator last, const Alloc& a = Alloc())
	5.5.4 ~concurrent_queue()
	5.5.5 void push(const T& source)
	5.5.6 bool try_pop (T& destination)
	5.5.7 void clear()
	5.5.8 size_type unsafe_size() const
	5.5.9 bool empty() const
	5.5.10 Alloc get_allocator() const
	5.5.11 Iterators
	5.5.11.1 iterator unsafe_begin()
	5.5.11.2 iterator unsafe_end()
	5.5.11.3 const_iterator unsafe_begin() const
	5.5.11.4 const_iterator unsafe_end() const

	5.6 concurrent_bounded_queue Template Class
	5.6.1 void push(const T& source)
	5.6.2 void pop(T& destination)
	5.6.3 void abort()
	5.6.4 bool try_push(const T& source)
	5.6.5 bool try_pop(T& destination)
	5.6.6 size_type size() const
	5.6.7 bool empty() const
	5.6.8 size_type capacity() const
	5.6.9 void set_capacity(size_type capacity)

	5.7 concurrent_priority_queue Template Class
	5.7.1 concurrent_priority_queue(const allocator_type& a = allocator_type())
	5.7.2 concurrent_priority_queue(size_type init_capacity, const allocator_type& a = allocator_type())
	5.7.3 concurrent_priority_queue(InputIterator begin, InputIterator end, const allocator_type& a = allocator_type())
	5.7.4 concurrent_priority_queue (const concurrent_priority_queue& src, const allocator_type& a = allocator_type())
	5.7.5 concurrent_priority_queue& operator=(const concurrent_priority_queue& src)
	5.7.6 ~concurrent_priority_queue()
	5.7.7 bool empty() const
	5.7.8 size_type size() const
	5.7.9 void push(const_reference elem)
	5.7.10 bool try_pop(reference elem)
	5.7.11 void clear()
	5.7.12 void swap(concurrent_priority_queue& other)
	5.7.13 allocator_type get_allocator() const

	5.8 concurrent_vector
	5.8.1 Construction, Copy, and Assignment
	5.8.1.1 concurrent_vector(const allocator_type& a = allocator_type())
	5.8.1.2 concurrent_vector(size_type n, const_reference t=T(), const allocator_type& a = allocator_type());
	5.8.1.3 template<typename InputIterator> concurrent_vector(InputIterator first, InputIterator last, const allocator_type& a = allocator_type())
	5.8.1.4 concurrent_vector(const concurrent_vector& src)
	5.8.1.5 concurrent_vector& operator=(const concurrent_vector& src)
	5.8.1.6 template<typename M> concurrent_vector& operator=(const concurrent_vector<T, M>& src)
	5.8.1.7 void assign(size_type n, const_reference t)
	5.8.1.8 template<class InputIterator > void assign(InputIterator first, InputIterator last)

	5.8.2 Whole Vector Operations
	5.8.2.1 void reserve(size_type n)
	5.8.2.2 void shrink_to_fit()
	5.8.2.3 void swap(concurrent_vector& x)
	5.8.2.4 void clear()
	5.8.2.5 ~concurrent_vector()

	5.8.3 Concurrent Growth
	5.8.3.1 iterator grow_by(size_type delta, const_reference t=T())
	5.8.3.2 iterator grow_to_at_least(size_type n)
	5.8.3.3 iterator push_back(const_reference value)

	5.8.4 Access
	5.8.4.1 reference operator[](size_type index)
	5.8.4.2 const_refrence operator[](size_type index) const
	5.8.4.3 reference at(size_type index)
	5.8.4.4 const_reference at(size_type index) const
	5.8.4.5 reference front()
	5.8.4.6 const_reference front() const
	5.8.4.7 reference back()
	5.8.4.8 const_reference back() const

	5.8.5 Parallel Iteration
	5.8.5.1 range_type range(size_t grainsize=1)
	5.8.5.2 const_range_type range(size_t grainsize=1) const

	5.8.6 Capacity
	5.8.6.1 size_type size() const
	5.8.6.2 bool empty() const
	5.8.6.3 size_type capacity() const
	5.8.6.4 size_type max_size() const

	5.8.7 Iterators
	5.8.7.1 iterator begin()
	5.8.7.2 const_iterator begin() const
	5.8.7.3 iterator end()
	5.8.7.4 const_iterator end() const
	5.8.7.5 reverse_iterator rbegin()
	5.8.7.6 const_reverse_iterator rbegin() const
	5.8.7.7 iterator rend()
	5.8.7.8 const_reverse_iterator rend()

	6 Flow Graph
	6.1 graph Class
	6.1.1 graph()
	6.1.2 ~graph()
	6.1.3 void increment_wait_count()
	6.1.4 void decrement_wait_count()
	6.1.5 template< typename Receiver, typename Body > void run(Receiver &r, Body body)
	6.1.6 template< typename Body > void run(Body body)
	6.1.7 void wait_for_all()
	6.1.8 task *root_task()

	6.2 sender Template Class
	6.2.1 ~sender()
	6.2.2 bool register_successor(successor_type & r) = 0
	6.2.3 bool remove_successor(successor_type & r) = 0
	6.2.4 bool try_get(output_type &)
	6.2.5 bool try_reserve(output_type &)
	6.2.6 bool try_release()
	6.2.7 bool try_consume()

	6.3 receiver Template Class
	6.3.1 ~receiver()
	6.3.2 bool register_predecessor(predecessor_type & p)
	6.3.3 bool remove_predecessor(predecessor_type & p)
	6.3.4 bool try_put(const input_type &v) = 0

	6.4 continue_msg Class
	6.5 continue_receiver Class
	6.5.1 continue_receiver(int num_predecessors = 0)
	6.5.2 continue_receiver(const continue_receiver& src)
	6.5.3 ~continue_receiver()
	6.5.4 bool try_put(const input_type &)
	6.5.5 bool register_predecessor(predecessor_type & r)
	6.5.6 bool remove_predecessor(predecessor_type & r)
	6.5.7 void execute() = 0

	6.6 graph_node Class
	6.7 continue_node Template Class
	6.7.1 template< typename Body> continue_node(graph &g, Body body)
	6.7.2 template< typename Body> continue_node(graph &g, int number_of_predecessors, Body body)
	6.7.3 continue_node(const continue_node & src)
	6.7.4 bool register_predecessor(predecessor_type & r)
	6.7.5 bool remove_predecessor(predecessor_type & r)
	6.7.6 bool try_put(const input_type &)
	6.7.7 bool register_successor(successor_type & r)
	6.7.8 bool remove_successor(successor_type & r)
	6.7.9 bool try_get(output_type &v)
	6.7.10 bool try_reserve(output_type &)
	6.7.11 bool try_release()
	6.7.12 bool try_consume()

	6.8 function_node Template Class
	6.8.1 template< typename Body> function_node(graph &g, size_t concurrency, Body body)
	6.8.2 function_node(const function_node &src)
	6.8.3 bool register_predecessor(predecessor_type & p)
	6.8.4 bool remove_predecessor(predecessor_type & p)
	6.8.5 bool try_put(const input_type &v)
	6.8.6 bool register_successor(successor_type & r)
	6.8.7 bool remove_successor(successor_type & r)
	6.8.8 bool try_get(output_type &v)
	6.8.9 bool try_reserve(output_type &)
	6.8.10 bool try_release()
	6.8.11 bool try_consume()

	6.9 source_node Class
	6.9.1 template< typename Body> source_node(graph &g, Body body, bool is_active=true)
	6.9.2 source_node(const source_node &src)
	6.9.3 bool register_successor(successor_type & r)
	6.9.4 bool remove_successor(successor_type & r)
	6.9.5 bool try_get(output_type &v)
	6.9.6 bool try_reserve(output_type &v)
	6.9.7 bool try_release()
	6.9.8 bool try_consume()

	6.10 multifunction_node Template Class
	6.10.1 template< typename Body> multifunction_node(graph &g, size_t concurrency, Body body, queue_type *q = NULL)
	6.10.2 template< typename Body> multifunction_node(multifunction_node const & other, queue_type *q = NULL)
	6.10.3 bool register_predecessor(predecessor_type & p)
	6.10.4 bool remove_predecessor(predecessor_type & p)
	6.10.5 bool try_put(input_type v)
	6.10.6 (output port &) output_port<N>(node)

	6.11 overwrite_node Template Class
	6.11.1 overwrite_node(graph &g)
	6.11.2 overwrite_node(const overwrite_node &src)
	6.11.3 ~overwrite_node()
	6.11.4 bool register_predecessor(predecessor_type &)
	6.11.5 bool remove_predecessor(predecessor_type &)
	6.11.6 bool try_put(const input_type &v)
	6.11.7 bool register_successor(successor_type & r)
	6.11.8 bool remove_successor(successor_type & r)
	6.11.9 bool try_get(output_type &v)
	6.11.10 bool try_reserve(output_type &)
	6.11.11 bool try_release()
	6.11.12 bool try_consume()
	6.11.13 bool is_valid()
	6.11.14 void clear()

	6.12 write_once_node Template Class
	6.12.1 write_once_node(graph &g)
	6.12.2 write_once_node(const write_once_node &src)
	6.12.3 bool register_predecessor(predecessor_type &)
	6.12.4 bool remove_predecessor(predecessor_type &)
	6.12.5 bool try_put(const input_type &v)
	6.12.6 bool register_successor(successor_type & r)
	6.12.7 bool remove_successor(successor_type & r)
	6.12.8 bool try_get(output_type &v)
	6.12.9 bool try_reserve(output_type &)
	6.12.10 bool try_release()
	6.12.11 bool try_consume()
	6.12.12 bool is_valid()
	6.12.13 void clear()

	6.13 broadcast_node Template Class
	6.13.1 broadcast_node(graph &g)
	6.13.2 broadcast_node(const broadcast_node &src)
	6.13.3 bool register_predecessor(predecessor_type &)
	6.13.4 bool remove_predecessor(predecessor_type &)
	6.13.5 bool try_put(const input_type &v)
	6.13.6 bool register_successor(successor_type & r)
	6.13.7 bool remove_successor(successor_type & r)
	6.13.8 bool try_get(output_type &)
	6.13.9 bool try_reserve(output_type &)
	6.13.10 bool try_release()
	6.13.11 bool try_consume()

	6.14 buffer_node Class
	6.14.1 buffer_node(graph& g)
	6.14.2 buffer_node(const buffer_node &src)
	6.14.3 bool register_predecessor(predecessor_type &)
	6.14.4 bool remove_predecessor(predecessor_type &)
	6.14.5 bool try_put(const input_type &v)
	6.14.6 bool register_successor(successor_type & r)
	6.14.7 bool remove_successor(successor_type & r)
	6.14.8 bool try_get(output_type & v)
	6.14.9 bool try_reserve(output_type & v)
	6.14.10 bool try_release()
	6.14.11 bool try_consume()

	6.15 queue_node Template Class
	6.15.1 queue_node(graph& g)
	6.15.2 queue_node(const queue_node &src)
	6.15.3 bool register_predecessor(predecessor_type &)
	6.15.4 bool remove_predecessor(predecessor_type &)
	6.15.5 bool try_put(const input_type &v)
	6.15.6 bool register_successor(successor_type & r)
	6.15.7 bool remove_successor(successor_type & r)
	6.15.8 bool try_get(output_type & v)
	6.15.9 bool try_reserve(output_type & v)
	6.15.10 bool try_release()
	6.15.11 bool try_consume()

	6.16 priority_queue_node Template Class
	6.16.1 priority_queue_node(graph& g)
	6.16.2 priority_queue_node(const priority_queue_node &src)
	6.16.3 bool register_predecessor(predecessor_type &)
	6.16.4 bool remove_predecessor(predecessor_type &)
	6.16.5 bool try_put(const input_type &v)
	6.16.6 bool register_successor(successor_type &r)
	6.16.7 bool remove_successor(successor_type &r)
	6.16.8 bool try_get(output_type & v)
	6.16.9 bool try_reserve(output_type & v)
	6.16.10 bool try_release()
	6.16.11 bool try_consume()

	6.17 sequencer_node Template Class
	6.17.1 template<typename Sequencer> sequencer_node(graph& g, const Sequencer& s)
	6.17.2 sequencer_node(const sequencer_node &src)
	6.17.3 bool register_predecessor(predecessor_type &)
	6.17.4 bool remove_predecessor(predecessor_type &)
	6.17.5 bool try_put(input_type v)
	6.17.6 bool register_successor(successor_type &r)
	6.17.7 bool remove_successor(successor_type &r)
	6.17.8 bool try_get(output_type & v)
	6.17.9 bool try_reserve(output_type & v)
	6.17.10 bool try_release()
	6.17.11 bool try_consume()

	6.18 limiter_node Template Class
	6.18.1 limiter_node(graph &g, size_t threshold, int number_of_decrement_predecessors)
	6.18.2 limiter_node(const limiter_node &src)
	6.18.3 bool register_predecessor(predecessor_type& p)
	6.18.4 bool remove_predecessor(predecessor_type & r)
	6.18.5 bool try_put(input_type &v)
	6.18.6 bool register_successor(successor_type & r)
	6.18.7 bool remove_successor(successor_type & r)
	6.18.8 bool try_get(output_type &)
	6.18.9 bool try_reserve(output_type &)
	6.18.10 bool try_release()
	6.18.11 bool try_consume()

	6.19 join_node Template Class
	6.19.1 join_node(graph &g)
	6.19.2 template < typename B0, typename B1, … > join_node(graph &g, B0 b0, B1 b1, …)
	6.19.3 join_node(const join_node &src)
	6.19.4 input_ports_type& input_ports()
	6.19.5 bool register_successor(successor_type & r)
	6.19.6 bool remove_successor(successor_type & r)
	6.19.7 bool try_get(output_type &v)
	6.19.8 bool try_reserve(T &)
	6.19.9 bool try_release()
	6.19.10 bool try_consume()
	6.19.11 template<size_t N, typename JNT> typename std::tuple_element<N, typename JNT::input_ports_type>::type &input_port(JNT &jn)

	6.20 split_node Template Class
	6.20.1 split_node(graph &g)
	6.20.2 split_node(split_node const & other)
	6.20.3 bool register_predecessor(predecessor_type & p)
	6.20.4 bool remove_predecessor(predecessor_type & p)
	6.20.5 bool try_put(input_type v)
	6.20.6 (output port &) output_port<N>(node)

	6.21 input_port Template Function
	6.22 make_edge Template Function
	6.23 remove_edge Template Function
	6.24 copy_body Template Function

	7 Thread Local Storage
	7.1 combinable Template Class
	7.1.1 combinable()
	7.1.2 template<typename FInit> combinable(FInit finit)
	7.1.3 combinable(const combinable& other);
	7.1.4 ~combinable()
	7.1.5 combinable& operator=(const combinable& other)
	7.1.6 void clear()
	7.1.7 T& local()
	7.1.8 T& local(bool& exists)
	7.1.9 template<typename FCombine>T combine(FCombine fcombine)
	7.1.10 template<typename Func> void combine_each(Func f)

	7.2 enumerable_thread_specific Template Class
	7.2.1 Whole Container Operations
	7.2.1.1 enumerable_thread_specific()
	7.2.1.2 enumerable_thread_specific(const enumerable_thread_specific &other)
	7.2.1.3 template<typename U, typename Alloc, ets_key_usage_type Cachetype> enumerable_thread_specific(const enumerable_thread_specific<U, Alloc, Cachetype>& other)
	7.2.1.4 template< typename Finit> enumerable_thread_specific(Finit finit)
	7.2.1.5 enumerable_thread_specific(const &exemplar)
	7.2.1.6 ~enumerable_thread_specific()
	7.2.1.7 enumerable_thread_specific& operator=(const enumerable_thread_specific& other);
	7.2.1.8 template< typename U, typename Alloc, ets_key_usage_type Cachetype> enumerable_thread_specific& operator=(const enumerable_thread_specific<U, Alloc, Cachetype>& other);
	7.2.1.9 void clear()

	7.2.2 Concurrent Operations
	7.2.2.1 reference local()
	7.2.2.2 reference local(bool& exists)
	7.2.2.3 size_type size() const
	7.2.2.4 bool empty() const

	7.2.3 Combining
	7.2.3.1 template<typename FCombine>T combine(FCombine fcombine)
	7.2.3.2 template<typename Func> void combine_each(Func f)

	7.2.4 Parallel Iteration
	7.2.4.1 const_range_type range(size_t grainsize=1) const
	7.2.4.2 range_type range(size_t grainsize=1)

	7.2.5 Iterators
	7.2.5.1 iterator begin()
	7.2.5.2 iterator end()
	7.2.5.3 const_iterator begin() const
	7.2.5.4 const_iterator end() const

	7.3 flattened2d Template Class
	7.3.1 Whole Container Operations
	7.3.1.1 flattened2d(const Container& c)
	7.3.1.2 flattened2d(const Container& c, typename Container::const_iterator first, typename Container::const_iterator last)

	7.3.2 Concurrent Operations
	7.3.2.1 size_type size() const

	7.3.3 Iterators
	7.3.3.1 iterator begin()
	7.3.3.2 iterator end()
	7.3.3.3 const_iterator begin() const
	7.3.3.4 const_iterator end() const

	7.3.4 Utility Functions

	8 Memory Allocation
	8.1 Allocator Concept
	8.2 tbb_allocator Template Class
	8.3 scalable_allocator Template Class
	8.3.1 C Interface to Scalable Allocator
	8.3.1.1 size_t scalable_msize(void* ptr)

	8.4 cache_aligned_allocator Template Class
	8.4.1 pointer allocate(size_type n, const void* hint=0)
	8.4.2 void deallocate(pointer p, size_type n)
	8.4.3 char* _Charalloc(size_type size)

	8.5 zero_allocator
	8.6 aligned_space Template Class
	8.6.1 aligned_space()
	8.6.2 ~aligned_space()
	8.6.3 T* begin()
	8.6.4 T* end()

	9 Synchronization
	9.1 Mutexes
	9.1.1 Mutex Concept
	9.1.1.1 C++ 200x Compatibility

	9.1.2 mutex Class
	9.1.3 recursive_mutex Class
	9.1.4 spin_mutex Class
	9.1.5 queuing_mutex Class
	9.1.6 ReaderWriterMutex Concept
	9.1.6.1 ReaderWriterMutex()
	9.1.6.2 ~ReaderWriterMutex()
	9.1.6.3 ReaderWriterMutex::scoped_lock()
	9.1.6.4 ReaderWriterMutex::scoped_lock(ReaderWriterMutex& rw, bool write =true)
	9.1.6.5 ReaderWriterMutex::~scoped_lock()
	9.1.6.6 void ReaderWriterMutex:: scoped_lock:: acquire(ReaderWriterMutex& rw, bool write=true)
	9.1.6.7 bool ReaderWriterMutex:: scoped_lock::try_acquire(ReaderWriterMutex& rw, bool write=true)
	9.1.6.8 void ReaderWriterMutex:: scoped_lock::release()
	9.1.6.9 bool ReaderWriterMutex:: scoped_lock::upgrade_to_writer()
	9.1.6.10 bool ReaderWriterMutex:: scoped_lock::downgrade_to_reader()

	9.1.7 spin_rw_mutex Class
	9.1.8 queuing_rw_mutex Class
	9.1.9 null_mutex Class
	9.1.10 null_rw_mutex Class

	9.2 atomic Template Class
	9.2.1 memory_semantics Enum
	9.2.2 value_type fetch_and_add(value_type addend)
	9.2.3 value_type fetch_and_increment()
	9.2.4 value_type fetch_and_decrement()
	9.2.5 value_type compare_and_swap
	9.2.6 value_type fetch_and_store(value_type new_value)

	9.3 PPL Compatibility
	9.3.1 critical_section
	9.3.2 reader_writer_lock Class

	9.4 C++ 200x Synchronization

	10 Timing
	10.1 tick_count Class
	10.1.1 static tick_count tick_count::now()
	10.1.2 tick_count::interval_t operator((const tick_count& t1, const tick_count& t0)
	10.1.3 tick_count::interval_t Class
	10.1.3.1 interval_t()
	10.1.3.2 interval_t(double sec)
	10.1.3.3 double seconds() const
	10.1.3.4 interval_t operator+=(const interval_t& i)
	10.1.3.5 interval_t operator(=(const interval_t& i)
	10.1.3.6 interval_t operator+ (const interval_t& i, const interval_t& j)
	10.1.3.7 interval_t operator((const interval_t& i, const interval_t& j)

	11 Task Groups
	11.1 task_group Class
	11.1.1 task_group()
	11.1.2 ~task_group()
	11.1.3 template<typename Func> void run(const Func& f)
	11.1.4 template<typename Func> void run (task_handle<Func>& handle);
	11.1.5 template<typename Func> void run_and_wait(const Func& f)
	11.1.6 template<typename Func> void run _and_wait(task_handle<Func>& handle);
	11.1.7 task_group_status wait()
	11.1.8 bool is_canceling()
	11.1.9 void cancel()

	11.2 task_group_status Enum
	11.3 task_handle Template Class
	11.4 make_task Template Function
	11.5 structured_task_group Class
	11.6 is_current_task_group_canceling Function

	12 Task Scheduler
	12.1 Scheduling Algorithm
	12.2 task_scheduler_init Class
	12.2.1 task_scheduler_init(int max_threads=automatic, stack_size_type thread_stack_size=0)
	12.2.2 ~task_scheduler_init()
	12.2.3 void initialize(int max_threads=automatic)
	12.2.4 void terminate()
	12.2.5 int default_num_threads()
	12.2.6 bool is_active() const
	12.2.7 Mixing with OpenMP

	12.3 task Class
	12.3.1 task Derivation
	12.3.1.1 Processing of execute()

	12.3.2 task Allocation
	12.3.2.1 new(task::allocate_root(task_group_context& group)) T
	12.3.2.2 new(task::allocate_root()) T
	12.3.2.3 new(x.allocate_continuation()) T
	12.3.2.4 new(x.allocate_child()) T
	12.3.2.5 new(task::allocate_additional_child_of(y)) T

	12.3.3 Explicit task Destruction
	12.3.3.1 static void destroy (task& victim)

	12.3.4 Recycling Tasks
	12.3.4.1 void recycle_as_continuation()
	12.3.4.2 void recycle_as_safe_continuation()
	12.3.4.3 void recycle_as_child_of(task& new_successor)

	12.3.5 Synchronization
	12.3.5.1 void set_ref_count(int count)
	12.3.5.2 void increment_ref_count();
	12.3.5.3 int decrement_ref_count();
	12.3.5.4 void wait_for_all()
	12.3.5.5 static void spawn(task& t)
	12.3.5.6 static void spawn (task_list& list)
	12.3.5.7 void spawn_and_wait_for_all(task& t)
	12.3.5.8 void spawn_and_wait_for_all(task_list& list)
	12.3.5.9 static void spawn_root_and_wait(task& root)
	12.3.5.10 static void spawn_root_and_wait(task_list& root_list)
	12.3.5.11 static void enqueue (task&)

	12.3.6 task Context
	12.3.6.1 static task& self()
	12.3.6.2 task* parent() const
	12.3.6.3 void set_parent(task* p)
	12.3.6.4 bool is_stolen_task() const
	12.3.6.5 task_group_context* group()
	12.3.6.6 void change_group(task_group_context& ctx)

	12.3.7 Cancellation
	12.3.7.1 bool cancel_group_execution()
	12.3.7.2 bool is_cancelled() const

	12.3.8 Priorities
	12.3.8.1 void enqueue (task& t, priority_t p) const
	12.3.8.2 void set_group_priority (priority_t)
	12.3.8.3 priority_t group_priority () const

	12.3.9 Affinity
	12.3.9.1 affinity_id
	12.3.9.2 virtual void note_affinity (affinity_id id)
	12.3.9.3 void set_affinity(affinity_id id)
	12.3.9.4 affinity_id affinity() const

	12.3.10 task Debugging
	12.3.10.1 state_type state() const
	12.3.10.2 int ref_count() const

	12.4 empty_task Class
	12.5 task_list Class
	12.5.1 task_list()
	12.5.2 ~task_list()
	12.5.3 bool empty() const
	12.5.4 push_back(task& task)
	12.5.5 task& task pop_front()
	12.5.6 void clear()

	12.6 task_group_context
	12.6.1 task_group_context(kind_t relation_to_parent=bound, uintptr_t traits=default_traits)
	12.6.2 ~task_group_context()
	12.6.3 bool cancel_group_execution()
	12.6.4 bool is_group_execution_cancelled() const
	12.6.5 void reset()
	12.6.6 void set_priority (priority_t)
	12.6.7 priority_t priority () const

	12.7 task_scheduler_observer
	12.7.1 task_scheduler_observer()
	12.7.2 ~task_scheduler_observer()
	12.7.3 void observe(bool state=true)
	12.7.4 bool is_observing() const
	12.7.5 virtual void on_scheduler_entry(bool is_worker)
	12.7.6 virtual void on_scheduler_exit(bool is_worker)

	12.8 Catalog of Recommended task Patterns
	12.8.1 Blocking Style With k Children
	12.8.2 Continuation-Passing Style With k Children
	12.8.2.1 Recycling Parent as Continuation
	12.8.2.2 Recycling Parent as a Child

	12.8.3 Letting Main Thread Work While Child Tasks Run

	13 Exceptions
	13.1 tbb_exception
	13.2 captured_exception
	13.2.1 captured_exception(const char* name, const char* info)

	13.3 movable_exception<ExceptionData>
	13.3.1 movable_exception(const ExceptionData& src)
	13.3.2 ExceptionData& data() throw()
	13.3.3 const ExceptionData& data() const throw()

	13.4 Specific Exceptions

	14 Threads
	14.1 thread Class
	14.1.1 thread()
	14.1.2 template<typename F> thread(F f)
	14.1.3 template<typename F, typename X> thread(F f, X x)
	14.1.4 template<typename F, typename X, typename Y> thread(F f, X x, Y y)
	14.1.5 thread& operator=(thread& x)
	14.1.6 ~thread
	14.1.7 bool joinable() const
	14.1.8 void join()
	14.1.9 void detach()
	14.1.10 id get_id() const
	14.1.11 native_handle_type native_handle()
	14.1.12 static unsigned hardware_concurrency()

	14.2 thread::id
	14.3 this_thread Namespace
	14.3.1 thread::id get_id()
	14.3.2 void yield()
	14.3.3 void sleep_for(const tick_count::interval_t & i)

	15 References
	Appendix A Compatibility Features
	A.1 parallel_while Template Class
	A.1.1 parallel_while<Body>()
	A.1.2 ~parallel_while<Body>()
	A.1.3 Template <typename Stream> void run(Stream& stream, const Body& body)
	A.1.4 void add(const value_type& item)

	A.2 Interface for constructing a pipeline filter
	A.2.1 filter::filter(bool is_serial)
	A.2.2 filter::serial

	A.3 Debugging Macros
	A.4 tbb::deprecated::concurrent_queue<T,Alloc> Template Class
	A.5 Interface for concurrent_vector
	A.5.1 void compact()

	A.6 Interface for class task
	A.6.1 void recycle _to_reexecute()
	A.6.2 Depth interface for class task

	A.7 tbb_thread Class

	Appendix B PPL Compatibility
	Appendix C Known Issues
	C.1 Windows* OS

	Appendix D Community Preview Features
	D.1 Flow Graph
	D.1.1 or_node Template Class

	D.2 Runtime loader
	D.2.1 runtime_loader Class

	D.3 parallel_ deterministic _reduce Template Function
	D.4 Scalable Memory Pools
	D.4.1 memory_pool Template Class
	D.4.2 fixed_pool Class
	D.4.3 memory_pool_allocator Template Class

	D.5 Serial subset
	D.5.1 tbb::serial::parallel_for()

	D.6 concurrent_lru_cache Template Class
	D.6.1 concurrent_lru_cache(value_function_type f, std::size_t number_of_lru_history_items);
	D.6.2 handle_object operator[](key_type k)
	D.6.3 ~ concurrent_lru_cache ()
	D.6.4 handle_object class
	D.6.5 handle_move_t class

