Free associative unital algebras, implemented via Singular’s letterplace rings
AUTHOR:
With this implementation, Groebner bases out to a degree bound and normal forms can be computed for twosided weighted homogeneous ideals of free algebras. For now, all computations are restricted to weighted homogeneous elements, i.e., other elements can not be created by arithmetic operations.
EXAMPLES:
sage: F.<x,y,z> = FreeAlgebra(QQ, implementation='letterplace')
sage: F
Free Associative Unital Algebra on 3 generators (x, y, z) over Rational Field
sage: I = F*[x*y+y*z,x^2+x*y-y*x-y^2]*F
sage: I
Twosided Ideal (x*y + y*z, x*x + x*y - y*x - y*y) of Free Associative Unital Algebra on 3 generators (x, y, z) over Rational Field
sage: x*(x*I.0-I.1*y+I.0*y)-I.1*y*z
x*y*x*y + x*y*y*y - x*y*y*z + x*y*z*y + y*x*y*z + y*y*y*z
sage: x^2*I.0-x*I.1*y+x*I.0*y-I.1*y*z in I
True
The preceding containment test is based on the computation of Groebner bases with degree bound:
sage: I.groebner_basis(degbound=4)
Twosided Ideal (y*z*y*y - y*z*y*z + y*z*z*y - y*z*z*z, y*z*y*x + y*z*y*z + y*z*z*x + y*z*z*z, y*y*z*y - y*y*z*z + y*z*z*y - y*z*z*z, y*y*z*x + y*y*z*z + y*z*z*x + y*z*z*z, y*y*y - y*y*z + y*z*y - y*z*z, y*y*x + y*y*z + y*z*x + y*z*z, x*y + y*z, x*x - y*x - y*y - y*z) of Free Associative Unital Algebra on 3 generators (x, y, z) over Rational Field
When reducing an element by , the original generators are chosen:
sage: (y*z*y*y).reduce(I)
y*z*y*y
However, there is a method for computing the normal form of an element, which is the same as reduction by the Groebner basis out to the degree of that element:
sage: (y*z*y*y).normal_form(I)
y*z*y*z - y*z*z*y + y*z*z*z
sage: (y*z*y*y).reduce(I.groebner_basis(4))
y*z*y*z - y*z*z*y + y*z*z*z
The default term order derives from the degree reverse lexicographic order on the commutative version of the free algebra:
sage: F.commutative_ring().term_order()
Degree reverse lexicographic term order
A different term order can be chosen, and of course may yield a different normal form:
sage: L.<a,b,c> = FreeAlgebra(QQ, implementation='letterplace', order='lex')
sage: L.commutative_ring().term_order()
Lexicographic term order
sage: J = L*[a*b+b*c,a^2+a*b-b*c-c^2]*L
sage: J.groebner_basis(4)
Twosided Ideal (2*b*c*b - b*c*c + c*c*b, a*c*c - 2*b*c*a - 2*b*c*c - c*c*a, a*b + b*c, a*a - 2*b*c - c*c) of Free Associative Unital Algebra on 3 generators (a, b, c) over Rational Field
sage: (b*c*b*b).normal_form(J)
1/2*b*c*c*b - 1/2*c*c*b*b
Here is an example with degree weights:
sage: F.<x,y,z> = FreeAlgebra(QQ, implementation='letterplace', degrees=[1,2,3])
sage: (x*y+z).degree()
3
TEST:
sage: TestSuite(F).run()
sage: TestSuite(L).run()
sage: loads(dumps(F)) is F
True
TODO:
The computation of Groebner bases only works for global term orderings, and all elements must be weighted homogeneous with respect to positive integral degree weights. It is ongoing work in Singular to lift these restrictions.
We support coercion from the letterplace wrapper to the corresponding generic implementation of a free algebra (FreeAlgebra_generic), but there is no coercion in the opposite direction, since the generic implementation also comprises non-homogeneous elements.
We also do not support coercion from a subalgebra, or between free algebras with different term orderings, yet.
Bases: sage.rings.ring.Algebra
Finitely generated free algebra, with arithmetic restricted to weighted homogeneous elements.
NOTE:
The restriction to weighted homogeneous elements should be lifted as soon as the restriction to homogeneous elements is lifted in Singular’s “Letterplace algebras”.
EXAMPLE:
sage: K.<z> = GF(25)
sage: F.<a,b,c> = FreeAlgebra(K, implementation='letterplace')
sage: F
Free Associative Unital Algebra on 3 generators (a, b, c) over Finite Field in z of size 5^2
sage: P = F.commutative_ring()
sage: P
Multivariate Polynomial Ring in a, b, c over Finite Field in z of size 5^2
We can do arithmetic as usual, as long as we stay (weighted) homogeneous:
sage: (z*a+(z+1)*b+2*c)^2
(z + 3)*a*a + (2*z + 3)*a*b + (2*z)*a*c + (2*z + 3)*b*a + (3*z + 4)*b*b + (2*z + 2)*b*c + (2*z)*c*a + (2*z + 2)*c*b - c*c
sage: a+1
Traceback (most recent call last):
...
ArithmeticError: Can only add elements of the same weighted degree
Return the commutative version of this free algebra.
NOTE:
This commutative ring is used as a unique key of the free algebra.
EXAMPLE:
sage: K.<z> = GF(25)
sage: F.<a,b,c> = FreeAlgebra(K, implementation='letterplace')
sage: F
Free Associative Unital Algebra on 3 generators (a, b, c) over Finite Field in z of size 5^2
sage: F.commutative_ring()
Multivariate Polynomial Ring in a, b, c over Finite Field in z of size 5^2
sage: FreeAlgebra(F.commutative_ring()) is F
True
Return the commutative ring that is used to emulate the non-commutative multiplication out to the current degree.
EXAMPLE:
sage: F.<a,b,c> = FreeAlgebra(QQ, implementation='letterplace')
sage: F.current_ring()
Multivariate Polynomial Ring in a, b, c over Rational Field
sage: a*b
a*b
sage: F.current_ring()
Multivariate Polynomial Ring in a, b, c, a_1, b_1, c_1 over Rational Field
sage: F.set_degbound(3)
sage: F.current_ring()
Multivariate Polynomial Ring in a, b, c, a_1, b_1, c_1, a_2, b_2, c_2 over Rational Field
Return the degree bound that is currently used.
NOTE:
When multiplying two elements of this free algebra, the degree bound will be dynamically adapted. It can also be set by set_degbound().
EXAMPLE:
In order to avoid we get a free algebras from the cache that was created in another doctest and has a different degree bound, we choose a base ring that does not appear in other tests:
sage: F.<x,y,z> = FreeAlgebra(ZZ, implementation='letterplace')
sage: F.degbound()
1
sage: x*y
x*y
sage: F.degbound()
2
sage: F.set_degbound(4)
sage: F.degbound()
4
Return the -th generator.
INPUT:
– an integer.
OUTPUT:
Generator number .
EXAMPLE:
sage: F.<a,b,c> = FreeAlgebra(QQ, implementation='letterplace')
sage: F.1 is F.1 # indirect doctest
True
sage: F.gen(2)
c
Return the monoid of ideals of this free algebra.
EXAMPLE:
sage: F.<x,y> = FreeAlgebra(GF(2), implementation='letterplace')
sage: F.ideal_monoid()
Monoid of ideals of Free Associative Unital Algebra on 2 generators (x, y) over Finite Field of size 2
sage: F.ideal_monoid() is F.ideal_monoid()
True
Tell whether this algebra is commutative, i.e., whether the generator number is one.
EXAMPLE:
sage: F.<x,y,z> = FreeAlgebra(QQ, implementation='letterplace')
sage: F.is_commutative()
False
sage: FreeAlgebra(QQ, implementation='letterplace', names=['x']).is_commutative()
True
Tell whether this free algebra is a field.
NOTE:
This would only be the case in the degenerate case of no generators. But such an example can not be constructed in this implementation.
TEST:
sage: F.<x,y,z> = FreeAlgebra(QQ, implementation='letterplace')
sage: F.is_field()
False
Return the number of generators.
EXAMPLE:
sage: F.<a,b,c> = FreeAlgebra(QQ, implementation='letterplace')
sage: F.ngens()
3
Increase the degree bound that is currently in place.
NOTE:
The degree bound can not be decreased.
EXAMPLE:
In order to avoid we get a free algebras from the cache that was created in another doctest and has a different degree bound, we choose a base ring that does not appear in other tests:
sage: F.<x,y,z> = FreeAlgebra(GF(251), implementation='letterplace')
sage: F.degbound()
1
sage: x*y
x*y
sage: F.degbound()
2
sage: F.set_degbound(4)
sage: F.degbound()
4
sage: F.set_degbound(2)
sage: F.degbound()
4
Return the term order that is used for the commutative version of this free algebra.
EXAMPLE:
sage: F.<x,y,z> = FreeAlgebra(QQ, implementation='letterplace')
sage: F.term_order_of_block()
Degree reverse lexicographic term order
sage: L.<a,b,c> = FreeAlgebra(QQ, implementation='letterplace',order='lex')
sage: L.term_order_of_block()
Lexicographic term order
This function is an automatically generated C wrapper around the Singular function ‘NF’.
This wrapper takes care of converting Sage datatypes to Singular datatypes and vice versa. In addition to whatever parameters the underlying Singular function accepts when called this function also accepts the following keyword parameters:
INPUT:
args - a list of arguments
ring - a multivariate polynomial ring
execution of this function will interrupt the computation (default: True)
attributes assigned to Singular objects (default: None)
EXAMPLE:
sage: groebner = sage.libs.singular.ff.groebner
sage: P.<x, y> = PolynomialRing(QQ)
sage: I = P.ideal(x^2-y, y+x)
sage: groebner(I)
[x + y, y^2 - y]
sage: triangL = sage.libs.singular.ff.triang__lib.triangL
sage: P.<x1, x2> = PolynomialRing(QQ, order='lex')
sage: f1 = 1/2*((x1^2 + 2*x1 - 4)*x2^2 + 2*(x1^2 + x1)*x2 + x1^2)
sage: f2 = 1/2*((x1^2 + 2*x1 + 1)*x2^2 + 2*(x1^2 + x1)*x2 - 4*x1^2)
sage: I = Ideal(Ideal(f1,f2).groebner_basis()[::-1])
sage: triangL(I, attributes={I:{'isSB':1}})
[[x2^4 + 4*x2^3 - 6*x2^2 - 20*x2 + 5, 8*x1 - x2^3 + x2^2 + 13*x2 - 5],
[x2, x1^2],
[x2, x1^2],
[x2, x1^2]]
The Singular documentation for ‘NF’ is given below.
5.1.119 reduce
--------------
`*Syntax:*'
`reduce (' poly_expression`,' ideal_expression `)'
`reduce (' poly_expression`,' ideal_expression`,' int_expression
`)'
`reduce (' poly_expression`,' poly_expression`,' ideal_expression
`)'
`reduce (' vector_expression`,' ideal_expression `)'
`reduce (' vector_expression`,' ideal_expression`,' int_expression
`)'
`reduce (' vector_expression`,' module_expression `)'
`reduce (' vector_expression`,' module_expression`,'
int_expression `)'
`reduce (' vector_expression`,' poly_expression`,'
module_expression `)'
`reduce (' ideal_expression`,' ideal_expression `)'
`reduce (' ideal_expression`,' ideal_expression`,' int_expression
`)'
`reduce (' ideal_expression`,' matrix_expression`,'
ideal_expression `)'
`reduce (' module_expression`,' ideal_expression `)'
`reduce (' module_expression`,' ideal_expression`,' int_expression
`)'
`reduce (' module_expression`,' module_expression `)'
`reduce (' module_expression`,' module_expression`,'
int_expression `)'
`reduce (' module_expression`,' matrix_expression`,'
module_expression `)'
`reduce (' poly/vector/ideal/module`,' ideal/module`,' int`,'
intvec `)'
`reduce (' ideal`,' matrix`,' ideal`,' int `)'
`reduce (' poly`,' poly`,' ideal`,' int `)'
`reduce (' poly`,' poly`,' ideal`,' int`,' intvec `)'
`*Type:*'
the type of the first argument
`*Purpose:*'
reduces a polynomial, vector, ideal or module to its normal form
with respect to an ideal or module represented by a standard basis.
Returns 0 if and only if the polynomial (resp. vector, ideal,
module) is an element (resp. subideal, submodule) of the ideal
(resp. module). The result may have no meaning if the second
argument is not a standard basis.
The third (optional) argument of type int modifies the behavior:
* 0 default
* 1 consider only the leading term and do no tail reduction.
* 2 reduce also with bad ecart (in the local case)
* 4 reduce without division, return possibly a non-zero
constant multiple of the remainder
If a second argument `u' of type poly or matrix is given, the
first argument `p' is replaced by `p/u'. This works only for zero
dimensional ideals (resp. modules) in the third argument and
gives, even in a local ring, a reduced normal form which is the
projection to the quotient by the ideal (resp. module). One may
give a degree bound in the fourth argument with respect to a
weight vector in the fifth argument in order have a finite
computation. If some of the weights are zero, the procedure may
not terminate!
`*Note_*'
The commands `reduce' and `NF' are synonymous.
`*Example:*'
* Menu:
See
* ideal::
* module::
* std::
* vector::
This function is an automatically generated C wrapper around the Singular function ‘system’.
This wrapper takes care of converting Sage datatypes to Singular datatypes and vice versa. In addition to whatever parameters the underlying Singular function accepts when called this function also accepts the following keyword parameters:
INPUT:
args - a list of arguments
ring - a multivariate polynomial ring
execution of this function will interrupt the computation (default: True)
attributes assigned to Singular objects (default: None)
EXAMPLE:
sage: groebner = sage.libs.singular.ff.groebner
sage: P.<x, y> = PolynomialRing(QQ)
sage: I = P.ideal(x^2-y, y+x)
sage: groebner(I)
[x + y, y^2 - y]
sage: triangL = sage.libs.singular.ff.triang__lib.triangL
sage: P.<x1, x2> = PolynomialRing(QQ, order='lex')
sage: f1 = 1/2*((x1^2 + 2*x1 - 4)*x2^2 + 2*(x1^2 + x1)*x2 + x1^2)
sage: f2 = 1/2*((x1^2 + 2*x1 + 1)*x2^2 + 2*(x1^2 + x1)*x2 - 4*x1^2)
sage: I = Ideal(Ideal(f1,f2).groebner_basis()[::-1])
sage: triangL(I, attributes={I:{'isSB':1}})
[[x2^4 + 4*x2^3 - 6*x2^2 - 20*x2 + 5, 8*x1 - x2^3 + x2^2 + 13*x2 - 5],
[x2, x1^2],
[x2, x1^2],
[x2, x1^2]]
The Singular documentation for ‘system’ is given below.
5.1.141 system
--------------
`*Syntax:*'
`system (' string_expression `)'
`system (' string_expression`,' expression `)'
`*Type:*'
depends on the desired function, may be none
`*Purpose:*'
interface to internal data and the operating system. The
string_expression determines the command to execute. Some commands
require an additional argument (second form) where the type of the
argument depends on the command. See below for a list of all
possible commands.
`*Note_*'
Not all functions work on every platform.
`*Functions:*'
`system("sh"', string_expression `)'
shell escape, returns the return code of the shell as int.
The string is sent literally to the shell.
`system("pid")'
returns the process number as int (for creating unique names).
`system("--cpus")'
returns the number of cpu cores as int (for using multiple
cores).
`system("uname")'
returns a string identifying the architecture for which
SINGULAR was compiled.
`system("getenv",' string_expression`)'
returns the value of the shell environment variable given as
the second argument. The return type is string.
`system("setenv",'string_expression, string_expression`)'
sets the shell environment variable given as the second
argument to the value given as the third argument. Returns
the third argument. Might not be available on all platforms.
`system("tty")'
resets the terminal.
`system("version")'
returns the version number of SINGULAR as int.
`system("contributors")'
returns names of people who contributed to the SINGULAR
kernel as string.
`system("gen")'
returns the generating element of the multiplicative group of
(Z/p)\{0} (as int) where p is the characteristic of the
basering.
`system("nblocks")'
`system("nblocks",' ring_name `)'
returns the number of blocks of the given ring, or the number
of parameters of the current basering, if no second argument
is given. The return type is int.
`system("Singular")'
returns the absolute (path) name of the running SINGULAR as
string.
`system("SingularLib")'
returns the colon seperated library search path name as
string.
`system("'-`")'
prints the values of all options.
`system("'-long_option_name`")'
returns the value of the (command-line) option
long_option_name. The type of the returned value is either
string or int. *Note Command line options::, for more info.
`system("'-long_option_name`",' expression`)'
sets the value of the (command-line) option long_option_name
to the value given by the expression. Type of the expression
must be string, or int. *Note Command line options::, for
more info. Among others, this can be used for setting the
seed of the random number generator, the used help browser,
the minimal display time, or the timer resolution.
`system("browsers");'
returns a string about available help browsers. *Note The
online help system::. returns the number of cpus as int (for
creating multiple threads/processes).
`system("pid")'
`*Example:*'
// a listing of the current directory:
system("sh","ls");
// execute a shell, return to SINGULAR with exit:
system("sh","sh");
string unique_name="/tmp/xx"+string(system("pid"));
unique_name;
==> /tmp/xx4711
system("uname")
==> ix86-Linux
system("getenv","PATH");
==> /bin:/usr/bin:/usr/local/bin
system("Singular");
==> /usr/local/bin/Singular