Sum species

sage.combinat.species.sum_species.SumSpecies(*args, **kwds)

Returns the sum of two species.

EXAMPLES:

sage: S = species.PermutationSpecies()
sage: A = S+S
sage: A.generating_series().coefficients(5)
[2, 2, 2, 2, 2]

TESTS:

sage: A = species.SingletonSpecies() + species.SingletonSpecies()
sage: B = species.SingletonSpecies() + species.SingletonSpecies()
sage: C = species.SingletonSpecies() + species.SingletonSpecies(min=2)        
sage: A is B
True
sage: (A is C) or (A == C)
False
class sage.combinat.species.sum_species.SumSpeciesStructure(parent, s, **options)

Bases: sage.combinat.species.structure.SpeciesStructureWrapper

EXAMPLES:

sage: E = species.SetSpecies(); B = E+E
sage: s = B.structures([1,2,3]).random_element()
sage: s.parent()
Sum of (Set species) and (Set species)
sage: s == loads(dumps(s))
True
class sage.combinat.species.sum_species.SumSpecies_class(F, G, min=None, max=None, weight=None)

Bases: sage.combinat.species.species.GenericCombinatorialSpecies

EXAMPLES:

sage: P = species.PermutationSpecies()
sage: F = P + P
sage: F._check()
True
sage: F == loads(dumps(F))
True
weight_ring()

Returns the weight ring for this species. This is determined by asking Sage’s coercion model what the result is when you add elements of the weight rings for each of the operands.

EXAMPLES:

sage: S = species.SetSpecies()
sage: C = S+S
sage: C.weight_ring()
Rational Field
sage: S = species.SetSpecies(weight=QQ['t'].gen())
sage: C = S + S
sage: C.weight_ring()
Univariate Polynomial Ring in t over Rational Field

Previous topic

Examples of Combinatorial Species

Next topic

Sum species

This Page