Permutation species

sage.combinat.species.permutation_species.PermutationSpecies(*args, **kwds)

Create a cached version of a function, which only recomputes values it hasn’t already computed. Synonyme: cached_function

INPUT:

  • f – a function
  • name (optional string) – name that the cached version of f should be provided with.

If f is a function, do either g = CachedFunction(f) or g = cached_function(f) to make a cached version of f, or put @cached_function right before the definition of f (i.e., use Python decorators):

@cached_function
def f(...):
    ....

The inputs to the function must be hashable.

EXAMPLES:

sage: @cached_function
... def mul(x, y=2):
...     return x*y
...
sage: mul(3)
6

We demonstrate that the result is cached, and that, moreover, the cache takes into account the various ways of providing default arguments:

sage: mul(3) is mul(3,2)
True
sage: mul(3,y=2) is mul(3,2)
True

The user can clear the cache:

sage: a = mul(4)
sage: mul.clear_cache()
sage: a is mul(4)
False

It is also possible to explicitly override the cache with a different value:

sage: mul.set_cache('foo',5)
sage: mul(5,2)
'foo'
class sage.combinat.species.permutation_species.PermutationSpeciesStructure(parent, labels, list)

Bases: sage.combinat.species.structure.GenericSpeciesStructure

EXAMPLES:

sage: from sage.combinat.species.structure import GenericSpeciesStructure
sage: a = GenericSpeciesStructure(None, [2,3,4], [1,2,3])
sage: a
[2, 3, 4]
sage: a.parent() is None
True
sage: a == loads(dumps(a))
True
automorphism_group()

Returns the group of permutations whose action on this structure leave it fixed.

EXAMPLES:

sage: p = PermutationGroupElement((2,3,4))
sage: P = species.PermutationSpecies()
sage: a = P.structures(["a", "b", "c", "d"]).random_element(); a
['a', 'c', 'b', 'd']
sage: a.automorphism_group()
Permutation Group with generators [(2,3), (1,4)]
sage: [a.transport(perm) for perm in a.automorphism_group()]
[['a', 'c', 'b', 'd'],
 ['a', 'c', 'b', 'd'],
 ['a', 'c', 'b', 'd'],
 ['a', 'c', 'b', 'd']]
canonical_label()

EXAMPLES:

sage: P = species.PermutationSpecies()
sage: S = P.structures(["a", "b", "c"])
sage: [s.canonical_label() for s in S]
[['a', 'b', 'c'],
 ['b', 'a', 'c'],
 ['b', 'a', 'c'],
 ['b', 'c', 'a'],
 ['b', 'c', 'a'],
 ['b', 'a', 'c']]
permutation_group_element()

Returns self as a permutation group element.

EXAMPLES:

sage: p = PermutationGroupElement((2,3,4))
sage: P = species.PermutationSpecies()
sage: a = P.structures(["a", "b", "c", "d"]).random_element(); a
['a', 'c', 'b', 'd']
sage: a.permutation_group_element()
(2,3)
transport(perm)

Returns the transport of this structure along the permutation perm.

EXAMPLES:

sage: p = PermutationGroupElement((2,3,4))
sage: P = species.PermutationSpecies()
sage: a = P.structures(["a", "b", "c", "d"]).random_element(); a
['a', 'c', 'b', 'd']
sage: a.transport(p)
['a', 'd', 'c', 'b']
class sage.combinat.species.permutation_species.PermutationSpecies_class(min=None, max=None, weight=None)

Bases: sage.combinat.species.species.GenericCombinatorialSpecies

EXAMPLES:

sage: P = species.PermutationSpecies()
sage: c = P.generating_series().coefficients(3)
sage: P._check()
True
sage: P == loads(dumps(P))
True

Previous topic

Partition Species

Next topic

Linear-order Species

This Page