EXAMPLES:
sage: R.<x> = QQ[]
sage: S = R.quotient(x**3-3*x+1, 'alpha')
sage: S.gen()**2 in S
True
sage: x in S
True
sage: S.gen() in R
False
sage: 1 in S
True
Create a quotient of a polynomial ring.
INPUT:
OUTPUT: Creates the quotient ring R/I, where R is the ring and I is the principal ideal generated by the polynomial.
EXAMPLES:
We create the quotient ring , and
demonstrate many basic functions with it:
sage: Z = IntegerRing()
sage: R = PolynomialRing(Z,'x'); x = R.gen()
sage: S = R.quotient(x^3 + 7, 'a'); a = S.gen()
sage: S
Univariate Quotient Polynomial Ring in a over Integer Ring with modulus x^3 + 7
sage: a^3
-7
sage: S.is_field()
False
sage: a in S
True
sage: x in S
True
sage: a in R
False
sage: S.polynomial_ring()
Univariate Polynomial Ring in x over Integer Ring
sage: S.modulus()
x^3 + 7
sage: S.degree()
3
We create the “iterated” polynomial ring quotient
sage: A.<y> = PolynomialRing(GF(2)); A
Univariate Polynomial Ring in y over Finite Field of size 2 (using NTL)
sage: B = A.quotient(y^2 + y + 1, 'y2'); print B
Univariate Quotient Polynomial Ring in y2 over Finite Field of size 2 with modulus y^2 + y + 1
sage: C = PolynomialRing(B, 'x'); x=C.gen(); print C
Univariate Polynomial Ring in x over Univariate Quotient Polynomial Ring in y2 over Finite Field of size 2 with modulus y^2 + y + 1
sage: R = C.quotient(x^3 - 5); print R
Univariate Quotient Polynomial Ring in xbar over Univariate Quotient Polynomial Ring in y2 over Finite Field of size 2 with modulus y^2 + y + 1 with modulus x^3 + 1
Next we create a number field, but viewed as a quotient of a
polynomial ring over :
sage: R = PolynomialRing(RationalField(), 'x'); x = R.gen()
sage: S = R.quotient(x^3 + 2*x - 5, 'a')
sage: S
Univariate Quotient Polynomial Ring in a over Rational Field with modulus x^3 + 2*x - 5
sage: S.is_field()
True
sage: S.degree()
3
There are conversion functions for easily going back and forth
between quotients of polynomial rings over and
number fields:
sage: K = S.number_field(); K
Number Field in a with defining polynomial x^3 + 2*x - 5
sage: K.polynomial_quotient_ring()
Univariate Quotient Polynomial Ring in a over Rational Field with modulus x^3 + 2*x - 5
The leading coefficient must be a unit (but need not be 1).
sage: R = PolynomialRing(Integers(9), 'x'); x = R.gen()
sage: S = R.quotient(2*x^4 + 2*x^3 + x + 2, 'a')
sage: S = R.quotient(3*x^4 + 2*x^3 + x + 2, 'a')
Traceback (most recent call last):
...
TypeError: polynomial must have unit leading coefficient
Another example:
sage: R.<x> = PolynomialRing(IntegerRing())
sage: f = x^2 + 1
sage: R.quotient(f)
Univariate Quotient Polynomial Ring in xbar over Integer Ring with modulus x^2 + 1
This shows that the issue at trac 5482 is solved:
sage: R.<x> = PolynomialRing(QQ)
sage: f = x^2-1
sage: R.quotient_by_principal_ideal(f)
Univariate Quotient Polynomial Ring in xbar over Rational Field with modulus x^2 - 1
Bases: sage.rings.polynomial.polynomial_quotient_ring.PolynomialQuotientRing_generic, sage.rings.ring.IntegralDomain
EXAMPLES:
sage: R.<x> = PolynomialRing(ZZ)
sage: S.<xbar> = R.quotient(x^2 + 1)
sage: S
Univariate Quotient Polynomial Ring in xbar over Integer Ring with modulus x^2 + 1
sage: loads(S.dumps()) == S
True
sage: loads(xbar.dumps()) == xbar
True
Takes a polynomial quotient ring, and returns a tuple with three elements: the NumberField defined by the same polynomial quotient ring, a homomorphism from its parent to the NumberField sending the generators to one another, and the inverse isomorphism.
OUTPUT:
EXAMPLES:
sage: R.<x> = PolynomialRing(Rationals())
sage: S.<alpha> = R.quotient(x^3-2)
sage: F.<b>, f, g = S.field_extension()
sage: F
Number Field in b with defining polynomial x^3 - 2
sage: a = F.gen()
sage: f(alpha)
b
sage: g(a)
alpha
Note that the parent ring must be an integral domain:
sage: R.<x> = GF(25,'f25')['x']
sage: S.<a> = R.quo(x^3 - 2)
sage: F, g, h = S.field_extension('b')
Traceback (most recent call last):
...
AttributeError: 'PolynomialQuotientRing_generic_with_category' object has no attribute 'field_extension'
Over a finite field, the corresponding field extension is not a number field:
sage: R.<x> = GF(25, 'a')['x']
sage: S.<a> = R.quo(x^3 + 2*x + 1)
sage: F, g, h = S.field_extension('b')
sage: h(F.0^2 + 3)
a^2 + 3
sage: g(x^2 + 2)
b^2 + 2
We do an example involving a relative number field:
sage: R.<x> = QQ['x']
sage: K.<a> = NumberField(x^3 - 2)
sage: S.<X> = K['X']
sage: Q.<b> = S.quo(X^3 + 2*X + 1)
sage: Q.field_extension('b')
(Number Field in b with defining polynomial X^3 + 2*X + 1 over its base field, ...
Defn: b |--> b, Relative number field morphism:
From: Number Field in b with defining polynomial X^3 + 2*X + 1 over its base field
To: Univariate Quotient Polynomial Ring in b over Number Field in a with defining polynomial x^3 - 2 with modulus X^3 + 2*X + 1
Defn: b |--> b
a |--> a)
We slightly change the example above so it works.
sage: R.<x> = QQ['x']
sage: K.<a> = NumberField(x^3 - 2)
sage: S.<X> = K['X']
sage: f = (X+a)^3 + 2*(X+a) + 1
sage: f
X^3 + 3*a*X^2 + (3*a^2 + 2)*X + 2*a + 3
sage: Q.<z> = S.quo(f)
sage: F.<w>, g, h = Q.field_extension()
sage: c = g(z)
sage: f(c)
0
sage: h(g(z))
z
sage: g(h(w))
w
AUTHORS:
Return whether or not this quotient ring is finite.
EXAMPLES:
sage: R.<x> = ZZ[]
sage: R.quo(1).is_finite()
True
sage: R.quo(x^3-2).is_finite()
False
sage: R.<x> = GF(9,'a')[]
sage: R.quo(2*x^3+x+1).is_finite()
True
sage: R.quo(2).is_finite()
True
Bases: sage.rings.polynomial.polynomial_quotient_ring.PolynomialQuotientRing_domain, sage.rings.ring.Field
EXAMPLES:
sage: R.<x> = PolynomialRing(QQ)
sage: S.<xbar> = R.quotient(x^2 + 1)
sage: S
Univariate Quotient Polynomial Ring in xbar over Rational Field with modulus x^2 + 1
sage: loads(S.dumps()) == S
True
sage: loads(xbar.dumps()) == xbar
True
Alias for base_ring, when we’re defined over a field.
Return all homomorphisms of this ring into the approximate complex field with precision prec.
EXAMPLES:
sage: R.<x> = QQ[]
sage: f = x^5 + x + 17
sage: k = R.quotient(f)
sage: v = k.complex_embeddings(100)
sage: [phi(k.0^2) for phi in v]
[2.9757207403766761469671194565, -2.4088994371613850098316292196 + 1.9025410530350528612407363802*I, -2.4088994371613850098316292196 - 1.9025410530350528612407363802*I, 0.92103906697304693634806949137 - 3.0755331188457794473265418086*I, 0.92103906697304693634806949137 + 3.0755331188457794473265418086*I]
Bases: sage.rings.ring.CommutativeRing
Quotient of a univariate polynomial ring by an ideal.
EXAMPLES:
sage: R.<x> = PolynomialRing(Integers(8)); R
Univariate Polynomial Ring in x over Ring of integers modulo 8
sage: S.<xbar> = R.quotient(x^2 + 1); S
Univariate Quotient Polynomial Ring in xbar over Ring of integers modulo 8 with modulus x^2 + 1
We demonstrate object persistence.
sage: loads(S.dumps()) == S
True
sage: loads(xbar.dumps()) == xbar
True
We create some sample homomorphisms;
sage: R.<x> = PolynomialRing(ZZ)
sage: S = R.quo(x^2-4)
sage: f = S.hom([2])
sage: f
Ring morphism:
From: Univariate Quotient Polynomial Ring in xbar over Integer Ring with modulus x^2 - 4
To: Integer Ring
Defn: xbar |--> 2
sage: f(x)
2
sage: f(x^2 - 4)
0
sage: f(x^2)
4
TESTS:
By trac ticket #11900, polynomial quotient rings use Sage’s category framework. They do so in an unusual way: During their initialisation, they are declared to be objects in the category of quotients of commutative algebras over a base ring. However, if it is tested whether a quotient ring is actually a field, the category might be refined, which also includes a change of the class of the quotient ring and its newly created elements.
Thus, in order to document that this works fine, we go into some detail:
sage: P.<x> = QQ[]
sage: Q = P.quotient(x^2+2)
sage: Q.category()
Join of Category of commutative algebras over Rational Field and Category of subquotients of monoids and Category of quotients of semigroups
The test suite passes:
sage: TestSuite(Q).run()
We verify that the elements belong to the correct element class. Also, we list the attributes that are provided by the element class of the category, and store the current class of the quotient ring:
sage: isinstance(Q.an_element(),Q.element_class)
True
sage: [s for s in dir(Q.category().element_class) if not s.startswith('_')]
['cartesian_product', 'is_idempotent', 'is_one', 'lift']
sage: first_class = Q.__class__
We try to find out whether is a field. Indeed it is, and thus its category,
including its class and element class, is changed accordingly:
sage: Q in Fields()
True
sage: Q.category()
Join of Category of commutative algebras over Rational Field and Category of subquotients of monoids and Category of quotients of semigroups and Category of fields
sage: first_class == Q.__class__
False
sage: [s for s in dir(Q.category().element_class) if not s.startswith('_')]
['cartesian_product', 'gcd', 'is_idempotent', 'is_one', 'is_unit', 'lcm', 'lift']
As one can see, the elements are now inheriting additional methods: lcm and gcd. Even though Q.an_element() belongs to the old and not to the new element class, it still inherits the new methods from the category of fields:
sage: isinstance(Q.an_element(),Q.element_class)
False
sage: Q.an_element().gcd.__module__
'sage.categories.fields'
Since the category has changed, we repeat the test suite. However, we have to skip the test
for its elements, since has been cached in the previous run of the test suite,
and we have already seen that its class is not matching the new element class:
sage: TestSuite(Q).run(skip=['_test_elements'])
Newly created elements are fine, though, and their test suite passes:
sage: TestSuite(Q(x)).run()
sage: isinstance(Q(x), Q.element_class)
True
alias of PolynomialQuotientRingElement
If this quotient ring is over a number field K, by a polynomial with nonzero discriminant, and S is a set of primes of K, this function returns a list of representatives which generate the S-class group.
NOTE:
Since the ideal function behaves differently over number fields than over polynomial quotient rings (i.e. the quotient does not even know its ring of integers), we return a set of generators of each ideal. The format for each generator is (gen, order, pr), where order is the multiplicative order of gen, i.e. gen^order is a principal ideal, gen is a tuple of generators of the representative ideal, and pr is a generator of the principal ideal gen^order.
INPUT:
OUTPUT:
A list of tuples (gen, order, pr), where gen is a tuple of
elements which generate a fractional ideal representative of the class
group generator of order order, and pr is a principal generator
of .
EXAMPLES:
A trivial algebra over has the same class group as its
base:
sage: K.<a> = QuadraticField(-5)
sage: R.<x> = K[]
sage: S.<xbar> = R.quotient(x)
sage: S.S_class_group([])
[((2, -a + 1), 2, 2)]
When we include the prime , the S-class group becomes
trivial:
sage: S.S_class_group([K.ideal(2, -a+1)])
[]
Here is an example where the base and the extension both contribute to the class group:
sage: K.<a> = QuadraticField(-5)
sage: K.class_group()
Class group of order 2 with structure C2 of Number Field in a with defining polynomial x^2 + 5
sage: R.<x> = K[]
sage: S.<xbar> = R.quotient(x^2 + 23)
sage: S.S_class_group([])
[((2, -a + 1, 1/2*xbar + 1/2, -1/2*a*xbar + 1/2*a + 1), 6, -1/2*xbar + 3/2)] # 32-bit
[((2, -a + 1, 1/2*xbar + 1/2, -1/2*a*xbar + 1/2*a + 1), 6, 1/2*xbar - 3/2)] # 64-bit
sage: S.S_class_group([K.ideal(3, a-1)])
[]
sage: S.S_class_group([K.ideal(2, a+1)])
[]
sage: S.S_class_group([K.ideal(a)])
[((2, -a + 1, 1/2*xbar + 1/2, -1/2*a*xbar + 1/2*a + 1), 6, -1/2*xbar + 3/2)] # 32-bit
[((2, -a + 1, 1/2*xbar + 1/2, -1/2*a*xbar + 1/2*a + 1), 6, -1/2*xbar + 3/2)] # 64-bit
Now we take an example over a nontrivial base with two factors, each contributing to the class group:
sage: K.<a> = QuadraticField(-5)
sage: R.<x> = K[]
sage: S.<xbar> = R.quotient((x^2 + 23)*(x^2 + 31))
sage: S.S_class_group([])
[((1/4*xbar^2 + 31/4, (-1/8*a + 1/8)*xbar^2 - 31/8*a + 31/8, 1/16*xbar^3 + 1/16*xbar^2 + 31/16*xbar + 31/16, -1/16*a*xbar^3 + (1/16*a + 1/8)*xbar^2 - 31/16*a*xbar + 31/16*a + 31/8), 6, -1/16*xbar^3 + 1/16*xbar^2 - 31/16*xbar + 47/16), ((-1/4*xbar^2 - 23/4, (1/8*a - 1/8)*xbar^2 + 23/8*a - 23/8, -1/16*xbar^3 - 1/16*xbar^2 - 23/16*xbar - 23/16, 1/16*a*xbar^3 + (-1/16*a - 1/8)*xbar^2 + 23/16*a*xbar - 23/16*a - 23/8), 6, 1/16*xbar^3 + 3/16*xbar^2 + 23/16*xbar + 85/16), ((-5/4*xbar^2 - 115/4, 5/4*a*xbar^2 + 115/4*a, -5/16*xbar^3 + 5/16*xbar^2 - 115/16*xbar + 115/16, 1/16*a*xbar^3 + 7/16*a*xbar^2 + 23/16*a*xbar + 161/16*a), 2, 5/16*xbar^3 + 37/16*xbar^2 + 115/16*xbar + 867/16)]
By using the ideal , we cut the part of the class group coming from
from 12 to 2, i.e. we lose a generator of order 6:
sage: S.S_class_group([K.ideal(a)])
[((1/4*xbar^2 + 31/4, (-1/8*a + 1/8)*xbar^2 - 31/8*a + 31/8, 1/16*xbar^3 + 1/16*xbar^2 + 31/16*xbar + 31/16, -1/16*a*xbar^3 + (1/16*a + 1/8)*xbar^2 - 31/16*a*xbar + 31/16*a + 31/8), 6, -1/16*xbar^3 + 1/16*xbar^2 - 31/16*xbar + 47/16), ((-1/4*xbar^2 - 23/4, (1/8*a - 1/8)*xbar^2 + 23/8*a - 23/8, -1/16*xbar^3 - 1/16*xbar^2 - 23/16*xbar - 23/16, 1/16*a*xbar^3 + (-1/16*a - 1/8)*xbar^2 + 23/16*a*xbar - 23/16*a - 23/8), 2, -1/8*xbar^2 - 15/8)]
Note that all the returned values live where we expect them to:
sage: CG = S.S_class_group([])
sage: type(CG[0][0][1])
<class 'sage.rings.polynomial.polynomial_quotient_ring_element.PolynomialQuotientRing_generic_with_category.element_class'>
sage: type(CG[0][1])
<type 'sage.rings.integer.Integer'>
sage: type(CG[0][2])
<class 'sage.rings.polynomial.polynomial_quotient_ring_element.PolynomialQuotientRing_generic_with_category.element_class'>
If this quotient ring is over a number field K, by a polynomial with nonzero discriminant, and S is a set of primes of K, this function returns a list of generators of the S-units.
INPUT:
- ``S`` - a set of primes of the coefficient ring
OUTPUT:
A list of generators of the unit group, in the form (gen, order), where gen is a unit of order order.
EXAMPLES:
sage: K.<a> = QuadraticField(-3)
sage: K.unit_group()
Unit group with structure C6 of Number Field in a with defining polynomial x^2 + 3
sage: K.<a> = QQ['x'].quotient(x^2 + 3)
sage: u,o = K.S_units([])[0]; u, o
(-1/2*a + 1/2, 6)
sage: u^6
1
sage: u^3
-1
sage: u^2
-1/2*a - 1/2
sage: K.<a> = QuadraticField(-3)
sage: y = polygen(K)
sage: L.<b> = K['y'].quotient(y^3 + 5); L
Univariate Quotient Polynomial Ring in b over Number Field in a with defining polynomial x^2 + 3 with modulus y^3 + 5
sage: L.S_units([])
[(-1/2*a + 1/2, 6), ((-1/3*a + 1)*b^2 - 4/3*a*b - 4/3*a - 3, +Infinity), (2/3*a*b^2 + (2/3*a + 2)*b - 4/3*a + 3, +Infinity)]
sage: L.S_units([K.ideal(1/2*a - 3/2)])
[((-1/6*a - 1/2)*b^2 + (1/3*a + 1)*b - 2/3*a - 2, +Infinity), (-1/2*a + 1/2, 6), ((-1/3*a + 1)*b^2 - 4/3*a*b - 4/3*a - 3, +Infinity), (2/3*a*b^2 + (2/3*a + 2)*b - 4/3*a + 3, +Infinity)]
sage: L.S_units([K.ideal(2)])
[((1/6*a + 1/2)*b^2 + (-1/3*a - 1)*b + 2/3*a + 1, +Infinity), ((-1/6*a - 1/2)*b^2 + (1/3*a + 1)*b - 1/6*a - 3/2, +Infinity), ((-1/2*a + 1/2)*b^2 + (a - 1)*b - 3/2*a + 3/2, +Infinity), (-1/2*a + 1/2, 6), ((-1/3*a + 1)*b^2 - 4/3*a*b - 4/3*a - 3, +Infinity), (2/3*a*b^2 + (2/3*a + 2)*b - 4/3*a + 3, +Infinity)]
Note that all the returned values live where we expect them to:
sage: U = L.S_units([])
sage: type(U[0][0])
<class 'sage.rings.polynomial.polynomial_quotient_ring_element.PolynomialQuotientRing_field_with_category.element_class'>
sage: type(U[0][1])
<type 'sage.rings.integer.Integer'>
sage: type(U[1][1])
<class 'sage.rings.infinity.PlusInfinity'>
Return the base ring of the polynomial ring, of which this ring is a quotient.
EXAMPLES:
The base ring of
is
.
sage: R.<z> = PolynomialRing(ZZ)
sage: S.<beta> = R.quo(z^3 + z^2 + z + 1)
sage: S.base_ring()
Integer Ring
Next we make a polynomial quotient ring over and ask
for its base ring.
sage: T.<t> = PolynomialRing(S)
sage: W = T.quotient(t^99 + 99)
sage: W.base_ring()
Univariate Quotient Polynomial Ring in beta over Integer Ring with modulus z^3 + z^2 + z + 1
Return the number of elements of this quotient ring.
EXAMPLES:
sage: R.<x> = ZZ[]
sage: R.quo(1).cardinality()
1
sage: R.quo(x^3-2).cardinality()
+Infinity
sage: R.<x> = GF(9,'a')[]
sage: R.quo(2*x^3+x+1).cardinality()
729
sage: GF(9,'a').extension(2*x^3+x+1).cardinality()
729
sage: R.quo(2).cardinality()
1
Return the characteristic of this quotient ring.
This is always the same as the characteristic of the base ring.
EXAMPLES:
sage: R.<z> = PolynomialRing(ZZ)
sage: S.<a> = R.quo(z - 19)
sage: S.characteristic()
0
sage: R.<x> = PolynomialRing(GF(9,'a'))
sage: S = R.quotient(x^3 + 1)
sage: S.characteristic()
3
If this quotient ring is over a number field K, by a polynomial of nonzero discriminant, returns a list of representatives which generate the class group.
NOTE:
Since the ideal function behaves differently over number fields than over polynomial quotient rings (i.e. the quotient does not even know its ring of integers), we return a set of generators of each ideal. The format for each generator is (gen, order, pr), where order is the multiplicative order of gen, i.e. gen^order is a principal ideal, gen is a tuple of generators of the representative ideal, and pr is a generator of the principal ideal gen^order.
INPUT:
- ``proof`` - if False, assume the GRH in computing the class group
OUTPUT:
A list of tuples (gen, order, pr), where gen is a tuple of
elements which generate a fractional ideal representative of the class
group generator of order order, and pr is a principal generator
of .
EXAMPLES:
sage: K.<a> = QuadraticField(-3)
sage: K.class_group()
Class group of order 1 of Number Field in a with defining polynomial x^2 + 3
sage: K.<a> = QQ['x'].quotient(x^2 + 3)
sage: K.class_group()
[]
A trivial algebra over has the same class group as its
base:
sage: K.<a> = QuadraticField(-5)
sage: R.<x> = K[]
sage: S.<xbar> = R.quotient(x)
sage: S.class_group()
[((2, -a + 1), 2, 2)]
Here is an example where the base and the extension both contribute to the class group:
sage: K.<a> = QuadraticField(-5)
sage: K.class_group()
Class group of order 2 with structure C2 of Number Field in a with defining polynomial x^2 + 5
sage: R.<x> = K[]
sage: S.<xbar> = R.quotient(x^2 + 23)
sage: S.class_group()
[((2, -a + 1, 1/2*xbar + 1/2, -1/2*a*xbar + 1/2*a + 1), 6, -1/2*xbar + 3/2)]
Here is an example of a product of number fields, both of which contribute to the class group:
sage: R.<x> = QQ[]
sage: S.<xbar> = R.quotient((x^2 + 23)*(x^2 + 47))
sage: S.class_group()
[((1/12*xbar^2 + 47/12, 1/48*xbar^3 - 1/48*xbar^2 + 47/48*xbar - 47/48), 3, -1/48*xbar^3 - 5/48*xbar^2 - 47/48*xbar - 187/48), ((-1/12*xbar^2 - 23/12, -1/48*xbar^3 - 1/48*xbar^2 - 23/48*xbar - 23/48), 5, 1/48*xbar^3 + 11/48*xbar^2 + 23/48*xbar + 301/48)]
Now we take an example over a nontrivial base with two factors, each contributing to the class group:
sage: K.<a> = QuadraticField(-5)
sage: R.<x> = K[]
sage: S.<xbar> = R.quotient((x^2 + 23)*(x^2 + 31))
sage: S.class_group()
[((1/4*xbar^2 + 31/4, (-1/8*a + 1/8)*xbar^2 - 31/8*a + 31/8, 1/16*xbar^3 + 1/16*xbar^2 + 31/16*xbar + 31/16, -1/16*a*xbar^3 + (1/16*a + 1/8)*xbar^2 - 31/16*a*xbar + 31/16*a + 31/8), 6, -1/16*xbar^3 + 1/16*xbar^2 - 31/16*xbar + 47/16), ((-1/4*xbar^2 - 23/4, (1/8*a - 1/8)*xbar^2 + 23/8*a - 23/8, -1/16*xbar^3 - 1/16*xbar^2 - 23/16*xbar - 23/16, 1/16*a*xbar^3 + (-1/16*a - 1/8)*xbar^2 + 23/16*a*xbar - 23/16*a - 23/8), 6, 1/16*xbar^3 + 3/16*xbar^2 + 23/16*xbar + 85/16), ((-5/4*xbar^2 - 115/4, 5/4*a*xbar^2 + 115/4*a, -5/16*xbar^3 + 5/16*xbar^2 - 115/16*xbar + 115/16, 1/16*a*xbar^3 + 7/16*a*xbar^2 + 23/16*a*xbar + 161/16*a), 2, 5/16*xbar^3 + 37/16*xbar^2 + 115/16*xbar + 867/16)]
Note that all the returned values live where we expect them to:
sage: CG = S.class_group()
sage: type(CG[0][0][1])
<class 'sage.rings.polynomial.polynomial_quotient_ring_element.PolynomialQuotientRing_generic_with_category.element_class'>
sage: type(CG[0][1])
<type 'sage.rings.integer.Integer'>
sage: type(CG[0][2])
<class 'sage.rings.polynomial.polynomial_quotient_ring_element.PolynomialQuotientRing_generic_with_category.element_class'>
Functorial construction of self
EXAMPLES:
sage: P.<t>=ZZ[]
sage: Q = P.quo(5+t^2)
sage: F, R = Q.construction()
sage: F(R) == Q
True
sage: P.<t> = GF(3)[]
sage: Q = P.quo([2+t^2])
sage: F, R = Q.construction()
sage: F(R) == Q
True
AUTHOR:
– Simon King (2010-05)
Return the polynomial ring of which this ring is the quotient.
EXAMPLES:
sage: R.<x> = PolynomialRing(QQ)
sage: S = R.quotient(x^2-2)
sage: S.polynomial_ring()
Univariate Polynomial Ring in x over Rational Field
Return the degree of this quotient ring. The degree is the degree of the polynomial that we quotiented out by.
EXAMPLES:
sage: R.<x> = PolynomialRing(GF(3))
sage: S = R.quotient(x^2005 + 1)
sage: S.degree()
2005
Return the discriminant of this ring over the base ring. This is by definition the discriminant of the polynomial that we quotiented out by.
EXAMPLES:
sage: R.<x> = PolynomialRing(QQ)
sage: S = R.quotient(x^3 + x^2 + x + 1)
sage: S.discriminant()
-16
sage: S = R.quotient((x + 1) * (x + 1))
sage: S.discriminant()
0
The discriminant of the quotient polynomial ring need not equal the discriminant of the corresponding number field, since the discriminant of a number field is by definition the discriminant of the ring of integers of the number field:
sage: S = R.quotient(x^2 - 8)
sage: S.number_field().discriminant()
8
sage: S.discriminant()
32
Return the generator of this quotient ring. This is the equivalence class of the image of the generator of the polynomial ring.
EXAMPLES:
sage: R.<x> = PolynomialRing(QQ)
sage: S = R.quotient(x^2 - 8, 'gamma')
sage: S.gen()
gamma
Return whether or not this quotient ring is a field.
EXAMPLES:
sage: R.<z> = PolynomialRing(ZZ)
sage: S = R.quo(z^2-2)
sage: S.is_field()
False
sage: R.<x> = PolynomialRing(QQ)
sage: S = R.quotient(x^2 - 2)
sage: S.is_field()
True
x.__init__(...) initializes x; see help(type(x)) for signature
Return an element of the ambient ring mapping to the given argument.
EXAMPLES:
sage: P.<x> = QQ[]
sage: Q = P.quotient(x^2+2)
sage: Q.lift(Q.0^3)
-2*x
sage: Q(-2*x)
-2*xbar
sage: Q.0^3
-2*xbar
Return the polynomial modulus of this quotient ring.
EXAMPLES:
sage: R.<x> = PolynomialRing(GF(3))
sage: S = R.quotient(x^2 - 2)
sage: S.modulus()
x^2 + 1
Return the number of generators of this quotient ring over the base ring. This function always returns 1.
EXAMPLES:
sage: R.<x> = PolynomialRing(QQ)
sage: S.<y> = PolynomialRing(R)
sage: T.<z> = S.quotient(y + x)
sage: T
Univariate Quotient Polynomial Ring in z over Univariate Polynomial Ring in x over Rational Field with modulus y + x
sage: T.ngens()
1
Return the number field isomorphic to this quotient polynomial ring, if possible.
EXAMPLES:
sage: R.<x> = PolynomialRing(QQ)
sage: S.<alpha> = R.quotient(x^29 - 17*x - 1)
sage: K = S.number_field()
sage: K
Number Field in alpha with defining polynomial x^29 - 17*x - 1
sage: alpha = K.gen()
sage: alpha^29
17*alpha + 1
Return the number of elements of this quotient ring.
EXAMPLES:
sage: F1.<a> = GF(2^7)
sage: P1.<x> = F1[]
sage: F2 = F1.extension(x^2+x+1, 'u')
sage: F2.order()
16384
sage: F1 = QQ
sage: P1.<x> = F1[]
sage: F2 = F1.extension(x^2+x+1, 'u')
sage: F2.order()
+Infinity
Return the polynomial ring of which this ring is the quotient.
EXAMPLES:
sage: R.<x> = PolynomialRing(QQ)
sage: S = R.quotient(x^2-2)
sage: S.polynomial_ring()
Univariate Polynomial Ring in x over Rational Field
Return a random element of this quotient ring.
INPUT:
OUTPUT:
EXAMPLES:
sage: F1.<a> = GF(2^7)
sage: P1.<x> = F1[]
sage: F2 = F1.extension(x^2+x+1, 'u')
sage: F2.random_element()
(a^6 + 1)*u + a^5 + a^4 + a^3 + 1
Return the coercion of x into this polynomial quotient ring.
The rings that coerce into the quotient ring canonically are:
If is an etale algebra over a number field (i.e. the coefficient
ring is a number field and the modulus is squarefree), then compute the
Selmer group
, which is defined to be the subgroup of
consisting of elements
such that
is unramified at all primes of
lying above a
place outside of
.
INPUT:
OUTPUT:
A list of generators of .
EXAMPLES:
sage: K.<a> = QuadraticField(-5)
sage: R.<x> = K[]
sage: D.<T> = R.quotient(x)
sage: D.selmer_group((), 2)
[-1, 2]
sage: D.selmer_group([K.ideal(2, -a+1)], 2)
[2, -1]
sage: D.selmer_group([K.ideal(2, -a+1), K.ideal(3, a+1)], 2)
[2, -a - 1, -1]
sage: D.selmer_group((K.ideal(2, -a+1),K.ideal(3, a+1)), 4)
[2, -a - 1, -1]
sage: D.selmer_group([K.ideal(2, -a+1)], 3)
[2]
sage: D.selmer_group([K.ideal(2, -a+1), K.ideal(3, a+1)], 3)
[2, -a - 1]
sage: D.selmer_group([K.ideal(2, -a+1), K.ideal(3, a+1), K.ideal(a)], 3)
[2, -a - 1, a]
If this quotient ring is over a number field K, by a polynomial of nonzero discriminant, returns a list of generators of the units.
INPUT:
- ``proof`` - if False, assume the GRH in computing the class group
OUTPUT:
A list of generators of the unit group, in the form (gen, order), where gen is a unit of order order.
EXAMPLES:
sage: K.<a> = QuadraticField(-3)
sage: K.unit_group()
Unit group with structure C6 of Number Field in a with defining polynomial x^2 + 3
sage: K.<a> = QQ['x'].quotient(x^2 + 3)
sage: u = K.units()[0][0]; u
-1/2*a + 1/2
sage: u^6
1
sage: u^3
-1
sage: u^2
-1/2*a - 1/2
sage: K.<a> = QuadraticField(-3)
sage: y = polygen(K)
sage: L.<b> = K['y'].quotient(y^3 + 5); L
Univariate Quotient Polynomial Ring in b over Number Field in a with defining polynomial x^2 + 3 with modulus y^3 + 5
sage: L.units()
[(-1/2*a + 1/2, 6), ((-1/3*a + 1)*b^2 - 4/3*a*b - 4/3*a - 3, +Infinity), (2/3*a*b^2 + (2/3*a + 2)*b - 4/3*a + 3, +Infinity)]
sage: L.<b> = K.extension(y^3 + 5)
sage: L.unit_group()
Unit group with structure C6 x Z x Z of Number Field in b with defining polynomial x^3 + 5 over its base field
sage: L.unit_group().gens() # abstract generators
(u0, u1, u2)
sage: L.unit_group().gens_values()
[-1/2*a + 1/2, (-1/3*a + 1)*b^2 - 4/3*a*b - 4/3*a - 3, 2/3*a*b^2 + (2/3*a + 2)*b - 4/3*a + 3]
Note that all the returned values live where we expect them to:
sage: L.<b> = K['y'].quotient(y^3 + 5)
sage: U = L.units()
sage: type(U[0][0])
<class 'sage.rings.polynomial.polynomial_quotient_ring_element.PolynomialQuotientRing_field_with_category.element_class'>
sage: type(U[0][1])
<type 'sage.rings.integer.Integer'>
sage: type(U[1][1])
<class 'sage.rings.infinity.PlusInfinity'>
x.__init__(...) initializes x; see help(type(x)) for signature