AUTHORS:
EXAMPLES:
sage: G = Sp(4,GF(7))
sage: G._gap_init_()
'Sp(4, 7)'
sage: G
Symplectic Group of rank 2 over Finite Field of size 7
sage: G.random_element()
[5 4 6 0]
[1 1 6 2]
[5 5 0 6]
[5 4 5 1]
sage: G.order()
276595200
Return the symplectic group of degree n over R.
Note
This group is also available via groups.matrix.Sp().
EXAMPLES:
sage: Sp(4,5)
Symplectic Group of rank 2 over Finite Field of size 5
sage: Sp(3,GF(7))
Traceback (most recent call last):
...
ValueError: the degree n (=3) must be even
TESTS:
sage: groups.matrix.Sp(2, 3)
Symplectic Group of rank 1 over Finite Field of size 3
Bases: sage.groups.matrix_gps.symplectic.SymplecticGroup_generic, sage.groups.matrix_gps.matrix_group.MatrixGroup_gap_finite_field
INPUT:
Bases: sage.groups.matrix_gps.matrix_group.MatrixGroup_gap
INPUT: