In chemistry, radicals (often referred to as free radicals) are atomic or molecular species with unpaired electrons on an otherwise open shell configuration. These unpaired electrons are usually highly reactive, so radicals are likely to take part in chemical reactions. Radicals play an important role in combustion, atmospheric chemistry, polymerization, plasma chemistry, biochemistry, and many other chemical processes, including human physiology. For example, superoxide and nitric oxide regulate many biological processes, such as controlling vascular tone. "Radical" and "free radical" are frequently used interchangeably, however a radical may be trapped within a solvent cage or be otherwise bound. The first organic free radical, the triphenylmethyl radical was identified by Moses Gomberg in 1900 at the University of Michigan.
Historically, the term radical has also been used for bound parts of the molecule, especially when they remain unchanged in reactions. For example, methyl alcohol was described as consisting of a methyl 'radical' and a hydroxyl 'radical'. Neither were radicals in the usual chemical sense, as they were permanently bound to each other, and had no unpaired, reactive electrons. In mass spectrometry, such radicals are observed after breaking down the substance with a hail of energetic electrons.