La teoría de la probabilidad es la teoría matemática que modela los fenómenos aleatorios. Estos deben contraponerse a los fenómenos determinísticos, en los cuales el resultado de un experimento, realizado bajo condiciones determinadas, produce un resultado único o previsible: por ejemplo, el agua calentada a 100 grados centígrados, a presión normal, se transforma en vapor. Un fenómeno aleatorio es aquel que, a pesar de realizarse el experimento bajo las mismas condiciones determinadas, tiene como resultados posibles un conjunto de alternativas, ejemplos: lanzar un dado o una moneda.
Los procesos reales que se modelizan como procesos aleatorios pueden no serlo realmente; cómo tirar una moneda o un dado no son procesos aleatorios en sentido estricto, ya que no se reproducen exactamente las mismas condiciones iniciales que lo determinan sino sólo unas pocas. Los procesos reales que se modelizan mediante distribuciones de probabilidad corresponden a modelos complejos donde no se conocen todos los parámetros que intervienen o no son reproducibles sus condiciones iniciales (teoría del caos). Para simplificar, generalmente a este tipo de problemas también se le considera aleatorio aunque estrictamente hablando no lo sea.
En 1933, el matemático soviético Andrei Kolmogorov propuso un sistema de axiomas para la teoría de la probabilidad, basado en la teoría de conjuntos y en la teoría de la medida, desarrollada pocos años antes por Lebesgue, Borel y Frechet entre otros.
Esta aproximación axiomática que generaliza el marco clásico de la probabilidad, la cual obedece a la regla de cálculo de casos favorables sobre casos posibles, permitió la modelación matemática de sofisticados fenómenos aleatorios. Actualmente, estos fenómenos encuentran aplicación en las más variadas ramas del conocimiento, como puede ser la física (donde corresponde mencionar el desarrollo de las difusiones y el movimiento Browniano), o las finanzas (donde destaca el modelo de Black y Scholes para la valuación de acciones).