In aviation, a spin is an aggravated stall resulting in rotation wherein the aircraft follows a downward corkscrew path. Spins can be entered unintentionally or intentionally, from any flight attitude and from practically any airspeed--all that is required is sufficient yaw at the moment an aircraft stalls. An incipient spin is typically driven by misapplied inputs made and held by the pilot, whereas a fully developed spin is a self-sustaining maneuver. In either case, however, a specific and often counterintuitive set of actions may be needed to effect recovery. If the aircraft exceeds published limitations regarding spins, or is loaded improperly, or if the pilot uses incorrect technique to recover, the spin can lead to a fatal crash.
In a spin, one wing is sufficiently stalled and generates significant drag but little or no lift, and the other is either not stalled or not stalled as fully as the other, and generates significant lift. This causes the aircraft to autorotate due to the non-symmetric lift and drag. Spins are characterized by high angle of attack, low airspeed, and high rate of descent.
Spins differ from spiral dives which are characterized by low angle of attack and high airspeed. A spiral dive is not a type of stall because the wing is not stalled and the airplane will respond to the pilot's inputs to the flight controls.